Do Small Mammals Affect Plant Diversity?

Total Page:16

File Type:pdf, Size:1020Kb

Do Small Mammals Affect Plant Diversity? University of Münster Department of Behavioural biology Do small mammals affect plant diversity? Field studiesin Namaqualand, South Africa, a biodiversityhotspot Diploma thesis Presented by Christina Keller - April 2005 - University of Münster Department of Behavioural biology Do small mammals affect plant diversity? Field studiesin Namaqualand, South Africa, a biodiversityhotspot Diploma thesis Presented by Christina Keller - April 2005 - Contents I 1.1. Abstract...........................................................................................................1 1.2. Zusammenfassung.........................................................................................2 2. Introduction .......................................................................................................3 3. Subjects, Material and Methods.......................................................................9 3.1. Studyarea....................................................................................................9 3.2. Animals ......................................................................................................11 3.3. Correlation between small mammalsand plants........................................14 3.3.1. Trapping............................................................................................14 3.3.2. Vegetation survey .............................................................................14 3.3.3. Soil samples .....................................................................................16 3.3.4. Altitude..............................................................................................17 3.3.5. Rainfall..............................................................................................17 3.3.6. Statistics ...........................................................................................17 3.4. Food Preference tests................................................................................18 3.5. Plant biodiversityaround bush Karoo rat nests..........................................19 3.6. Fence line...................................................................................................20 4. Results .............................................................................................................22 4.1. Correlation between small mammalsand plants........................................22 4.1.1. Comparison between winter and summer.........................................22 4.1.2. Winter trapping season.....................................................................24 4.1.3. Summer trapping season..................................................................26 4.1.4. Correlation between plant cover and small mammals.......................29 4.1.5. Soil survey ........................................................................................29 4.1.6. Cluster-analyses ...............................................................................32 4.1.7. General linear model.........................................................................32 4.2. Food Preference tests................................................................................34 Contents II 4.2.1. Pilot study .........................................................................................34 4.2.1.1. Striped mouse ( R. pumilio ) ....................................................34 4.2.1.2. bush-Karoo rat ( O. unisulcatus ).............................................34 4.2.2. Second set of tests ...........................................................................35 4.2.2.1. Striped mouse ( R. pumilio ) ....................................................35 4.2.2.2. bush-Karoo rat ( O. unisulcatus)............................................. 36 4.3. Plant biodiversityaround bush Karoo rat nests..........................................37 4.4. Fence line...................................................................................................38 5. Discussion .......................................................................................................39 5.1 Correlation between small mammalsand plants.........................................39 5.2. Food-preference-tests................................................................................42 5.2.1. Pilot study .........................................................................................43 5.2.2. Second set of tests ...........................................................................43 5.3. Plant diversityaround bush-Karoo rat nests...............................................44 5.4. Other factorsthat might influence plant biodiversity...................................45 5.5. Fence line...................................................................................................47 6. Conclusions.....................................................................................................50 7. References.......................................................................................................51 8. Appendix..........................................................................................................57 9. Acknowledgements.........................................................................................66 Abstract 1 1.1. Abstract The conservation of species is one of the most important duties of our century. Basic ecological knowledge is essential in order to perform it. Conservation is particularly effective in hotspots of biodiversity, because many species can be protected