University of Münster

DepartmentofBehaviouralbiology

Do small affect plant

diversity? FieldstudiesinNamaqualand,SouthAfrica, abiodiversityhotspot

Diploma thesis Presentedby Christina Keller

- April 2005 -

University of Münster

DepartmentofBehaviouralbiology

Do small mammals affect plant

diversity? FieldstudiesinNamaqualand,SouthAfrica, abiodiversityhotspot

Diploma thesis Presentedby Christina Keller

- April 2005 -

Contents I

1.1. Abstract...... 1

1.2. Zusammenfassung...... 2

2. Introduction ...... 3

3. Subjects, Material and Methods...... 9

3.1.Studyarea...... 9 3.2. ...... 11 3.3.Correlationbetweensmallmammalsandplants...... 14 3.3.1.Trapping...... 14 3.3.2.Vegetationsurvey ...... 14 3.3.3.Soilsamples ...... 16 3.3.4.Altitude...... 17 3.3.5.Rainfall...... 17 3.3.6.Statistics ...... 17 3.4.FoodPreferencetests...... 18 3.5.PlantbiodiversityaroundbushKarooratnests...... 19 3.6.Fenceline...... 20 4. Results ...... 22

4.1.Correlationbetweensmallmammalsandplants...... 22 4.1.1.Comparisonbetweenwinterandsummer...... 22 4.1.2.Wintertrappingseason...... 24 4.1.3.Summertrappingseason...... 26 4.1.4.Correlationbetweenplantcoverandsmallmammals...... 29 4.1.5.Soilsurvey ...... 29 4.1.6.Clusteranalyses ...... 32 4.1.7.Generallinearmodel...... 32 4.2.FoodPreferencetests...... 34 Contents II

4.2.1.Pilotstudy ...... 34 4.2.1.1.Stripedmouse( R. pumilio ) ...... 34 4.2.1.2.bushKaroorat( O. unisulcatus )...... 34 4.2.2.Secondsetoftests ...... 35 4.2.2.1.Stripedmouse( R. pumilio ) ...... 35 4.2.2.2.bushKaroorat( O. unisulcatus)...... 36 4.3.PlantbiodiversityaroundbushKarooratnests...... 37 4.4.Fenceline...... 38 5. Discussion ...... 39 5.1Correlationbetweensmallmammalsandplants...... 39 5.2.Foodpreferencetests...... 42 5.2.1.Pilotstudy ...... 43 5.2.2.Secondsetoftests ...... 43 5.3.PlantdiversityaroundbushKarooratnests...... 44 5.4.Otherfactorsthatmightinfluenceplantbiodiversity...... 45 5.5.Fenceline...... 47 6. Conclusions...... 50

7. References...... 51

8. Appendix...... 57

9. Acknowledgements...... 66

Abstract 1

1.1. Abstract

The conservation of is one of the most important duties of our century. Basic ecological knowledge is essential in order to perform it. Conservation is particularly effective in hotspots of biodiversity, because many species can be protectedhereatthesametimeinarelativesmallarea.Oneofthesebiodiversity hotspotsistheSucculentKarooinsouthernAfrica,whichholdsanextraordinary high number of plant species. Small mammals are abundant in the Succulent Karooandmightbeofcrucialimportanceasherbivoresinthisecosystem.Forthe firsttimetheinfluenceofsmallmammalsonplantdiversitywasinvestigatedinmy study.Itisknownfromearlierstudiesthatherbivorescanincreasefloraldiversity by reducing dominant plant species and thus providing space for subdominant species,whichwouldbeoutcompetedotherwise.InacorrelativestudyItestedif this mechanism might exist in the Succulent Karoo. The plant diversity in 10 ecologicaldifferentstudysitesinGoegapNatureReservewascorrelatedwiththe number of small mammals living there. Additionally two species ( pumilio and Otomys unisulcatus ) were taken as examplespecies andtestedinfoodpreferencetestsforapreferenceforsubdominantordominant plantspecies.Additionallytheinfluenceof O. unisulcatus ontheplantcommunity surroundingtheirnestswasalsoinvestigated.Ifoundseveralpositivecorrelations betweenplantdiversityandthenumberofindividualsandespeciallythespecies number of small mammals. The direct surroundings of occupied O. unisulcatus nests showed a significantly higher plant diversity than control areas, although foodpreference tests revealed that O. unisulcatus prefers subdominant food plants. In the contrary R. pumilio preferred dominant foodplants. All in all this results indicate a distinct influence of small mammals on plant diversity. The results of my study are of great importance for conservation programs in the SucculentKarooinwhichsmallmammalsshouldbeincludedinthefuture. Zusammenfassung 2

1.2. Zusammenfassung

Artenschutz ist eine der wichtigsten Aufgaben unserer Zeit. Für seine Durchführung ist ökologisches Basiswissen zwingend erforderlich. Besonders effektiv ist Artenschutz an Schwerpunkten der Artenvielfalt (Biodiversität), denn hier lassen sich viele Arten gleichzeitig und auf kleinem Raum schützen. Einer dieserBiodiversitätshotspotsistdieSukkulentenkarooimsüdlichenAfrika,diesich imBesonderendurchihreextremartenreicheFloraauszeichnet.Kleinsäugersind hier als Pflanzenfresser von großer Bedeutung. Erstmals wurde in dieser Studie der Einfluss von Kleinsäugern auf die Artenvielfalt der Pflanzen in der Sukkulentenkaroo untersucht. Es ist aus andern Studien bekannt, dass Pflanzenfresser einen positiven Einfluss auf die Diversität ihrer Futterpflanzen haben können, indem sie dominante Pflanzenarten reduzieren und auf diese Weise Platz für subdominante Arten schaffen, die andernfalls verdrängt würden. Obdies inderSukkulentenkarooderFall istwurde miteinerkorrelativen Studie untersucht. Die Pflanzendiversität an 10 ökologisch verschiedenen UntersuchungsgebietenimGoegapNatureReservewurdemitdendortlebenden KleinsäugerninZusammenhanggebracht.ZusätzlichwurdemitFutterPräferenz TestsexemplarischanzweiNagerarten( Rhabdomys pumilio , Otomys unisulcatus ) getestetobsiedominanteFutterpflanzenbevorzugtfressen.BeieinerdieserArten wurdeaußerdemihrEinflussaufdiePflanzendiversitätinunmittelbarerUmgebung ihresNestesuntersucht.EswurdenmehrfachpositiveKorrelationenzwischender AnzahlderKleinsäugerindividuenundbesondersderAnzahlihrerArtenundder Pflanzendiversitätgefunden.DieserZusammenhangwarimWinterdeutlicherals im Sommer. Im Vergleich zu unbewohnten Gebieten wurden in unmittelbarer Umgebungvonbewohnten Otomys unisulcatus NesternsignifikantmehrPflanzen gefunden, obwohl FutterPräferenzTests zeigten, dass diese Art subdominante Pflanzenarten bevorzugt. Rhabdomys pumilio hingegen bevorzugte dominante Futterpflanzen. Diese Ergebnisse zeigen einen deutlichen Einfluss von Kleinsäugern auf die Diversität der Pflanzen ihrer Umgebung. Der ökologische Hintergrund ist von großer Bedeutung für Artenschutzprogramme in diesem gefährdetenGebiet,indieKleinsäugerinZukunfteinbezogenwerdensollten.

Introduction 3

2. Introduction

Thephenomenonofbiodiversityisoneofthemostfascinatinginbiology.Inthis study biodiversity is understood as the number of different species in a certain areawithoutregardstoendemismorabundance.WhenDarwinfirstdescribedthe process of evolution, biologists began to understand the scientific basis of diversity.Intheprocessofadaptiveradiationandadaptationtoecologicalniches, evolution created numerous different species of plants and animals. But these speciesarenotdistributedevenlyovertheplanet. In2000Myers et al identified25hotspotsofbiodiversity.Theseareaswere chosen for their species richness, endemism, taxonomic uniqueness, unusual ecological or evolutionary phenomena and global rarity. Myers et al. saw the identification of diversity hotspots as a tool for the improvement of conservation management.Allthehotspotsarefacingextremethreatsfromhumaninterference. Asconservationbudgetsareinsufficientgiventhenumberofspeciesthreatened withextinctionitishighlyimportanttobeabletosupportthegreatestnumberof speciesattheleastcost.Thisismucheasierafteridentificationsofbiodiversity hotspots,sinceallhotspotstogethercoveronly11.8percentoftheplanet’sland surface,butincludenolessthen44percentoftheworldsplantsand35percentof terrestrial vertebrates. Myers included only terrestrial ecosystems. Examples of thesehotspotsareMadagascar,Brazil’sAtlanticforestandtheTropicalAndes. Identifyingbiodiversityisthefirststepunderstandingisthesecond.Several authors established hypotheses trying to explain gradients of biodiversity. Biodiversity is for example often connected with the number of available niches and the strength of genetic drift (Ihlenfeldt 1994, Connell 1964). According to Jürgens et al. (1999)ahighpopulationturnovercandecreasethecompetitionfor anecologicalnicheinplants.Normallycompetitionforresourceslimitsthesharing of the same ecological niche by several species, but if species have a short lifespan,thisexposuretocompetitionisofrelativeshortduration.Inaddition there isalwaysspacefornewrecruitstobecomeestablish.Thiscanleadtoincreased biodiversity. Anotherpotentialmechanismtocreateormaintaindiversityisthepredation hypothesis first formulated by Paine (1966). By keeping the abundance of their prey in check and thus prevent competitive exclusion, predators can maintain a

Introduction 4 higher diversity of prey species than would occur in their absence (Paine 1966, 1971).AlreadyDarwinrealisedin1859thatthediversityinameadowdecreasesif cuttingisstopped.Paine(1966)investigatedconnectionsbetweenpredatorsand their prey on a reef. He found that the removal of predators (i.e. the sea star Pisaster ochraceus )ledtodecreaseddiversityoftheirprey,mussels(e.g. Mytilus californianus ) in this case. Lubchenco (1978) noticed the same phenomenon in tidalpools.Here,thepresenceofsnailsledtohigherdiversityofalgaespecies,as predictedbythepredationhypothesis.Butthenumberofalgaespeciesdecreased again when the snail population exceeded a limit, causing the extinction of the preferred food plants. The diversity of the prey, here the algae, reached a maximumundertheinfluenceofamediumpopulationdensityofpredators,here thesnails.AninterestingaspectofLubchencosstudyistheextensionofPaine’s predationhypothesisbyincludingplantsaspreyspecies.Incontrasttothestudy by Lubchenco (1978) Harper (1969) found that herbivores decrease plant diversity. This variable result may be due to the fact that herbivores can only increase the diversity of plants if they preferentially feed on the competitive dominant plant species, preventing them from displacing subdominant plant species. They decrease plant diversity if they prefer the subdominant plant species. In conclusion herbivores can potentially do both, increase or decrease plantdiversity(Lubchenco1978). ThisstudyfocusesontherichplantdiversityinNamaqualand,partofthe Succulent Karoo, a biodiversity hotspot. The Succulent Karoo is situated on the West Coast of South Africa and Namibia. Namaqualand is the part of the SucculentKaroo,whichliesinSouthAfrica.Thisareaisasemideserttodesert environment.Thetemperaturescanreachover40°insummerandcanbebelow 0°inwinter.Duringdaytimethetemperaturefluctuationsarealsoveryhigh.The average annual rainfall is between 50 and 400 mm depending on the area (Cowling et al. 1999),withrainfallingmainlyinwinter(JunetoAugust). Compared to other desert ecosystems Namaqualand has many unique biologicalfeatures(Cowling et al. 1999).Therainfallisrare,buthighlypredictable (Desmet&Cowling1999).Droughtsareveryrareandhaveadisastrouseffecton the plants that are not adapted to it. There is nearly every year enough rain for plants to germinate, grow and to produce seeds that can establish successfully afterwards.Thusplantsarenotforcedtoinvestinrobustnessorlongevity,abilities

Introduction 5 that are crucial in other deserts with droughts lasting for years. The high populationturnoverinplantsintheSucculentKaroo,especiallyafterdroughts,is onereasonforthehighplantdiversityhere(Jürgens1999). Usually, a semidesert is not expected to be among the 25 most diverse placesintheworld.Connell(1964)suggestedthatdiversityisassociatedwiththe stabilitywithinasystem,becauseinastableenvironmentlessenergyisrequired for homeostasis. He pointed out that diversity increases if species have higher productivityduetomoreavailableenergy.TheSucculentKaroohoweverisnota very stable environment, at least not compared to equatorial rain forests. There arehightemperaturefluctuationsduringthedayandrainfallisusuallyrestrictedto thewintermonths. Determiningthereasonsfortheextraordinaryhighnumberofplantspecies intheSucculentKaroocanbeofgreatimportanceforitsconservation.Ifherbivore predators have a positive influence on plant diversity, it would be essential to include these animals in conservation programs for plants. The conservation of plants, and nature in general, is extremely important in this area because the plants are a tourist attraction and tourism is an important economic factor in Namaqualand.Furthermore,maintenanceofplantbiodiversityisalsoimportantfor the local farmers, as livestock feeds on a large variety of plant species, mainly succulents and annuals. Grass is nearly absent in the Succulent Karoo, and a decrease of biodiversity (e.g. because of overgrazing) is characterized by an increaseinabundanceofunpalatableshrubspecies(i.e. Galenia africana, Todd& Hoffman1999). Another reason why desert ecosystems are increasingly important for conservation is global warming. Because there is a strong likelihood of a rapid increase in temperature all over the world, the genetic stock held by desert ecosystemsmightbeofenormousimportanceformankindinthefuture(Cowling et al. 1999).Thecurrentrateofextinctionisalosswecanillafford.Additionally, theSucculentKarooisaninadequatelyprotectedbiome(HiltonTaylor&LeRoux 1989). BotanicallytheSucculentKarooispartoftheGreaterCapeFlora(Jürgens et al. 1991).TheSucculentKarooishometoabout1954endemicplantspecies, makingittheworld’srichestsucculentflora(Lombard1999).Characterisedbyan open dwarf shrubland (Milton et al. 1997), the vegetation is dominated by leaf

Introduction 6 succulents and numerous species of highly abundant ephemeral geophytes floweringinspring(Cowling et al. 1999).Namaqualandharboursprobably10%of the succulent species in the world (Van Jaarsveld 1987). One of the most abundant families is the Mesembryanthemaceae (also called Aizoaceae), which are overwhelmingly concentrated in the Succulent Karoo (Hartmann 1991). In contrast to other winter rainfalldeserts, leaf succulents with a shallow rooting system dominate the vegetation. This rooting system makes the plants very vulnerable for droughts (Cowling et al. 1999). To grow in the cool winter temperatures some plants have low temperatureoptima for photosynthesis (Rossa&vonWillert1998). Namaqualand can be divided in smaller regions based on geology, topography, amount and season of rainfall. Goegap Nature Reserve, where this study was conducted, falls within the Hardeveld or Namaqualand Rocky Hills (HiltonTaylor 1996) extending from Steinkopf in the north to Bitterfontein in the south.Thevegetationcoverhereisrelativelydensecomparedtootherregionsof Namaqualand. The landscape in the Hardeveld can be divided into hills (local name: koppies), plateaus and plains. Different soil features characterize each of these regions. On koppies there is usually shallow soil, as sand is continually removedbywater.Windandwaterdepositfinersoilparticlesonplainsandalong drainage lines. The soil of plains is deeper and supports different plant communities. There are various species of small mammals occurring in Namaqualand. Some of them are endemic. In fact 85% of South Africa’s endemic species are small (Gelderblom 1995). Especially in the Hardeveld, the region of Namaqualandwherethisstudywasconducted,thepopulationdensitiesofsmall mammalscanbeextraordinaryhigh(Schradin&Pillay2005;Jackson1999),while large mammals are relatively rare in species and numbers. Most of the small mammals are muroid , like the striped mouse ( Rhabdomys pumilio ), the bushKaroorat( Otomys unisulcatus )andseveralspeciesofgerbils.Butelephant shrewsandmoleratsarealsorepresentedwithsomespecies. Therearenoobviousreasonsfortheextraordinarynumberofplantspecies in the Succulent Karoo, but several hypotheses might apply. The plants in this areaarefoodformanyherbivores.Thus,theplantscanberegardedaspreyand theherbivoresastheirpredatorsorconsumers.Thepresentstudyinvestigatesif

Introduction 7 the predationhypothesis can be applied to the Succulent Karoo, and if the presence of small mammals as the dominant plant predators can at least partly explainthehighnumberofplantspecies. It is suggested that small mammals of the Succulent Karoo have an influence on the plant diversity in their surroundings. According to Andrews and O`Brien(2000)smallmammaldistributionisrepresentativeforthedistributionof mammalsingeneral.Thus,biggerherbivoressuchaszebrasandantelopeswere notincludedinthisstudy. Furthermore,smallmammalshavetheadvantageofasmallrangeofaction incomparisontolargermammals,likeungulates.Thisishighlyusefulforastudy like this where smallscale differences in species assemblage and population densitieswereinvestigated. Indetail,Itestedthefollowinghypotheses: 1. The presence of small mammals as plant predators correlates with plant diversity. 2. Smallmammalsasplantpredatorsaffectcompetitionbetweenplantspeciesby preferably feeding on dominant or subdominant plant species. According to Lubchenco (1978) herbivores increase plant diversity if they prefer dominant plant species. In this case they provide space for subdominant species that wouldotherwisebeoutcompeted. 3. Theeffectofsmallmammalsonplantdiversityissupposedtobegreatestin thedirectsurroundingoftheirnests,especiallyincaseofcentralplaceforagers like O. unisulcatus (bushKaroo rats). This would predict differential diversity aroundoccupiednestsofbushKarooratscomparedtoabandonedareas. While small mammals might have an influence on plant diversity, the evolution and maintenance of plant biodiversity is very likely also dependent on many other factors. While the focus of this study was on the role of small mammals in this process, data regarding several other ecological factors were collected, as well. In the first place some edaphic (soil concerning) parameters were investigated that are hypothesised to have a great influence on species diversity. The focus was on soil nutrients. The concentration of the ions from sodium,potassium,calcium,manganese,magnesiumandironweremeasured.In

Introduction 8 additionthepHvalueinthesoilsolutionwasmeasured.Thenutrientstatusand pH are important edaphic factors for characterisation of Succulent Karoo soil (LechemereOertel & Cowling 2001). Curiously, Succulent Karoo seedlings accumulate more biomass if they grow in nutrientpoor soil in comparison to nutrientrich soil (LechemereOertel & Cowling, 2001). Another recorded factor wasaltitude.IntheAndeanforests,forexample,thereisageneraltendencyfor plantdiversitytodecreasewithincreasingaltitude(Gentry1988).Thesedataon edaphic parameters were used for descriptive statistical analyses (Cluster analysis) to create hypotheses and predictions for future research into the understandingofplantbiodiversityintheSucculentKaroo. In addition a possible impact of large ungulate herbivores on plant and small mammal diversity was investigated. The history of grazing by domestic animals in Namaqualand dated back more than 2000 years (Smith 1999). The keeping of livestock especially goats and sheep is common in the Succulent Karoo, which might have a great influence on this biome. According to the predationhypothesisitcanbeexpectedthat,likesmallmammals,livestockmight have an influence on plant diversity. Maybe very high stocking rates have a negativeeffectonsmallmammaldiversitybecauseovergrazedrangelandsshowa lackofcoverforpredatoravoidance(Joubert&Ryan1999).InthiscontextMilton et al. (1994)foundthatthereisaprogressivedegradationofrangelandsresulting inirreversiblechangesindiversityandabundanceofKaroovegetation.Although several studies found no differences in plant diversity between a reserve and a lightlygrazed,neighbouringfarm(Todd&Hoffman1999 inter alia ),Iinvestigated this topic again by comparing plant biodiversity between a farm, which had a history of overgrazing by livestock, and a nature reserve. I tested the following prediction: 4. Thereisaneffectofgrazingonthenumberofplant/smallmammalspecies.

Subjects,materialsandmethods 9

3. Subjects, Materials and Methods

3.1. Study area ThestudywasconductedinJuneDecemberof2004inGoegapNatureReserve. ThisreserveisnearthetownSpringbokinthenorthwestofSouthAfrica(Northern Cape).GoegapNatureReserveissituatedinthemiddleofNamaqualand,which is part of the Succulent Karoo. It is situated in the Namaqualand Rocky Broken Veld (Acocks 1988) also called Hardeveld (HiltonTaylor 1996). The area is semiarid. Rain falls mainly in winter and the annual average is 160mm (Rösch 2001).ThevegetationtypeisSucculentKaroo(Miltonetal.1997),dominatedby leaf succulent shrubs and many ephemeral species, mainly flowering in spring. Thisbiomeisabioregionofexceptionalsucculentplantdiversityandendemism (HiltonTaylor1996). WithinGoegapNatureReservetenareasdifferingwithregardstostructural andfloristicfeatureswerechosenforthemainproject(s.3.3.).Toavoidabiasin thedatasetitwas importanttochoosemoreorless homogenousplaces, which were ecologically different from each other. The areas were designed to be representative for the plant assemblage of five different management units that wereidentifiedinGoegapNatureReservebyRösch(2001).Thedistributionofthe ten areas is showed on the map (Fig. 1) while their characteristics are listed in Table1. Subjects,materialsandmethods 10

Figure 1:GoegapNatureReservewiththeteninvestigatedareas,theneighbouringfarm andtwopublicroads.Themainroadofthereserveisalsoshown.Themapshowsthe distributionofthetenareasinthereserve.ThetwotransectswheretheFenceline(s. 3.6.)wasconductedaremarkedwithan F.Reference:SoftwareMapSource,SouthAfrica