here at the same time in a relative small area. One of these biodiversity hotspotsis the Succulent Karoo in southern Africa, which holdsan extraordinary high number of plant species. Small mammals are abundant in the Succulent Karoo and might be of crucial importance asherbivoresin thisecosystem. For the first time the influence of small mammalson plant diversitywasinvestigated in my study. It isknown from earlier studiesthat herbivorescan increase floral diversity by reducing dominant plant species and thus providing space for subdominant species, which would be outcompeted otherwise. In a correlative studyI tested if this mechanism might exist in the Succulent Karoo. The plant diversity in 10 ecological different studysitesin Goegap Nature Reserve wascorrelated with the number of small mammals living there. Additionally two rodent species (Rhabdomys pumilio and Otomys unisulcatus ) were taken as example-species and tested in food-preference-testsfor a preference for subdominant or dominant plant species. Additionally the influence of O. unisulcatus on the plant community surrounding their nestswasalso investigated. I found several positive correlations between plant diversityand the number of individualsand especiallythe species number of small mammals. The direct surroundings of occupied O. unisulcatus nests showed a significantly higher plant diversity than control areas, although food-preference tests revealed that O. unisulcatus prefers subdominant food- plants. In the contrary R. pumilio preferred dominant food-plants. All in all this results indicate a distinct influence of small mammals on plant diversity. The results of my study are of great importance for conservation programs in the Succulent Karoo in which small mammalsshould be included in the future. Zusammenfassung 2 1.2. Zusammenfassung Artenschutz ist eine der wichtigsten Aufgaben unserer Zeit. Für seine Durchführung ist ökologisches Basiswissen zwingend erforderlich. Besonders effektiv ist Artenschutz an Schwerpunkten der Artenvielfalt (Biodiversität), denn hier lassen sich viele Arten gleichzeitig und auf kleinem Raum schützen. Einer dieser Biodiversitätshotspotsist die Sukkulentenkaroo im südlichen Afrika, die sich im Besonderen durch ihre extrem artenreiche Flora auszeichnet. Kleinsäuger sind hier als Pflanzenfresser von großer Bedeutung. Erstmals wurde in dieser Studie der Einfluss von Kleinsäugern auf die Artenvielfalt der Pflanzen in der Sukkulentenkaroo untersucht. Es ist aus andern Studien bekannt, dass Pflanzenfresser einen positiven Einfluss auf die Diversität ihrer Futterpflanzen haben können, indem sie dominante Pflanzenarten reduzieren und auf diese Weise Platz für subdominante Arten schaffen, die andernfalls verdrängt würden. Ob dies in der Sukkulentenkaroo der Fall ist wurde mit einer korrelativen Studie untersucht. Die Pflanzendiversität an 10 ökologisch verschiedenen Untersuchungsgebieten im Goegap Nature Reserve wurde mit den dort lebenden Kleinsäugern in Zusammenhang gebracht. Zusätzlich wurde mit Futter-Präferenz Testsexemplarisch an zwei Nagerarten ( Rhabdomys pumilio , Otomys unisulcatus ) getestet ob sie dominante Futterpflanzen bevorzugt fressen. Bei einer dieser Arten wurde außerdem ihr Einflussauf die Pflanzendiversität in unmittelbarer Umgebung ihresNestesuntersucht. Eswurden mehrfach positive Korrelationen zwischen der Anzahl der Kleinsäugerindividuen und besondersder Anzahl ihrer Arten und der Pflanzendiversität gefunden. Dieser Zusammenhang war im Winter deutlicher als im Sommer. Im Vergleich zu unbewohnten Gebieten wurden in unmittelbarer Umgebung von bewohnten Otomys unisulcatus -Nestern signifikant mehr Pflanzen gefunden, obwohl Futter-PräferenzTests zeigten, dass diese Art subdominante Pflanzenarten bevorzugt. Rhabdomys pumilio hingegen bevorzugte dominante Futterpflanzen. Diese Ergebnisse zeigen einen deutlichen Einfluss von Kleinsäugern auf die Diversität der Pflanzen ihrer Umgebung. Der ökologische
Recommended publications
  • PLAGUE STUDIES * 6. Hosts of the Infection R
    Bull. Org. mond. Sante 1 Bull. World Hlth Org. 1952, 6, 381-465 PLAGUE STUDIES * 6. Hosts of the Infection R. POLLITZER, M.D. Division of Epidemiology, World Health Organization Manuscript received in April 1952 RODENTS AND LAGOMORPHA Reviewing in 1928 the then rather limited knowledge available concerning the occurrence and importance of plague in rodents other than the common rats and mice, Jorge 129 felt justified in drawing a clear-cut distinction between the pandemic type of plague introduced into human settlements and houses all over the world by the " domestic " rats and mice, and " peste selvatique ", which is dangerous for man only when he invades the remote endemic foci populated by wild rodents. Although Jorge's concept was accepted, some discussion arose regarding the appropriateness of the term " peste selvatique" or, as Stallybrass 282 and Wu Lien-teh 318 translated it, " selvatic plague ". It was pointed out by Meyer 194 that, on etymological grounds, the name " sylvatic plague " would be preferable, and this term was widely used until POzzO 238 and Hoekenga 105 doubted, and Girard 82 denied, its adequacy on the grounds that the word " sylvatic" implied that the rodents concerned lived in forests, whereas that was rarely the case. Girard therefore advocated the reversion to the expression "wild-rodent plague" which was used before the publication of Jorge's study-a proposal it has seemed advisable to accept for the present studies. Much more important than the difficulty of adopting an adequate nomenclature is that of distinguishing between rat and wild-rodent plague- a distinction which is no longer as clear-cut as Jorge was entitled to assume.