Table 1 :Overviewabouttheteninvestigatedareas;Rainfall:050mm/year=sparse,100 150mm/year=moderate,>150mm/year=plenty;alledaphicfactors,altitude,soiltextureandplant cover:resultsfromthi sstudy(s.4.1.3.)organicsoilcomponentsin%referringthedryweight;soil:+ =yes,=no

soil plantcover(%) Edaphicfactors altitude organicsoil c(Na) c(K) c(Mg) c(Ca) Areas (mo.NN) rocky sandy rainfall Winter Summer components(%) mg/l mg/l mg/l mg/l 1 954.2+ + moderate 10 10 2.20 5.1513.01 5.89 48.14 2 935.96+ moderate 1 5 0.93 1.16 5.78 4.70 13.72 3 934.9+ sparse 0 1 0.97 2.6810.81 3.1011.24 4 895.35+ sparse 40 25 0.44 1.03 1.89 1.94 7.23 5 855.3+ sparse 40 45 2.27 65.6823.40 23.85 95.51 6 873.63+ sparse 0 1 0.98 10.7810.26 2.87 8.95 7 901.85+ moderate 35 40 1.47 7.54 4.53 5.50 86.12 8 977.3+ moderate 50 60 1.69 4.10 6.09 2.37 14.54 9 1062+ + plenty 40 50 2.28 1.94 2.15 3.4817.54 10 1109.85 + plenty 80 50 2.95 3.70 1.26 6.79 33.67

Subjects,materialsandmethods 11

3.2. Animals Ten different small mammal species were trapped during the study. The only exclusively diurnal species was the striped mouse ( Rhabdomys pumilio ). The stripedmouseisamuroidrodent(Brooks1982;Dewsbury&Dawson1979)with anadultmassrangeof4085g(Schradin2003)inbothsexes.Itoccursinmany parts of southern Africa, including grasslands, marsh, forest, desert and the SucculentKaroo(Kingdon1974).IntheSucculentKaroo R. pumilio livesinsocial groups of one breeding male, 14 breeding females and their nonreproductive, adult offspring (Schradin & Pillay 2003). Groupmembers sleep together in one nest(Schradin&Pillay2004),builtinbushes.Sometimestheyoccupyoldnestsof bush Karoo rats (Schradin in press). In spite of their groupliving organisation striped mice forage alone during the day (Schradin in press). Their diet is omnivorousandcontainsherbage,fruits,insectsandseeds(Curtis&Perrin1979; Kerley1992). ThebushKaroorat( Otomys unisulcatus )isarodentendemictothesub arid regions of southern Africa (Skinner & Smithers 1990). It is confined to the KarooregionoftheSouthWestAridZone(Davis1974;Skinner&Smithers1990) and is often associated with the courses of ephemeral streams and rivers (Shortridge1934;Diekmann1979). O. unisulcatus isamediumsizedrodentwith anadultmassrangeof70135g(Pillay2001).Ithasashaggypelage,whichisash greydorsallyandbuffwhiteventrally.(Pillay2001)Itsnestisalargesticklodgeup to1.0mindiameterandupto1.5mhigh(Schradininpress).Itisusuallysituated at the base of shrubs such as Zygophyllum retrofractum or under large rocks (Dieckmann 1979, pers. observ.). They are constructed of sticks, twigs and flowering ephemerals, sometimes enclosing the shrub completely (Dieckmann 1979;Plessis&Curley1991).Passagesaremadewithinthedenseshrub.Asmall nestoffinermaterialisconstructedatthecentreofthelargestructureinashallow burrow or depression. They always contain some green material if the nest is occupied (Dieckmann 1979, pers. observ.). The literature disagrees concerning theactivityperiodofthebushKaroorat.Itisdescribedasdiurnal(Plessis&Kerley 1991,Plessis et al. 1990)orascrepuscular( inter alia Skinner&Smithers1990). O. unisulcatus is exclusively herbivorous (Kerley 1992; (Brown & Willan 1991). Shrubs dominate their diet (Plessis et al. 1990). The feeding on highly hydrated plant material is critical to the rat’s survival (Brown & Willan 1991). Mostly the

Subjects,materialsandmethods 12 littersconsistof2semiprecocialyoungthatareweanedasearlyaseightdaysof age (Pillay 2001). Interestingly the bush Karoo rat is not physiologically well adapted to the arid environment it lives in (Du Plessis et al. 1989; Pillay et al. 1994). O. unisulcatus usesbehaviouraladaptationstocopewithxericconditions such as building stick lodges and feeding on succulent plants to get access to water. One of the numerous nocturnal species was the NamaquaRock mouse ( namaquensis ).A. namaquensis isrestrictedtothecentralKaroointhe NorthernCapeProvince.Thisratlikerodenthasanaveragebodymassof50g.Its fur is reddish brown to yellowish light brown with a white underpart. The tail is longer than the body and happens to have dandruffs. A. namaquensis lives in smallcoloniesinrockyareas,wheretheyhideinnestsunderrockcrevicesorin burrowsundershrubs.Theirdietconsistsofseedsfromgrassandotherplants. A. namaquensis givesbirthto35pupsinsummermonth(Stuart&Stuart2001). The smallest of the trapped species was the pygmy mouse (Mus minutoides).ThismouseiswidelyspreadoverdifferenthabitatsinsouthernAfrica andweighsjustabout6g.Itsfurisgreytoreddishbrownwithawhiteunderpart. Notmuchisknownaboutthesocialbehaviourofthisspecies.Inthisstudymore thanonewastrappedinthasameplacemostly.morethanoneanimalin oneplace.Thebirthweightoftheuptosevenpupsisunder1g.Theyareoften born in selfdug burrows, but deserted burrows from other species or other hideoutsarealsoused(Stuart&Stuart2001). Three species of Gerbils were trapped, two pygmy gerbils (Gerbillurus vallinus, Gerbillurus paba ) and the short tailedgerbil ( Desmodillus auricularis ). Thelastismuchheavierthanthepygmygerbilsweighingabout50gcomparedto 2535g. D. auricularis alsohasgotatailwhichisshorterthanthebody,whichis most uncommon for gerbils. The fur colour of the three species is nearly equal varyingfromreddishbrowntogrey.Allspecieshaveawhitebelly.Incontrastto theotherspecies D. auricularis hasgotwhitepatchesatthebaseofitsears.The dietofgerbilsconsistsofseedsandsometimesinsects.Allthesegerbilsoccurin dry,sandyareaswith G. paeba beingmostcommon.Thesenocturnalanimalsdig their own burrows. G. vallinus lives in colonies whereas G. paeba build small groupsand D. auricularis issolitaryormonogamous(Stuart&Stuart2001).

Subjects,materialsandmethods 13

Inadditiontoalltheserodentsthreeelephantshrewspeciesweretrapped (order Macroscelidae). Macroscelidae belong to the clade Afrotheria, which also includes aardvarks, elephants, hyraxes, golden moles, tencres and serenians (Murphy et al. 2001). The roundeared elephant shrew ( Macroscelides proboscidreus )hasalongpelagethatislightgreybrownonthedorsum,yellow brown on the flanks and white on the ventrum (Corbet & Hanks, 1968). M. proboscideus has long slender legs and a long, narrow, semiflexible snout (Nowak1991).Theaverageadultbodymassis45g. M. proboscideus isendemic to Africa and native to Namibia, southern Botswana and the Cape Province of SouthAfrica(Corbet&Hanks1968;Nowak1991).AccordingtoNowak(1991)the roundearedelephantshrewismainlydiurnalandjustsometimescrepuscularor nocturnal.Inthisstudynoelephantshrewwasevertrappedduringtheday.Soit is likely, that the animals switched their schedule to avoid the threat of diurnal predators like birds of prey (i.e. jackal buzzards, Buteo rufofuscus ), which are common in the study area. Their diet is dominated by insects along with roots, berries (Nowak 1991), herbage and seeds (Kerley 1992). It lives on sandy and thornbrush plains and seeks shelter in burrows under bushes (Nowak 1991) or rockcrevices(Dieckmann1979).TheanimalsbreedinAugustandSeptember. M. proboscideus is mainly solitary according to Nowak (1991), but it is also suggested to be monogamous (Rathbun pers. commun.) Once a year 12 precocial young are born, that are nearly immediately able to move. They are weanedat1625daysandreachsexualmaturityafterabout43days(Rathbun& Fons). The two Rockelephant shrew species, the SmithRockElephant shrew (Elephantulus rupestris ) and the CapeRockElephantshrew ( Elephantulus edwardii )aremorecommoninrockyareasasthenameimplies.Thereareheavier than M. proboscideus ,weighing65gand50g,respectively.Thesetwospeciesare difficult to distinguish from each other in the field. In contrast to E. edwardii, E. rupestris hasaclearwhiteeyering,alargerbrownpelageattheneck,andavery hairy tail. They have various fur colours (Stuart &Stuart 2001). In other aspects theyaresimilarto M. proboscideus .

Subjects,materialsandmethods 14

3.3. Correlation between small mammals and plants 3.3.1.Trapping To determine the diversity of small mammals, trapping was performed at the ten different sites. Thirty locally handmade Shearmantraps (26 x 9 x 9cm) wereplaced10mapart,inaline.Thetrappingtransectswere290mlong.Each Trap contained bait and a piece of cotton wool, to avoid trapdeath caused by frost. The bait was a mixture of bran flakes, currants, sea salt, salad oil and peanutbutter.Prebaitingwasdonefortwodaysintheafternoonbeforetrapping. One day before trapping, no prebaiting was performed. Small mammals were trapped in each area for four days. On the first two trapping days trapping occurred in the afternoon, three hours before and three hours after sunset followed by a day without trapping. On the last two trapping days trapping was performedinthemorningthreehoursbeforeuntilthreehoursaftersunrise.This time schedule was chosen in order to trap the diurnal as well as the nocturnal animals.Trapswerecheckedevery90mintoavoidtheoccurrenceoftrapdeaths and to open traps for other small mammals present at the transects. Trapped animals weremarkedindividually withhairdye(methodfromWeiß et al. 1996), weighed and sexed. Trapping was done twice, July/August (winter) and the second one during October/November (summer). No trapping was performed in therainorafteratemperaturedropofmorethan5°Cfromonenighttotheother. 3.3.2.Vegetationsurvey Vegetation analyses were performed after first trapping in August and beforesecondtrappinginOctober.Thesurveysweredistributedevenlyalongthe trappingtransect. At each transect, plant species in and around five squares (each 2x2m) weredetermined.Allplantspeciespresent,thenumberofindividualsperspecies and the ground cover was noted. The mean ground cover in five vegetation surveyswasusedforstatistics(s.3.2.7.)Theseedlingsfoundinspringwerenot classified,astheywerenotpresentduringtheprecedingtrappingsession.Plants were divided in annual and perennials species. The number of individuals was categorizedasfollows(aftertheBraunBlanquetMethodasdescribedWilmanns 1998).