    [Show full text]
  • Species List
    Mozambique: Species List Birds Specie Seen Location Common Quail Harlequin Quail Blue Quail Helmeted Guineafowl Crested Guineafowl Fulvous Whistling-Duck White-faced Whistling-Duck White-backed Duck Egyptian Goose Spur-winged Goose Comb Duck African Pygmy-Goose Cape Teal African Black Duck Yellow-billed Duck Cape Shoveler Red-billed Duck Northern Pintail Hottentot Teal Southern Pochard Small Buttonquail Black-rumped Buttonquail Scaly-throated Honeyguide Greater Honeyguide Lesser Honeyguide Pallid Honeyguide Green-backed Honeyguide Wahlberg's Honeyguide Rufous-necked Wryneck Bennett's Woodpecker Reichenow's Woodpecker Golden-tailed Woodpecker Green-backed Woodpecker Cardinal Woodpecker Stierling's Woodpecker Bearded Woodpecker Olive Woodpecker White-eared Barbet Whyte's Barbet Green Barbet Green Tinkerbird Yellow-rumped Tinkerbird Yellow-fronted Tinkerbird Red-fronted Tinkerbird Pied Barbet Black-collared Barbet Brown-breasted Barbet Crested Barbet Red-billed Hornbill Southern Yellow-billed Hornbill Crowned Hornbill African Grey Hornbill Pale-billed Hornbill Trumpeter Hornbill Silvery-cheeked Hornbill Southern Ground-Hornbill Eurasian Hoopoe African Hoopoe Green Woodhoopoe Violet Woodhoopoe Common Scimitar-bill Narina Trogon Bar-tailed Trogon European Roller Lilac-breasted Roller Racket-tailed Roller Rufous-crowned Roller Broad-billed Roller Half-collared Kingfisher Malachite Kingfisher African Pygmy-Kingfisher Grey-headed Kingfisher Woodland Kingfisher Mangrove Kingfisher Brown-hooded Kingfisher Striped Kingfisher Giant Kingfisher Pied
    [Show full text]
  • New Records of Bats and Terrestrial Small Mammals from the Seli River in Sierra Leone Before the Construction of a Hydroelectric Dam
    Biodiversity Data Journal 7: e34754 doi: 10.3897/BDJ.7.e34754 Research Article New records of bats and terrestrial small mammals from the Seli River in Sierra Leone before the construction of a hydroelectric dam Natalie Weber‡, Ricarda Wistuba§§, Jonas J Astrin , Jan Decher§ ‡ Independent Research Consultant, Fuerth, Germany § ZFMK, Bonn, Germany Corresponding author: Natalie Weber ([email protected]) Academic editor: Ricardo Moratelli Received: 21 Mar 2019 | Accepted: 23 May 2019 | Published: 18 Jun 2019 Citation: Weber N, Wistuba R, Astrin J, Decher J (2019) New records of bats and terrestrial small mammals from the Seli River in Sierra Leone before the construction of a hydroelectric dam. Biodiversity Data Journal 7: e34754. https://doi.org/10.3897/BDJ.7.e34754 Abstract Sierra Leone is situated at the western edge of the Upper Guinean Forests in West Africa, a recognised biodiversity hotspot which is increasingly threatened by habitat degradation and loss through anthropogenic impacts. The small mammal fauna of Sierra Leone is poorly documented, although bats and rodents account for the majority of mammalian diversity. Based on morphological, genetic and echolocation data, we recorded 30 bat (Chiroptera), three shrew (Soricomorpha) and eleven rodent (Rodentia) species at the Seli River in the north of the country in 2014 and 2016, during a baseline study for the Bumbuna Phase II hydroelectric project. In 2016, 15 bat species were additionally documented at the western fringe of the Loma Mountains, a recently established national park and biodiversity offset for the Bumbuna Phase I dam. Three bat species were recorded for the first time in Sierra Leone, raising the total number for the country to 61.
    [Show full text]
  • Prolactin Levels in Paternal Striped Mouse (Rhabdomys Pumilio) Fathers
    Physiology & Behavior 81 (2004) 43–50 Prolactin levels in paternal striped mouse (Rhabdomys pumilio) fathers Carsten Schradin*, Neville Pillay Ecophysiological Studies Research Group, School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Private Bag 3, Wits 2050, South Africa Received 24 September 2003; received in revised form 26 November 2003; accepted 18 December 2003 Abstract Paternal behavior is associated with an increase in prolactin levels in fish, birds and mammals, including rodents. The striped mouse (Rhabdomys pumilio) from southern Africa shows highly developed paternal care. We investigated whether striped mouse fathers have higher prolactin levels than nonfathers, and whether there is a relationship between tactile stimulation with pups and prolactin secretion in fathers. We measured serum prolactin in 42 male striped mice assigned to one of four different experimental groups (single males, paired males, fathers housed with mother and pups, and fathers separated from their family by a wire-mesh partition). Our results revealed no increases in prolactin levels in fathers, and fathers with tactile contact with pups did not have higher prolactin levels than the fathers that were prevented from making tactile contact with pups. In contrast, experienced males had higher prolactin levels than inexperienced males. Male striped mice are polygynous in nature, living in groups, with three breeding females, and are permanently associated with pups during the breeding season. In a field study, males had higher prolactin levels during the breeding season than during the nonbreeding season. Thus, prolactin secretion in the polygynous striped mouse might be regulated by environmental stimuli, whereas social stimuli might be important for monogamous species.
    [Show full text]
  • South Africa, 2017
    WILDWINGS SOUTH AFRICA TOUR Wildwings Davis House MAMMALS AND BIRDS Lodge Causeway th th Bristol BS16 3JB 4 -14 SEPTEMBER 2017 LEADER – RICHARD WEBB +44 01179 658333 www.wildwings.co.uk Leopard INTRODUCTION After the success of the two previous Wildwings’ mammal tours to South Africa in 2016 we set off on the 2017 tour with high expectations and we were not to be disappointed. Despite longer than usual grass at Marrick which made spotlighting more difficult we still managed to find most of the species found on the two tours in 2016 plus a couple of real bonuses. The highlights among the 55 species of mammal seen included: A fantastic encounter with a pack of at least eight African Wild Dogs with seven three-month old puppies, plus another group of three females later the same day. A superb female Leopard on our first afternoon in Madikwe, with an awesome encounter with the same individual in the grounds of our lodge, including one of the clients finding her sitting on his balcony on our last evening! Our best views of Aardwolf to date in Marrick and prolonged views of Aardvark at the same location. Three Brown Hyaenas including one for over 30 minutes one afternoon. Two Black-footed Cats and no fewer than nine (recently-split) African Wildcats including a female with three kittens. 1 Two male Cheetahs and eight or nine Lions. Two Spotted-necked Otters feeding on a fish for over an hour at Warrenton. A superb Black Rhino and over 20 White Rhinos including a boisterous group of nine animals.