Subjects,materialsandmethods 15

r= 12Individuals += 310Individuals 1= 11100Individuals 2m= >100Individuals If one species covered more than 5% of the ground the following classification wasused. 2a= 512,5% 2b= 12,525% 3= 2550% 4= 5075% 5= >75%

Figure 2 :Fieldassistantperformingavegetationanalysisina2x2msquareinarea8

Subjects,materialsandmethods 16

3.3.3.Soilsamples Threesamplesofsoil(100g)werecollectedineachareafromadepthof 3cm.Samplesweretakenonopenpositions,notundershrubsorrocks.Collection took place after a period without rainfall in the beginning of November. The parameterspHvalueandelementalcomposition(Na +,K +,Mg 2+ ,Fe +,Mn 2+ )were measured.Thesoilwasairdriedandsiftedthroughameshwithameshsizeof 2mm. To measure pHvalue 10g of soil from each area was mixed with 25 ml dH 2OandmeasuredwithapHMeter(pH91,WTW). ForthedeterminationoftheelementalcompositionwithanAAspectrometer (Unicom 939), an extract from 2.5g soil was produced. Two extracts and three blind tests were analysed for each area. The soil was mixed with 50ml NH 4Cl (1mol/l)andleftuntouchedfor4h.Afterwardstheextractswereshakedfor2hon anautomaticshaker(SchüttelmaschineLS20,Gerhardt)andleftuntouchedover night.Theextractwasfiltered.TomeasureCaandMg10mlofextractwasmixed with1mlbuffer (7.6gKCl+2.5ml37%HClin200mldH 2O.).Forthemeasurement ofFeandMn,threestandardswerepreparedwith1ppm,2ppmand5ppmofFe and Mn. For the measurement of the other elements, four standards were preparedwiththefollowingcomposition: 1.1ppmNa,2ppmK,2ppmCa,0.1ppmMg 2.2ppmCa,5ppmCa,5ppmK,0.2ppm 3.5ppmNa.10ppmK,10ppmCa,0.5ppmMg 4.10ppmNa,20ppmK,20ppmCa,1ppmMg Standards were used to calibrate the AAspectrometer. Samples were dilutedifnecessarytofitintherangeofthestandards.Extractsweremeasured withaUnicom939AAspectrometer. Tomeasurethepercentageoforganiccomponentsinthesoil,twosamples (≈ 4g) were dried in a cabinet desiccator (Heraeus thermicon P) over night, weighed (Mettler Type AE 163, accuracy of 0,001g ), cooled down to 20° in an Exicatorandstoredinamufflefurnace(HeraeusFunctionlineTyp12)for15h.In thefirst2htheovenheatedthesamplesupto400°temperatureremainedherefor 3h.Thantheovenheatedthesamplesupto600°inanother2handkeptthemon thistemperaturefor6h.Afterwardsthesamplesneeded2htocooldown to20°

Subjects,materialsandmethods 17 and were weighed again. The weightloss in reference to the weight after drying wascalculated. 3.3.4.Altitude The altitude of each transect in the ten areas was measured with a GPS (eTrexVenture,GARMINInternational,USA) at the start and endpoint. The meanvaluewasusedforstatistics(s.3.3.7.). 3.3.5.Rainfall The mean value of rainfall from the years 1998 to 2002 was taken (information provided by Goegap Nature Reserve) with nine gauging stations distributed in the whole Nature Reserve. The rainfall in the trapping areas was assumedaccordingtothenearestgaugingstation.Nomeasurementshadbeen takenintheyears2003and2004. 3.3.6.Statistics Correlationsbetweenthenumberofplantspeciesandthenumberofsmall mammal species and total number of small mammals were calculated as the

SpearmanRankcorrelation coefficient (r s). Results were corrected with Bonferroni. Theinfluenceofthenumberofsmallmammalspecies,thetotalnumberof trappedanimals,thesoilcharacteristics,andthealtitudeonplantdiversitywere calculated with a general linear model with the program Statistika. First all data weretestedfortheirnormaldistribution withaKSnormalitytest.Thedatadidnot differ significantly from the normal distribution. Plant diversity was taken as dependent factor and all other factors were considered independent. No interactionsbetweenthefactorsweretakenintoaccount.Inastepwiseprocedure theindependentfactorswiththehighestpvaluewereleftoutonebyoneuntilall remainingfactorsweresignificant. To compare the different areas a Clusteranalysis was calculated. The following factors were included in the Clusteranalysis for winter and summer: smallmammalnumber,smallmammalspeciesnumber,groundcoverandnumber of plant species. In addition the altitude and some soil characteristics were included, as there were, the percentage of organic components and the

Subjects,materialsandmethods 18 concentration of the ions Na +, K +, Mg 2+, Ca 2+ . The statistic program SPSS was used. Differences were considered significant if their probability of occurring by chancewaslessthan0.05(twotailed). 3.4. Food-preference tests This experiment was performed with two species, bushKaroorats ( O. unisulcatus )andstripedmice( R. pumilio ).Tenratsandelevenmiceweretested. Striped mice were chosen as a representative, medium sized, diurnal species (Schradin, Pillay 2004) and bushKaroorats were chosen as a representative, larger,crepuscularspecies(Brown&Willan1991). Animals were trapped for foodpreferencetests as described above. TrappingwasperformedinGoegapNatureReserveand,incaseofbushKaroo rats, on the neighbouring farm. Trapped animals were sexed, weighed and markedwithhairdyeand/oreartagstoidentifythemincaseofrecapture.Each animal was used only once. The animals were put into a cage with sand as substrateandpiecesofsixplantspecies.Theplantpieceswereall3cmlongbut of different weight, because equating weight would have led to immense differences in surface and length (some plant species were succulent). It was assumed that similar length ensures similar conditions for each plant species betterthansimilarweight.Anequalnumberofdominantandsubdominantplant specieswereprovided.Thedeterminationofdominanceofplantspeciesinareas werethespecieslivedwasbasedonthepreviousstudies(s.3.3.).Plantswere freshlycollectedandstoredinarefrigeratorinairtightplasticbagscontainingwet tissuepaper.Plantspecieswerearrangedinarowontheshortsideofthecage. Dominant species altered with subdominant species. Order was changed systematically every experiment. The animals were left alone in a quiet room. Beginning at 1h, the cage was checked every 30min. The experiment was terminated when visible damage was done to one or more plant pieces, or a maximumof4hhadelapsed.Tissuepaperwaspositionedontopofthecageto provide cover. Immediately after the experiment animals were released at the placeofcapture.Plantspecieswereweighed(MettlerTypeAE163,accuracyof 0,001g) before and after testing to determine the weight loss. To consider the weightlossduetoevaporationeightcontrolsexperimentswereconducted.Here thesameprocedurewasused,butwithoutananimalinthecage.Themedianof

Subjects,materialsandmethods 19 theeightcontrolexperimentswassubtractedfromthemeasuredweightlossinall experiments. In the event of negative results due to this subtraction the weight losswasassumedtobe0.Testswereperformedduringtheactiveperiodofthe species. In the first set of tests Euphorbie spec., Mesembryanthemum guerichianum and Leipoldtia pauciflora wereusedasdominantplantspeciesfor O. unisulcatus , Osteospermum sinuatum, Cheiridopsis denticulata and Aptosimum spinescens wereusedassubdominantplantspecies.For R. pumilio Zygophyllum retrofractum , Lycium cinereum and Leipoldtia pauciflora were used as dominant plant species and Galenia africana, Lessertia dfiffusa and Rhus spec. as subdominantspecies. Because the first set of tests (pilot study) revealed that a mixture of perennialandannualplantspeciescancauseabiasinthedataset,asecondset oftestswasperformed,includingonlyperennialplantspecies.Inthesecondset of tests two plant species were left out for each small mammal species. O. unisulcatus wastestedwith Euphorbie spec, and Leipoldtia pauciflora asdominant plant species and Osteospermum sinuatum and Aptosimum spinescens as subdominantplantspecies. R. pumilio wastestedwith Zygophyllum retrofractum and Leipoldtia pauciflora as dominant plant species and Galenia africana and Rhus spec. assubdominantspecies. Theweightlossofthedominant/subdominantplantspeciesinpercentage referred to the weight at the beginning of the experiment was added. Dominant specieswerecomparedtosubdominantspecieswiththeWilcoxonmatchedpairs rank sign test. For in depth analyses, the Friedman test for multiple paired comparisonswasused,followedbyaWilcoxonWilcoxtestasposttest. 3.5. Plant biodiversity around occupied and unoccupied bush Karoo rat nests The vegetation around occupied nests of bushKaroorats ( Otomys unisulcatus ) was compared to that around unoccupied nests. Always one occupied and one unoccupiednestinareasassimilartoeachotheraspossiblewereinvestigated. Thetwonestsofeachpairweresituatedasclosetoeachotherasitwaspossible to ensure that the inhabitants of the occupied nest did not influence the area around the unoccupied one. Changes in the landscapes (i.e. riverbeds, rocks) weretakenintoaccount.Onepairwassituatedonanadjoiningfarm(cf.3.6.);all

Subjects,materialsandmethods 20 other pairs (11) were in Goegap Nature Reserve. The diversity of plant species aroundthenestswascomparedwiththeWilcoxonmatchedpairsranksigntest. The sample size was twelve pairs. Occupied nests were identified by fresh droppings and fresh plant material, as indicators. Vegetation survey was performed in a 10m radius around the nests. The same methods for data recordingwereusedthatweredescribedabove(cf.3.3.3.). 3.6. Fence line Thenumberofsmallmammalspeciesonbothsidesofafencebetweenafarm andtheGoegapNatureReservewasdetermined(Fig.1).Thefarmhasnotbeen usedforstockingfortwoyears,butgreatdifferencesrelativetothenaturereserve werestillobviousintheassemblageofplantspecies.Trappingwasperformedin a290mtransectsasdescribedabove.Thetwotrappingtransectsweresituated parallel to the fence. To exclude an influence of the fence itself and to avoid trappingsmallmammalsfromthenaturereserveonthefarmorviceversa,that were attracted by the traps themselves, traps were placed 20m away from the fence. Figure 3 :FencebetweenGoegapN atureReserve(leftside)andaneighbouringfarm(right side)

Subjects,materialsandmethods 21

Elevenvegetationanalysesoneachsidewereperformedtocomparethe plant diversity. The vegetation analysis was done as described above. Squares weredistributedalmostevenlyalongthetransects.Thenumbersofplantspecies in the eleven pairs of squares were compared with the Wilcoxon matchedpairs signedrank test. The number of small mammal species and the number of trappedsmallmammalindividualswerecompareddescriptivelyassamplesizes weretoosmallforstatistics.

Results 22

4. Results

4.1. Correlation between small mammals and plants

4.1.1.Comparisonbetweenwinterandsummer Significantly more plant species were found in summer (p=0.007; T=1). The comparisonbetweentheplantcoverofsummerandwinterrevealednosignificant difference(p=0.514;T=17). 70 small mammal individuals were trapped in winter compared to 119 animalsinsummer(p=0.007;T=0).Inthefirsttrappingseason(August/November) ten species of small mammals were trapped. In the second trapping season (October/November) nine species of small mammals were trapped. The species were the same as in winter without the brushtailed Hairyfooted Gerbil ( G. valinus ). There was no significant difference concerning the number of species (p=0.334;T=4).Thedetailedtrappingdatafromwinterandsummercanbefound inTables4and5(Appendix).