    [Show full text]
  • Dental Adaptation in Murine Rodents (Muridae): Assessing Mechanical Predictions Stephanie A
    Florida State University Libraries Electronic Theses, Treatises and Dissertations The Graduate School 2010 Dental Adaptation in Murine Rodents (Muridae): Assessing Mechanical Predictions Stephanie A. Martin Follow this and additional works at the FSU Digital Library. For more information, please contact [email protected] THE FLORIDA STATE UNIVERSITY COLLEGE OF ARTS AND SCIENCES DENTAL ADAPTATION IN MURINE RODENTS (MURIDAE): ASSESSING MECHANICAL PREDICTIONS By STEPHANIE A. MARTIN A Thesis in press to the Department of Biological Science in partial fulfillment of the requirements for the degree of Master of Science Degree Awarded: Spring Semester, 2010 Copyright©2010 Stephanie A. Martin All Rights Reserved The members of the committee approve the thesis of Stephanie A. Martin defended on March 22, 2010. ______________________ Scott J. Steppan Professor Directing Thesis _____________________ Gregory Erickson Committee Member _____________________ William Parker Committee Member Approved: __________________________________________________________________ P. Bryant Chase, Chair, Department of Biological Science The Graduate School has verified and approved the above-named committee members. ii TABLE OF CONTENTS List of Tables......................................................................................................................iv List of Figures......................................................................................................................v Abstract...............................................................................................................................vi
    [Show full text]
  • The Striped Mice from the Succulent Karoo of South Africa
    Schradin, C; Krackow, S; Schubert, M; Keller, C; Schradin, B; Pillay, N. Regulation of activity in desert-living striped mice: The importance of basking. Ethology 113 (2007): 606-614. Postprint available at: http://www.zora.uzh.ch University of Zurich Posted at the Zurich Open Repository and Archive, University of Zurich. Zurich Open Repository and Archive http://www.zora.uzh.ch Originally published at: Ethology 113 (2007): 606-614. Winterthurerstr. 190 CH-8057 Zurich http://www.zora.uzh.ch Year: 2007 Regulation of activity in desert-living striped mice: The importance of basking Schradin, C; Krackow, S; Schubert, M; Keller, C; Schradin, B; Pillay, N Schradin, C; Krackow, S; Schubert, M; Keller, C; Schradin, B; Pillay, N. Regulation of activity in desert-living striped mice: The importance of basking. Ethology 113 (2007): 606-614. Postprint available at: http://www.zora.uzh.ch Posted at the Zurich Open Repository and Archive, University of Zurich. http://www.zora.uzh.ch Originally published at: Ethology 113 (2007): 606-614. Regulation of activity in desert-living striped mice: The importance of basking Abstract Deserts represent challenging, energy restricted environments for small mammals, but offer ample exposure to sunlight that might be used for energy saving during basking. The Succulent Karoo desert in southern Africa is a seasonal environment with cold moist winters, followed by maximum food availability in spring and dry hot summers with food shortage. The striped mouse (Rhabdomys pumilio) from the Succulent Karoo desert is diurnal and its activity is influenced by photoperiod in captivity. However, in contrast to standardized laboratory conditions, it can be expected that several factors other than photoperiod influence its activity pattern in the field.
    [Show full text]
  • Chapter 15 the Mammals of Angola
    Chapter 15 The Mammals of Angola Pedro Beja, Pedro Vaz Pinto, Luís Veríssimo, Elena Bersacola, Ezequiel Fabiano, Jorge M. Palmeirim, Ara Monadjem, Pedro Monterroso, Magdalena S. Svensson, and Peter John Taylor Abstract Scientific investigations on the mammals of Angola started over 150 years ago, but information remains scarce and scattered, with only one recent published account. Here we provide a synthesis of the mammals of Angola based on a thorough survey of primary and grey literature, as well as recent unpublished records. We present a short history of mammal research, and provide brief information on each species known to occur in the country. Particular attention is given to endemic and near endemic species. We also provide a zoogeographic outline and information on the conservation of Angolan mammals. We found confirmed records for 291 native species, most of which from the orders Rodentia (85), Chiroptera (73), Carnivora (39), and Cetartiodactyla (33). There is a large number of endemic and near endemic species, most of which are rodents or bats. The large diversity of species is favoured by the wide P. Beja (*) CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal CEABN-InBio, Centro de Ecologia Aplicada “Professor Baeta Neves”, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal e-mail: [email protected] P. Vaz Pinto Fundação Kissama, Luanda, Angola CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus de Vairão, Vairão, Portugal e-mail: [email protected] L. Veríssimo Fundação Kissama, Luanda, Angola e-mail: [email protected] E.