Results 23

Table 2 :Summaryaboutthetrappedsmallmammalspeciesintheteninvestigatedarea,their number (sMspecies) and the number of trapped individuals of all species combined (sM number).Firstvaluestandsforwinter,secondforsummer. Area 12345678910 3 2 3 1 1 4 4 4 sM-species 2 2 2 2 1 2 4 6 4 5 6 4 2 9 17 12 15 sM-number 8 12 2 7 8 12 28 26 16 4 2 2 9 11 7 G. peaba 10 1 5 4 8 10 1 G. valinus 1 D. auricularis 1 2 1 R.pumilio 2 12 6 2 3 M. minutoides 1 4 1 O. unisulcatus 2 6 2 7 A. namaquensis 3 8 2 3 2 M. proboscideus 8 2 4 2 2 E. edwardii 1 2 1 3 E. rupestris 5 4 2

Results 24

4.1.2.Wintertrappingseason The number of plant species in the ten investigated areas showed a significant positivecorrelationwiththetotalnumberoftrappedanimals(p=0.032;r s=0.732; Fig.4)andwiththenumberofsmallmammalspeciesoccurringthere(p=0.004; rs=0.895;Fig.5).

Winter

25

20

15

10 plant species total

5

0 0 2 4 6 8 10 12 14 16 18 sM-number

Figure 4 :Correlationbetweenthenumberofplantspeciesandthetotalnumberauftrapped smallmammals(sMnumber)intendifferentareas.SpearmanRankCorrelationtest: p=0.032;r s=0.732

Winter

25

20

15

10 plantspecies total

5

0 0 1 2 3 4 5 sM-species

Figure 5 :Correlationbetweenthenumberofplantspeciesandthenumberaufoccurring smallmammalspecies(sMspecies)intendifferentareas.SpearmanRankCorrelationtest: p=0.004;r s=0.895

Results 25

93.1% of the plant species in winter were perennial. The number of perennial plant species showed a nearly significant correlation with the total numberofsmallmammals(p=0.056;r s=0.713;Fig.6)andasignificantcorrelation with the number of small mammal species (p=0.002; rs=0.882; Fig. 7). A correlationbetweensmallmammalsandannualplantspecieswasnotcalculated, because they were nearly absent in winter. In half of the areas there were no annualsatallandintheotherareastherewereonlyoneortwospecies. Winter 25

20 15

10 perennial plant species perennial 5

0 0 2 4 6 8 10 12 14 16 18 sM-number

Figure 6 :Correlationbetweenthenumberofperennialplantspeciesandthetotalnumberof smallmammals(sMnumber)intendifferentareas.SpearmanRankCorrelationtest:p=0.056; rs=0.713

Results 26

Winter 25

20 15

10

perennial plant species 5

0 0 1 2 3 4 5 sM-species Figure 7 :Correlationbetweenthenumberofperennialplantspeciesandthenumberof occurringsmallmammalspecies(sMspecies)intendifferentareas.SpearmanRank Correlationtest:p=0.002;r s=0.882 Theredpointrepresentstwoareaswiththesamevalues. 4.1.3.Summertrappingseason Thetotalnumberofplantspeciesdidneithercorrelatewiththenumberof small mammal species (p=0.12; r s=0.559; Fig. 8) nor with the total number of trappedsmallmammals(p=0.598;r s=0.334;Fig9).

Summer

40

35

30

25

20

plant species total 15

10

5 0 5 10 15 20 25 30 sM-number Figure 8 :Correlationbetweenthenumberofplantspeciesandthetotalnumberoftrapped smallmammals(sMnumber)intendifferentareas.SpearmanRankCorrelationtest:p=0.12; rs=0.559

Results 27

Summer

40

35

30

25

20

plant species total 15

10

5 0 1 2 3 4 5 6 7 sM-species

Figure 9 :Correlationbetweenthenumberofplantspeciesandthenumberofoccurringsmall mammalspecies(sMspecies)intendifferentareas.SpearmanRankCorrelationtest:p=0.598; rs=0.334

Theredpointrepresentstwoareaswiththesameva lues. Therewasnosignificantcorrelationbetweenperennialplantdiversityandthetotal number of trapped small mammals (p=0,12; r s =0,612; Fig. 10). However the number of perennial plants species and the number of small mammal species showedasignificantpositivecorrelation(p=0.03;r s=0.763;Fig.11).Comparedto thewintertherewereconsiderablemoreannualspeciesinthisseason(Wilcoxon matched pairs rank sign test; p=0,005 t=0). There was no significant correlation between annual plant species and small mammals, neither with the number of small mammal species (p=0.859; r s= 0.032) nor with the total number of small mammals(p=0.815;r s=0.110).

Results 28

Summer

25

20

15

10 perennial plant species perennial 5

0 0 5 10 15 20 25 30 sM-number

Figure 10 :Correlationbetweenthenumberofperennialplantspeciesandthenumberof trappedsmallmammal(sMnumber)intendifferentareas.SpearmanRankCorrelationtest: p=0.12;r s=0,612

Summer 25 20

15 10 perennial plant species perennial 5 0 0 1 2 3 4 5 6 7 sM-species Figure 11 :Correlationbetweenthenumberofperennialplantspeciesandthenumberauf occurringsmallmammalspecies(sMspecies)intendifferentareas.SpearmanRank Correlationtest:p=0.03;r s=0.763

Results 29

4.1.4.Correlationbetweenplantcoverandsmallmammals TheSpearmanRankCorrelationtestrevealedthatplantcovercorrelatedwiththe numberoftrappedsmallmammalsinthetenareas,aswellaswiththenumberof trappedsmallmammalspecies.Thecorrelationsweresignificantforwinter(plant cover–sMnumber:p=0.014,r s=0.741;plantcover–sMspecies:p=0.004,r s=0.811) and summer (plant cover–sMnumber: p=0.002, r s=0.844; plant cover – sM species:p=0.038,r s=0.660). 4.1.5.Soilsurvey Data of the soil survey are included into the clusteranalyses (4.1.6) and here describeddescriptively.ThepHvaluesofthetenareashadarangefrom5.7to 8.5(Fig.12).ThelowestpHvalueswerefoundinthehighestareas(9,10).

Soilsurvey 10

8

6 pH

4

2

0 0 1 2 3 4 5 6 7 8 91011 Areas Figure 12 :pHvalueofthetenareas,measuredwithdH Oassolvent. 2

Results 30

Thepercentageoforganiccomponentinthesoilsampleshadarangefrom0.92to 2.97%(Fig.13).

Soilsurvey

3,5

3,0

2,5

2,0

1,5

1,0 Organic in components %

0,5

0,0 0 1 2 3 4 5 6 7 8 91011 Areas Figure 13 :Organiccomponentsofsoilsamplesfromthetenareasin%fromtheovendry mass.Themedianfrom2samplesisgiven.

Results 31

TheconcentrationofFe 2+ wastoolowtobemeasured.Mn 2+ concentrationswere alsoverylowandhadarangefrom0.076mg/lto0.382mg/l.Theconcentrations oftheotherionsaregiveninFigure14.

Soilsurvey

100

Natrium Calcium 80 Magnesium Kalium

60

40

ConcentrationofIonsinmg/l 20

0 0 1 2 3 4 5 6 7 8 91011 Areas Figure 14 :ConcentrationoftheionsfromNa,Ca,Mg,Kinthesoilofthetenareas. Meanvalueoftwosoilsolutionsisgiven.

Results 32

4.1.6.Clusteranalysis ThefollowingfactorswereincludedintheClusteranalysisforwinterandsummer: smallmammalnumber,smallmammalspeciesnumber,groundcoverandnumber of plant species. In addition the altitude and some soil characteristics were included, as there were, the percentage of organic components and the concentrationoftheionsNa +,K +,Mg 2+ ,Ca 2+ .ThreeClusterswereidentifiedwitha hierarchicClusteranalysis.Areas8,9and10belongedtothefirstcluster,area5 stood alone in the second one and areas 1, 2, 3, 4, 6 and 7 were in the third cluster.Theareasinthefirstclusterwerecharacterisedbyhighvaluesconcerning small mammals and plants, whereas the second cluster (area 5) had very high concentrationsofsoilnutrients.Theareasinthethirdclustershadmoderatevalues inmostofthefactors(Tab.3). 4.1.7.Generallinearmodel Thegenerallinearmodelforwinterrevealedasignificantresult(p<0.05,F=5.87). Floral diversity was explained by the number of small mammals (p=0.0006, F=29.86)andbytheconcentrationofManganeseinthesoil(p=0.0034,F=16.94). The model for summer was also significant (p<0.0001, F=48.27), and the only remaining significant factor explaining plant diversity was the number of small mammalsspecies(p=0.000008,F=81.31).

Results

Cluster - analysis Table 3 :Meanvalueandstandarddeviationofallfactorsincludedinthehierarchicclusteranalyses.Cluster1includesthe areas8,9and10.Cluster2includesarea5aloneandCluster3consistsoftheareas1,2,3,4,6and7.

Winter Summer Edaphicfactors numberof sM sM plant numberof sM sM plant Altitude organic c(Na) c(K) c(Mg) c(Ca) Cluster plantspecies number species cover(%) plantspecies number species cover(%) (m) particles(%) mg/l mg/l mg/l mg/l

1 n=3Mean 18.33 14.67 4.00 56.67 25.33 23.33 4.67 53.33 1049.72 2.31 3.25 3,17 4.21 21.91 SD 4.51 2.52 0 20.82 5.77 6.43 1.15 5.77 67.12 0.63 1,15 2.57 2.30 10.29

2 n=1Mean 9.00 2.00 1.00 40.00 11.00 8.00 1.00 45.00 855.30 2.27 65,68 23.40 23.85 95.51 SD . . . . . . . . . . . . . .

3 n=6Mean 8.67 4.00 1.50 14.33 21.00 6.83 1.67 13.58 915.98 1,16 4,72 7.71 4.00 29.23 SD 5.54 3.52 1.38 18.40 10.32 5.00 0.82 15.77 30.45 0.60 3,88 4.29 1.59 31.79 33

Results 34

4.2. Food-Preference-tests 4.2.1.Pilotstudy 4.2.1.1.Stripedmouse( R. pumilio ) The Friedmantest revealed an overall significant difference in how much was eaten from the four different plant species (p=0.0001). The following Wilcoxon Wilcoxtest showed that Lycium cinereum (dominant) and Lessertia diffusa (subdominant)aredifferentfrom Leipoldtia pauciflora (dominant)and Rhus spec . (subdominant) concerning the consume by R. pumilio . The other plant species werenotdifferentfromeachother. 4.2.1.2.BushKaroorat( O.unisulcatus ) The Friedmantest revealed an overall significant difference in how much was eaten from the four different plant species (p=0.004). However the following WilcoxonWilcoxtestshowednodifferencesbetweencertainplantspecies.