    [Show full text]
  • Genetics and Genomics of Mammalian Pigment Patterns
    GENETICS AND GENOMICS OF MAMMALIAN PIGMENT PATTERNS A DISSERTATION SUBMITTED TO THE DEPARTMENT OF GENETICS AND THE COMMITTEE ON GRADUATE STUDIES OF STANFORD UNIVERSITY IN PARTIAL FUFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Lewis Zuocheng Hong August 2011 © 2011 by Zuocheng Lewis Hong. All Rights Reserved. Re-distributed by Stanford University under license with the author. This work is licensed under a Creative Commons Attribution- Noncommercial 3.0 United States License. http://creativecommons.org/licenses/by-nc/3.0/us/ This dissertation is online at: http://purl.stanford.edu/jx191nt1141 ii I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Gregory Barsh, Primary Adviser I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Andrew Fire I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. David Kingsley I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Arend Sidow Approved for the Stanford University Committee on Graduate Studies. Patricia J. Gumport, Vice Provost Graduate Education This signature page was generated electronically upon submission of this dissertation in electronic format. An original signed hard copy of the signature page is on file in University Archives.
    [Show full text]
  • Small Mammals As Hosts of Immature Ixodid Ticks
    Onderstepoort Journal of Veterinary Research, 72:255–261 (2005) Small mammals as hosts of immature ixodid ticks I.G. HORAK1, 2, L.J. FOURIE2 and L.E.O. BRAACK3 ABSTRACT HORAK, I.G., FOURIE, L.J. & BRAACK, L.E.O. 2005. Small mammals as hosts of immature ixodid ticks. Onderstepoort Journal of Veterinary Research, 72:255–261 Two hundred and twenty-five small mammals belonging to 16 species were examined for ticks in Free State, Mpumalanga and Limpopo Provinces, South Africa, and 18 ixodid tick species, of which two could only be identified to genus level, were recovered. Scrub hares, Lepus saxatilis, and Cape hares, Lepus capensis, harboured the largest number of tick species. In Free State Province Namaqua rock mice, Aethomys namaquensis, and four-striped grass mice, Rhabdomys pumilio, were good hosts of the immature stages of Haemaphysalis leachi and Rhipicephalus gertrudae, while in Mpu- malanga and Limpopo Provinces red veld rats, Aethomys chrysophilus, Namaqua rock mice and Natal multimammate mice, Mastomys natalensis were good hosts of H. leachi and Rhipicephalus simus. Haemaphysalis leachi was the only tick recovered from animals in all three provinces. Keywords: Immature ixodid ticks, Haemaphysalis leachi, Rhipicephalus gertrudae, Rhipicephalus simus, small mammals, South Africa INTRODUCTION elephant shrews (Stampa 1959; Fourie et al. 1992; Fourie, Horak, Kok & Van Zyl 2002), hares and rab- A large number of surveys have focused on the role bits (Stampa 1959; Horak, Sheppey, Knight & of small mammals as hosts of the immature stages Beuthin 1986; Horak & Fourie 1991; Horak et al. of ixodid ticks in South Africa. The accent has been 1991; Horak, Spickett, Braack & Penzhorn 1993; mainly on murid rodents (Rechav 1982; Howell, Horak, Spickett, Braack, Penzhorn, Bagnall & Uys Petney & Horak 1989; Horak, Fourie, Novellie & 1995; MacIvor & Horak 2003), rock dassies (Horak Williams 1991; Fourie, Horak & Van Den Heever & Fourie 1986; Horak et al.