Figure 15 :bushKaroorat(Otomysunisulcatus)witheartaginacageinwhichthefood preferencetestwereperformed Results 35

4.2.2.Secondsetoftests 4.2.2.1.Stripedmouse( R. pumilio ) R. pumilio showedasignificantfoodpreferenceforthedominantplantspecies Z. retrofractum and L. pauciflora in comparison to subdominant plant species G. africana and Rhus spec . (data for dominant species and subdominant species combined; Wilcoxon matched pairs rank sign test; T=6; p = 0.007). The median percentageofeatendominantplantswas18.10and11.04forsubdominantplants, respectively(Fig.16). Foodpreferencetest R. pumilio

50

40

30

20 eaten eaten plant pieces % in 10

0 dominantplants subdominantplants Figure 16: Comparisonofthequantity R. pumilio atefromtwodominant/subdominantplant speciesprovidedinafoodpreferencetest.Datawerecorrectedforevaporationbycontrol experiments.t=6;p=0.007 The Friedmantest revealed an overall significant difference in how much was eaten from the four different plant species. The following WilcoxonWilcoxtest showedthat Z. retrofractum isdifferentfromallotherplantspeciesconcerningthe consume by R. pumilio . The dominant shrub Z. retrofractum was the preferred foodplant.Theotherplantspecieswerenotdifferentfromeachother.

Results 36

4.2.2.2.BushKaroorat (O. unisulcatus ) O. unisulcatus showedasignificantfoodpreference.Incontrasttothestripedmice they preferred the subdominant plants Osteospermum sinuatum and Aptosium spinescens tothedominantplantspecies L. pauciflora and Euphorbia spec .(data for dominant species and subdominant species combined; Wilcoxon matched pairs rank sign test; T=1; p = 0.002). The median percentage of eaten subdominantplantswas95.33and3.41fordominantplants(Fig.17). Foodpreferencetests O.unisulcatus

140

120

100

80

60

40 eaten eaten plant pieces % in

20

0 dominantplants subdominantplants Figure 17: Comparisonofthequantityofdominantandsubdominantplantseatenby O. unisulcatus providedinachoicetest.Datawerecorrectedforevaporationbycontrol experiments.T=1;p = 0.002 The Friedmantest revealed an overall significant difference in how much was eaten from the four different plant species. The following WilcoxonWilcoxtest showed that O. sinuatum is different from all other plant species concerning the consumeby O. unisulcatus .Theotherplantspecieswerenotdifferentfromeach other. O. sinuatum wasthepreferredfoodplant.

Results 37

4.3. Plant biodiversity around bush Karoo rat nests The effect of bushKaroo rats on their direct environment was investigated by counting the plant species in a circuit of 10m around occupied and unoccupied bushKarooratnests. The comparison between the surrounding of occupied and unoccupied bushKaroorat nests (Fig. 18) showed a significant difference concerning the numberofplantspeciesfoundinacircuitof10m.Significantlymoreplantspecies were found around occupied nests (Wilcoxon matched pairs rank sign test; T=16.5;p=0.05). .

BKRnests 30

25

20

15

10 numberofplantspecies

5

0 unoccupied occupied Figure 18: Comparisonbetweenthenumberofplantspeciesinacircuitof10maround occupiedandunoccupiednestsof O. unisulcatus .Medianandoriginaldataaregiven.A lineconnectsthedataofonepairofnestsinthesamearea.T=16.5;p=0.05

Results 38

4.4. Fence line A significant difference concerning the plant diversity in Goegap Nature Reserve and the farm was found (Wilcoxon matched pairs rank sign test T=2.5; p= 0.01; Fig. 19). Innine of eleven pairs there were more plant species on the farm. Median number of plant species on the farm was 7 compared to 6 in the NatureReserve. Fenceline

18

16

Naturereserve 14 Farm

12

10

8

6

number of plant species number 4

2

0 0 1 2 3 4 5 6 7 8 9 101112 vegetation surveys

Figure 19: Comparisonbetweenthenumberofplantspeciesonbothsidesofafencebetween GoegapNatureReserveandafarm.Imade11pairsofvegetationsurveysonthesamelevel. T=2.5;p=0.01 There were too few small mammals trapped for statistical comparisons. On the Farmone G. paeba andthree A. namaquensis weretrapped.Inthenaturereserve four R. pumilio and one G. paeba were trapped. Trapping data can be found in Table6(Appendix).

Discussion 39

5. Discussion Conservation(i.e.themaintenanceandprotectionofnaturalhabitats)isoneofthe main challenges and duties of our time, as it also functions to protect our own endangeredhabitat.Animportantpartofconservationistheprotectionofspecies. Allspeciesinanecosystemareconnectedtoeachotherinamoreorlessdirect way (Begon et al . 1998). The extinction of one species often has severe consequencesforotherspeciesinitsecosystem(Begon et al .1998).Humansare also involved given the fact that earth itself is the biggest known ecosystem. Biodiversityisalsoofimmensevaluewithregardstoadaption.Nomatteriffrom human interference or more natural caused, our environment will change during thefollowingdecades.Withamorevariablegenpoolitwillbemucheasierforlife toadapttothesechanges.Giventhecurrentrateofextinctionandtheexplosionof human population density, conservation is of increasing importance. In places wheremanyspeciesliveinasmallarea,conservationismosteffective(Myers et al. 2000).OneoftheseplacesistheSucculentKaroowithitsextraordinaryfloral diversity(Myers et al. 2000).Toprovideeffectiveconservationmethodsforplant diversity,itisessentialtofindoutwhichfactorsinfluenceormaintainbiodiversity. Herbivore animals feeding on plants might be one of these factors. In the Succulent Karoo small mammals are of special importance, because they have high population densities here and larger herbivores are relatively rare. The influenceofsmallmammalsonplantdiversitywasinvestigatedinthisstudyforthe firsttime. 5.1. Correlation between small mammals and plants Previous studies on the influence of predators on biodiversity revealed contradictory results with predators either increasing (Paine 1966, Lubchenco 1978) or decreasing (Harper 1969; Lubchenco 1978) the diversity of their food plants.Thisdifferencemightbeduetowhetherthepreferredpreyspeciesbelongs tothedominantorsubdominantspeciesineachcase.Itiscrucialtoknowabout thisbecausepredatorsareonlyassumedtoincreasethediversityoftheirpreyif theypreferdominantpreyspecies,makingspaceforsubdominantspecies,which would otherwise be outcompeted (Lubchenco 1978). This predationhypothesis was first described by Paine (1966) and has so far been tested only in habitats Discussion 40 with average biodiversity. To my knowledge my study is the first to test the predationhypothesisonabiodiversityhotspot:theSucculentKaroo(Myers et al. 2000). I found that plant diversity correlated significantly with the number of trappedsmallmammalsandthenumberoftheirspeciesinwinter(July/August). This was true for the total number of plant species and for the perennial plant species separately. In summer (November/December) only the association between perennial plant species and the number of small mammal species showed a significant, positive correlation. A correlation between perennial plant species and the number of trapped small mammals however could not be demonstrated. These results support the predationhypothesis and indicate that small mammals could increase biodiversity in the Succulent Karoo. However I cannot be sure in this stadium, whether the relation I found was due to an influence of small mammals on plants or the other way around. Maybe small mammals have a positive influence on plant diversity, but not from reducing dominantplantspecies.Indirectwaysofinfluence arepossible.Smallmammals diggingburrowsmightforexampleincreaseplantdiversity,becausetheirburrows storewaterduringrainfallandkeepitavailableforplants.However,onlythreeof the 10 trapped small mammal species burrowed (the three gerbil species). Furthermoreitispossiblethatotherfactors,suchasaltitudeandedaphicfactors (see3.3.4,3.3.5and3.3.6)influencedplantsandsmallmammalsinasimilarway, although this is highly unlikely, because of the results the general linear model revealed. In winter plant biodiversity correlated more strongly with the number of small mammal species than with the total number of small mammals, and in summer the only significant correlation I found was also with to the number of smallmammalspeciesandnotwiththetotalnumberoftrappedindividuals.The strongerinfluenceofsmallmammalspeciesonplantdiversityisprobablydueto therangeoftheirdiet.Onesmallmammalspeciesaloneaffectspossiblyonlya few plant species that it prefers as foodplants. Many small mammal species together,however,arelikelytohaveamorevariabledietandthereforeastronger influence. Additionallydifferentspeciesfeedondifferentpartsoftheirfoodplants(e.g. seeds,leaves,roots).Thereforeaplantspecieseatenbyonlyonesmallmammal

Discussion 41 speciesmightnotbeinfluencesseverelybecausethedamageisdonetoonlyone part of the plant. Many small mammal species together however might have a muchstrongerinfluence,eveniftheyhavealowpopulationdensity. Onereasonforthestrongercorrelationbetweensmallmammalsandplants in winter might be the smaller cruising radius small mammals typically have in winter(Schubert2005).Thelargerthecruisingradiusofherbivoresis,thesmaller should be the effect on plants in their surrounding, because the influence of a single individual is spread over a larger area. It is also possible that small mammalschoosetheirhabitatbasedonthediversityoftheirfoodplants,whichis whythecorrelationbetweensmallmammalsandplantdiversitywouldbestronger inwinter,whenfoodisamorelimitedfactorthanintheearlysummer.

TheSucculentKarooisaseasonalenvironmentwithabundantplantgrowth by ephemerals in spring, which is also the breeding season of most small mammals (Schradin & Pillay 2005; Jackson 1999). In my study as well I found both a higher abundance of small mammals and annual plant species at the beginningofsummer.Thecorrelationbetweensmallmammalsandannualplant species could not be calculated for the wintertrappingseason season because annualswerenearlyabsentduringthisseason(Cowling1999).Eveninsummer whentherewerenumerousannualstherewasnosignificantcorrelation.Obviously small mammals and annuals have no remarkable influence on each other. Possiblytheshorttimespaninwhichthetwocaninteractplaysaparthere.Most oftheannualplantspeciesinNamaqualandareephemeralandhavealifespanof onlyafewmonths.Smallmammalsontheonehanddonothaveenoughtimeto reduce certain dominant or subdominant plant species significantly because annualsoccuringreatnumbersforarelativelyshortperiodinspringandvanish quicklywhenitgetsdryinsummer.Ontheotherhand,duetotheirshortlifespan, annualsarenotimportantfortheoverwintersurvivalofsmallmammals.Annuals areessentialfortheirbreedingseason,butsmallmammalscannotrelyonannuals over the whole year. This reduces the influence of annual plant species on the speciescompositionofsmallmammals.

In the future it would be good include other small mammal species that werenotsampledinmystudy.Withdifferenttypesoftrapsforexampleitwouldbe possible to trap small mammal species that do not enter the Shearman traps I used. Whistling rats ( Parotomys brantsii , Parotomys littledalei ) and subterranean

Discussion 42 specieslikemolerats( Bathyergus janetta , Cryptomys hottentotus )belongtothis group.Dassierats( Petromus typicus )areprobablynotattractedbythebaitIused. Anotheraspectthathasnotbeentakenintoaccountinmystudiesisthatinsects certainly also are important herbivores (Zeller 2002) and to my knowledge there arenostudiesontheirinfluenceonbiodiversityinNamaqualandoranywhereelse. Anotherconstraintofthisstudycouldbetheunevenlydistributionoftheten areas within the nature reserve. For methodological reasons the distances betweentheareasareverydifferent(Fig.1).Theareaswerechoseninorderto beecologicallydifferent,butneverthelessitcannotbeexcludedthatthedatafrom some areas are more similar to each other than others, because of the varying distancebetweenthem. ThecorrelationsIfoundsupportthehypothesisthatsmallmammalsaffect floral diversity. However it cannot be said at the moment if there is a causal connectionbetweensmallmammalsandplants.Aclearstatementwouldrequire further investigations using an experimental approach. There are several fenced monitoringplotsinGoegapNatureReserve.Thefenceprotectstheplantsgrowing insidetheplotsfrombiggerherbivoresbutnotfromsmallmammals.Toprovethe influence of small mammals on plant diversity it would be useful to fence these plots in a way that also excludes small mammals. A comparison between these fenced plots and adjacent unprotected areas over several years and during differentseasonswouldmakeitpossibletotesttheinfluenceofsmallmammals onplantbiodiversityexperimentally. 5.2. Food-preference-test If small mammals influence plant biodiversity in the way predicted by the predationhypothesis it would be expected that at least some of them prefer dominantplantspecies.Dominantplantspeciesarenotseriouslythreatenedeven if they are the preferred foodplants. Being eaten just prevents them from displacing subdominant plantspecies. A preference for subdominant foodplants howevercouldleadtotheirextinction.

Discussion 43

5.2.1.Pilotstudy The pilot study revealed that R. pumilio preferred the two plant species Lessertia. diffusa and Lycium. cinereum . Lessertia. diffusa is an annual plant speciesandthereforejustavailableforthemiceinspringandearlysummer.This is also true for L. cinereum . Although this is a perennial shrub it foliates only in spring. R. pumilio seemstopreferthisfreshfoodingeneral.Thesameseemsto apply to O. unisulcatus . Nine out of the ten animals I tested preferred Mesembryanthemum guerichianum , which was the only annual plant species in the test. This can be easily explained by the higher nutrient value of annuals in comparison with perennials (Oftedal 2002). To exclude the preference for fresh plant material, only perennial shrubs, which are available throughout the year, wereusedinthesecondsetoftests. 5.2.2.Secondsetoftests The influence of herbivores on their foodplant’s diversity depends decisively on the preference of herbivores for dominant or subdominant plants (Lubchenco 1978). In fact both of the tested species, O. unisulcatus and R. pumilio ,showedasignificantpreference.Interestinglythetwopreferencesdidnot pointinthesamedirection.Whereas R. pumilio preferredthedominantfoodplants in the tests, O. unisulcatus favoured the subdominant plant species. This result impliesapositiveinfluencefrom R. pumilio onplantdiversityandanegativeone from O. unisulcatus asexplainedabove(see5.1.). Thechoiceofthetestedplantspecieswasdonerandomly.Soitcanbethat somespecieswerechosenthatarenotincludedintheanimals’dietorareeven unpalatable. To be unpalatable is an effective strategy for plants to protect themselves from being eaten. This way subdominant or formerly subdominant plantscanresisttheirpalatablecompetitorsthatwouldprobablyoutcompetethem otherwise. This can be seen most clearly on rangeland, where plants that are unpalatableforlivestockcanspreadunchecked.Oneoftheseplantsistheshrub Z. retrofractum ,whichisunpalatableforlivestock,butthepreferredfoodplantof R. pumilio .Z. retrofractum leavescontaintoxicsubstancesintheirsapbutnotall leaves are toxic to the same extend (pers. commun. du Toit, state botanist, NorthernCapeProvince). R. pumilio mightbeabletofeedspecificallyonlyonthe nontoxicverysmallleavesandseeds(sizeofapinhead),whichbiggerungulates

Discussion 44 likegoatsandsheepareunabletodo.Livestockcannotchoosethefewpalatable leavesoutofthelargenumberofleavesgrowingononebranch. Z. retrofractum is adominantplantspeciesanditspopulationdensitycanonlyberegulatedbysmall mammals. This can be of great interest for the farmers in Namaqualand, who prefertohavepalatableplants ontheirland,butsupport Z. retrofractum without meaning to by high stocking rates, i.e. reducing its palatable competitors. Small mammalsareoftenseenaspestsandtheirprofitablesideisoverlooked. There is certainly a need for foodpreferencetests with other herbivore speciesanditwouldbebeneficialtorepeatthemwithmoreplantspeciesonR. pumilio and O. unisulcatus .Thiswouldleadtoamoregeneral understandingof theinfluenceherbivoreshaveontheirfoodplantsintheSucculentKaroo. 5.3. Plant biodiversity around bush-Karoo rat nests Tomeasureapossibleeffectofsmallmammalsonbiodiversitydirectly,theplant diversityaroundoccupied/unoccupiednestsof O. unisulcatus ,wasdetermined. O. unisulcatus is a central place forager and therefore especially qualified for this study.Theyfeedinthedirectsurroundingsoftheirnestssothataninfluenceofa rat’s presence can be determined by investigating the area around an occupied nest.Thepopulationdensityof O. unisulcatus wasnotashighasusual,because a drought during the previous year made them locally extinct on the study site, whichtheyonlystartedtocoloniseagain(fromaneighbouringfarm)in2004,when thisstudytookplace.Thereforetherewereoccupiedandabandonedareas,which couldbecomparedtoeachother.Thesecircumstanceswereforexamplenottrue for R. pumilio ,whichhaveadifferentforagingstrategyandroamtheirhomerange searchingforfood.Astudyon R. pumilio wasalsomadeimpossiblebythefact that it builds its nest in bushes in such a way that one cannot see them from outside. Although several nesting sites were known from other studies, a study was not possible because in the concerning area the population density was so highthatitwasimpossibletofindunoccupiedareasforcomparison. Whiletheresultsofthefoodpreferencetestsindicatedthat O. unisulcatus mighthaveanegativeinfluenceonplantdiversity,thevegetationsurveysaround thenestssuggestedtheopposite.Asthestudywasdesignedtohaveoccupancy as the only difference between the compared nests, the higher diversity around

Discussion 45 occupied nests could be due either to rats increasing plant biodiversity or rats choosingnestingsiteswithhigherplantbiodiversity.Icannotsaywhichpossibility is correct with this correlative study. Additionally, there might be other factors, unrecognised by me, influencing the presence of rats and plant diversity in the sameway.Shouldtheratschoosetheirnestingsiteaccordingtofloraldiversity, thedurationofoccupancyinthemomentofinvestigationmightaffecttheresult. Sincethefoodpreferencetestsimpliedanegativeinfluenceof O. unisulcatus, itis possible that a recently occupied nest has a high plant diversity in its surroundings, because the animals have chosen the nesting site according to plantdiversity.Thesurroundingsofanestthathasbeenexposedtothepotentially negative influence of O. unisulcatus for a long time could have reduced plant diversity.Itisknown,however,thatmanynestsareusedforseveralyears(Brown & Willan 1991; Schradin unpublished data). Therefore, it is not likely that O. unisulcatus dolastingdamagetotheirenvironmentby,forexample,causingthe extinctionofsubdominantplantspeciesbecausetheywouldnotbeabletolivein thesameregionforyearsinthatcase. Thehighplantdiversityaroundoccupiednestsof O. unisulcatus canalso be reconciled with the results of the foodpreference tests in another way. It is possible that other small mammals, which in contrast to O. unisulcatus prefer dominantfoodplants,butalsoprefertostaynextto O. unisulcatus ,compensate for the negative influence of O. unisulcatus . R. pumilio for example use unoccupiednestsof O. unisulcatus (Schradin in press).InthiscaseImeasured notthedirecteffectof O. unisulcatus onthesurroundingsoftheirnests,butthe influenceofothersmallmammalsthatareassociateswith O. unisulcatus . 5.4. Other factors that might influence plant biodiversity ThepHvaluesofthesoilsamplesfromthetenareasshowedlittlevariation. Onlytheareas9and10hadremarkablylowpHvalues.Thesetwoareaswereat a much higher altitude compared to the others and are also most distant from them,whichisaprobableexplanationforthisdeviation.Areas9and10alsohave highpercentagesoforganicparticlesinthesoilthatareknowntodecreasepH valuebecauseoftheirhumicsubstances(Gisi1997). The highest percentage of organic components in the soil was found in areas 1, 5, 9 and 10. Area 10 consists mainly of big rocks, so the soil samples

Discussion 46 weretakenfromthesandypatchesinbetween.Probablyorganicsoilparticlesare concentratedintheseplaces.Thesamecouldbetruefortheareas1and9,which arebothsituatedonthefootofahill,wherewindandrainmightdepositorganic particles.Area5didnotonlyhaveahighpercentageoforganicsoilcomponents, butalsohighconcentrationsofdifferentmetalions.Theareaissituatednexttoan old cooper mine. Strong winds, which are quite common in Namaqualand, often blewgreydustfromtheminingdumptoarea5.Mostprobablythisisthereason for the high concentrations of metal ions. The high concentration of organic particleshoweverremainssurprising.Inspiteofhighnutrientconcentrationsand theorganicparticlesinthesoil,therewasnoextraordinarilyhighplantdiversityor plantcoverinarea5.Thesparsevegetationinareas3,4and6canexplainthe lowpercentageoforganiccomponentsthere. The Clusteranalysis that included additional measured factors showed clearlythatsmallmammalsandplantsaremoreabundantinareas8,9and10(cf. Tab.2).Theseareasarealsoatthehighestaveragealtitudeandhavethehighest average percentage of organic particles in the soil. The plant diversity might directlyaffecttheorganicsoilparticlesandthesmallmammalnumberandspecies number,ortheotherwayaround.Thealtitude,however,isindependentfromplant diversity.Itissurprisingonthefirstviewthatbiodiversityseemstoincreasewith increasing altitude, because in the Andean forests the opposite effect can be found( Gentry1988 ).Onthesecondviewonecanseethatareas8,9,and10also have moderate or plenty rainfall (cf. Tab. 1). Higher areas seem to have a tendencytogetmorerainfall,whichwouldexplainthehighplantdiversity.Clouds comingfromtheAtlanticrainoutonthehigherslopeswhereastheyoftenjustpass byinlowerregions.ForthisreasontheKamiesbergarea,thebioregionwiththe highestaltitudeinNamaqualand,hasgotthehighestaverageannualrainfallofall bioregionshere(Cowling1999). Thegenerallinearmodelshowedthatplantdiversitycouldbeexplainedby smallmammaldiversityinwinterandinsummer.ConcerningthisresultIcannow excludethealternativeexplanationthatotherfactorsinfluencedplantsandsmall mammals in the same way and caused the correlation I found. Combining this result with the others I can say now that small mammals indeed affect plant diversityinNamaqualand.Itwas,however,surprisingthatplantdiversityinwinter canalsobeexplainedbytheconcentrationofmanganeseinthesoil.Manganese