    [Show full text]
  • A Checklist of the Land Mammals Tanganyika Territory Zanzibar
    274 G. H. SWYNNERTON,F.Z.S., Checklist oj Land Mammals VOL. XX A Checklist of the Land Mammals OF mE Tanganyika Territory AND mE Zanzibar Protectorate By G. H. SWYNNERTON, F.Z.S., Game Warde:z, Game Preservation Department, Tanganyika Territory, and R. W. HAYMAN, F.Z.S., Senior Experimental Officer, Department of Zoology, British Museum (Natural History) 277278·.25111917122896 .· · 4 . (1)(3)(-)(2)(5)(9)(3)(4)280290281283286289295288291 280. .. CONTENTS· · · No. OF FORMS* 1. FOREWORDINSECTIVORA ErinaceidaM:,gadermatidaEmballonuridaSoricidt:eMacroscelididaMarossidaNycteridaHipposideridaRhinolophidaVespertilionida(Shrews)(Free-tailed(Hollow-faced(Hedgehogs)(Horseshoe(Leaf-nosed(Sheath-tailed(Elephant(Simple-nosed(Big-earedBats)Bats)Shrews)BatsBats)Bats) Pteropodida (Fruit-eating Bats) 2.3. INTRODUCTIONSYSTEMATICLIST OF SPECIESAND SUBSPECIES: PAGE CHIROPTERA Chrysochlorida (Golden" Moles to) ···302306191210.3521. ·2387 . · 6 · IAN. (1)(2)1951(-)(4)(21)(1)(6)(14)(6)(5),(7)(8)333310302304306332298305309303297337324325336337339211327 . SWYNNERTON,. P.Z.S.,·· ·Checklist··· of·Land 3293Mammals52 275 PItIMATES G. It. RhinocerotidaPelidaEchimyidaHyanidaPongidaCercopithecidaHystricidaMuridaHominidaAnomaluridaPedetidaCaviidaMustelidaGliridaSciuridaViverrida(Cats,(Mice,(Dormice)(Guinea-pigs)(Apes)(Squirrels)(Spring(Hyaenas,(Genets,(Man)(Polecats,(Cane(porcupines)(Flying(Rhinoceroses)Leopards,(Monkeys,Rats,Haas)Rats)Civets,Arad-wolf).Weasels,Squirrels)Gerbils,Lions,Baboons)Mongooses)Ratels,etc.)•Cheetahs)..Otters) ProcaviidaCanidaLeporidaElephantidaLorisidaOrycteropodidaEquidaBathyergidaManida
    [Show full text]
  • List of Taxa for Which MIL Has Images
    LIST OF 27 ORDERS, 163 FAMILIES, 887 GENERA, AND 2064 SPECIES IN MAMMAL IMAGES LIBRARY 31 JULY 2021 AFROSORICIDA (9 genera, 12 species) CHRYSOCHLORIDAE - golden moles 1. Amblysomus hottentotus - Hottentot Golden Mole 2. Chrysospalax villosus - Rough-haired Golden Mole 3. Eremitalpa granti - Grant’s Golden Mole TENRECIDAE - tenrecs 1. Echinops telfairi - Lesser Hedgehog Tenrec 2. Hemicentetes semispinosus - Lowland Streaked Tenrec 3. Microgale cf. longicaudata - Lesser Long-tailed Shrew Tenrec 4. Microgale cowani - Cowan’s Shrew Tenrec 5. Microgale mergulus - Web-footed Tenrec 6. Nesogale cf. talazaci - Talazac’s Shrew Tenrec 7. Nesogale dobsoni - Dobson’s Shrew Tenrec 8. Setifer setosus - Greater Hedgehog Tenrec 9. Tenrec ecaudatus - Tailless Tenrec ARTIODACTYLA (127 genera, 308 species) ANTILOCAPRIDAE - pronghorns Antilocapra americana - Pronghorn BALAENIDAE - bowheads and right whales 1. Balaena mysticetus – Bowhead Whale 2. Eubalaena australis - Southern Right Whale 3. Eubalaena glacialis – North Atlantic Right Whale 4. Eubalaena japonica - North Pacific Right Whale BALAENOPTERIDAE -rorqual whales 1. Balaenoptera acutorostrata – Common Minke Whale 2. Balaenoptera borealis - Sei Whale 3. Balaenoptera brydei – Bryde’s Whale 4. Balaenoptera musculus - Blue Whale 5. Balaenoptera physalus - Fin Whale 6. Balaenoptera ricei - Rice’s Whale 7. Eschrichtius robustus - Gray Whale 8. Megaptera novaeangliae - Humpback Whale BOVIDAE (54 genera) - cattle, sheep, goats, and antelopes 1. Addax nasomaculatus - Addax 2. Aepyceros melampus - Common Impala 3. Aepyceros petersi - Black-faced Impala 4. Alcelaphus caama - Red Hartebeest 5. Alcelaphus cokii - Kongoni (Coke’s Hartebeest) 6. Alcelaphus lelwel - Lelwel Hartebeest 7. Alcelaphus swaynei - Swayne’s Hartebeest 8. Ammelaphus australis - Southern Lesser Kudu 9. Ammelaphus imberbis - Northern Lesser Kudu 10. Ammodorcas clarkei - Dibatag 11. Ammotragus lervia - Aoudad (Barbary Sheep) 12.
    [Show full text]