Discussion 47 isanessentialnutrientforplants,butthisisalsotrueforothernutrients.Itiseven moresurprisingthatthisconnectionbetweenmanganeseandplantdiversitywas only found in winter.So the importance of manganese seems to vary within the year. 5.5. Fence line The comparison between the floras of a Nature Reserve with those of a neighbouringfarmshowedasignificantlyhigherdiversityonthefarm.Theplants of the farm have been exposed to the influence of goats, sheep and cattle for manyyears.Ifthestockinghadapositiveinfluenceonthediversityofplants,this couldbeduetolivestockpreferringdominantplantspeciesandtherebykeeping them away from outcompeting subdominant foodplants. Because herbivores decreasethediversityoftheirfoodplantsiftheyprefersubdominantplantspecies (Lubchenco1978)andthefarmhadahigherplantdiversityincomparisontothe ungrazednaturereserve,itisunlikelythatthereisapreferenceforsubdominant plants. The edibility of the plants was however unaccounted for in this study. Possiblymanyofthesubdominantplantspeciesareunpalatableandthereforenot eaten by ungulates. This possibility requires further investigation. A high reproduction of unpalatable plants (e.g. Galenia africana ) was found in several studies(Todd&Hoffman1999). Furthermore, one can think of other ways for livestock to increase biodiversity.Theirdungforexamplemightbeanadvantageforplantsgrowingon farmland.Theinvestigatedfarmhasnotbeengrazedfornearly2yearsandthus might be in a phase of regeneration in which many pioneerplants increase the populationdensity. Theseasoninwhichthestudywasconductedmightalsobeofimportance. Thevegetationsurveysweredoneinspringandmanyannualplantspecieswere included in the investigation. Grazing has a particularly negative influence on different shrubs, which were reduced by livestock. Unpalatable plants, like Z. retrofractum and G. africana areleftbehindwithsandypatchesbetweenthem.On thesesandypatchesagreatnumberofannualscanbefoundinspring.Because theinvestigatedfarmwasnotgrazedin2004,annualplantspeciescouldeasily

Discussion 48 establishthemselves.Probablythestudywouldhavehadanotherresultifithad beenconductedinwinter. Besides stock farming, other factors might be responsible for the species richnessonthefarm.Thefarmersplantedsometreesforexampleandtheareas onthetwosidesofthefencedifferedinheterogeneity.Thestudyareaonthefarm wasmuchmoreheterogeneous.Althoughtherewasaplainareaandasandyand rocky area on both sides, there also was a waterhole on the farm. Water is of enormousimportanceforplants,especiallyinaridregions.Soitislikelythatthis water hole had a positive effect on the plants of the farm. For methodological reasonsitwasnotpossibletoconductthisstudyinamorehomogeneousarea.It would be important to repeat this study in a more appropriate area. This would also be interesting with regards to small mammals. Joubert and Ryan (1999) mentioned that the species composition on high stocking rate rangeland is a subset of the species occurring in areas with lower stocking rates. In my study therewasneitheraremarkabledifferenceinsmallmammalspeciesnumbernorin numberoftrappedindividuals. Onlyspeciescompositiondiffered. G. paeba was trappedonthefarmandonthenaturereserve.Thisspeciesis oneofthemost abundant ones in the Hardeveld (this study) and seems to be very tolerant regardingitshabitat.As G. paeba isnocturnal(Stuart&Stuart2001)andlivesin burrows,onecanimaginethatitisnotsodependentonplantcoverbecausethere isnoneedtohidefrombirdsofprey,whicharemainlydiurnalandnoshrubsare required as nesting sites. G. paeba was also trapped on highly overgrazed rangelandinotherstudies(Joubert&Ryan1999).Itdoesnotseemtobeagood indicatorspecies. A. namaquensis wasalsotrappedonthefarm.Thisspeciesis highly dependent on rocky areas (Stuart & Stuart 2001), but was trapped here nearthereedsatthementionedwaterhole.Nexttothisplaceisaheapofstone wreckagethatmighthavebeenusedbythemiceassubstituteforrockcrevices. R. pumilio wasonlytrappedintheNatureReserve,whichhadconsiderablymore shrubsprovidingcoverandnestingsites. When trapping for food choice tests on the farm and investigating bush Karooratnests,Ialsotrappedseveral O. unisulcatus ,afew R. pumilio andone Mus minutoides onthefarmrightnexttomytransect.Additionallyitisknownfrom earlier studies that O. unisulcatus and Macroscelides proboscideus live in the naturereservenexttothefence(Schradinunpublisheddata).Itissurprisingthat

Discussion 49 these species were not trapped during the actual fencelinestudy (four trapping days/nights). Possibly the trapping sites were not optimally chosen. Should this study be reproduced in another place, it is advisable to increase the number of trapping days. Although a clear statement about the effect of grazing on plant diversitycannotbegivenintheend,thestudystillhasvalueifoneconsidersitto be a pilot study for following investigations, which can hopefully be conducted underbettercircumstances.

Conclusions 50

6. Conclusions

Theresultsofmystudies,thoughbeingmainlycorrelative,indicateaninfluenceof smallmammalsonplantdiversityintheSucculentKaroo.Thisknowledge could make it easier in the future to protect this biodiversityhotspot. Conservation is hardly possible without knowing the ecological background. From this study it is nowclearthatitisnotenoughtoprotectthethreatenedplantspeciesdirectly.Itis alsonecessarytoconsidersmallmammalsinconservationprograms,evenifthey are not threatened themselves. Additionally, further investigations are urgently needed, especially experimental ones that exclude small mammals from certain areasandallowadirectcomparisonbetweenareasinfluencedandprotectedfrom smallherbivorousmammals. References 51

7. References ANDREWS, P. & O`Brien, E. M. 2000. Climate, vegetation, and predictable gradientsinmammalspeciesrichnessinsouthernAfrica. Journal of Zoology ,251 , 205231. BEGON,M.E.,HARPER,J.L.,TOWNSEND,C.R.1998 Ökologie ,Heidelberg, Berlin:SpektrumAkademischerVerlag BROOKS, PM 1982. Aspects of the reproduction, groth and development of the fourstripedmouse, Rhabdomys pumilio (Sparrman,1784). Mammalia, 46,5364 BROWN,E.,WILLAN,K.1991.MicrohabitatselectionandusebythebushKaroo rat Otomys unisulcatus in the Eastern Cape Province. South African Journal of Wildlife Reserves ,21(3),6975

CORBET, G. B. 6 J. HANKS. 1968. A revision of the elephantshrews, Family Macroscelididae.BulletinoftheBritishMuseum(NaturalHistory), Zoology 16:47 111.

COWLING,R.M.,Esler,J.J.&Rundel,P.W.1999.Namaqualand,SouthAfrica anoverviewofauniquewinterrainfalldesertecosystem. Plant Ecology ,142 ,3 21. COWLING,R.M.1999.ReserveselectionintheSucculentKaroo,SouthAfrica: copingwithhighcompositionalturnover. Plant Ecology ,142 ,3555. CURTIS,B.A.&PERRIN,M.R.1979.Foodpreferencesofthevleirat( Otomys irroratus )andthefourstripedmouse( Rhabdomys pumilio ). South African Journal of Zoology ,14,224229 DARWIN,C.1859. On the Origin of the Species by Means of Natural Selections, or the Preservation of the Favoured Races in the Struggle for Life .London(Murray J.) References 52

DAVIS, R. M. 1974. The distribution of some southern African mammals (Mammalia:Insectivora,Rodentia), Annals of the Transvaal Museum .,29,135184 DESMET,P.G.&COWLING,R.M.1999.TheclimateoftheKaroo–afunctional approach.In:Dean,W.R.J.&Milton,S.J.(eds), The Karoo: Ecological Patterns and Processes .Cambridge:CambridgeUniversityPress, DEWSBURY, DA & DAWSON; WW, 1979. African fourstriped grass mouse (Rhabdomys pumilio ), a diurnalcrepuscular muroid rodent, in the behavioural laboratory. BEHAVIOR RESEARCH METHODS INSTRUMENTS & COMPUTERS , 11,329333 DIEKMANN, R. C. 1979. Note on the smaller mammals of the Hester Malan NatureReserve,Springbok,Namaqualand. South African Journal of Zoology 14, 8589 Du PLESSIS, A. & KERLEY, G. I. H. 1991. Refuge strategies and habitat segregationintwosympatricrodents Otomys unisulcatus and Parotomys brantsii. Journal of Zoology London ,224,110 Du PLESSIS, A., ERASMUS, T. & KERLEY, G. I. H. 1989. Thermoregulatory patterns in two sympatric rodents Otomys unisulcatus and Parotomys brantsii. Comparative Biochemical Physiology .94,215220 GELDEBLOM,C.M.&Bronner,G.N.1995.Patternsofdistributionandprotection statusoftheendemicmammalsinSouthAfrica. South African Journal of Zoology , 30 ,127135. GENTRY,R.V.1988. Creation's Tiny Mystery .2 nd edit.,Knoxville:EarthScience Associates GISI,U.1997. Bodenökologie ,Stuttgart;NewYork:ThiemeVerlag

References 53

HARPER, J. L. 1969The role of predation in vegetational diversity. Brookhaven Symposium in Biology .22,4862 HILTONTAYLOR, C. 1996. Patterns and characteristics of the flora of the Succulent Karoo Biome, southern Africa. In: van der Maesen, L. J. E., van der Burgt,X.M.&vanMedenbachdeRooy,J.M.(eds),The Biodiversity of African Plants .5872,Dordrecht,TheNetherlands:KluwerAcademicPulishers HILTONTAYLOR,C.&LEROUX,A.1989.ConservationstatusoftheFynbosand Karoobiomes.In:Huntley,B.J.(ed ), Biotic diversity in Southern Africa: concepts and conservation .202223.CapeTown:OxfordUniversityPress IHLENFELDT, H. D. 1994. Diversifications in an arid world: The Mesembryanthemaceae. Annual Review of Ecology and Systematics ,25,521546 JACKSON,T. P. 1999. The social organization and breeding system of Brants´ whistlingrat( Parotomys brantsii ). Journal of Zoology London ,247,323331. JOUBERT, D. F. & RYAN, P. G. 1999. Differences in mammal and bird assemblages between commercial and communal rangelands in the Succulent Karoo,SouthAfrica. Journal of Arid Environments ,43 ,287299. JÜRGENS,N.,GOTZMANN,I.H.&COWLING,R.M.1999.Remarkablemedium term dynamics of leaf succulent Mesembryanthemaceae shrubs in the winter rainfalldesertofnorthwesternNamaqualand,SouthAfrica. Plant Ecology ,142 ,87 96. KERLEY,G.I.H.1992b.TrophicstatusofsmallmammalsinthesemiaridKaroo, SouthAfrica. Journal of Zoology London ,226 ,563572. KINGDON, J. 1974. East African Mammals Vol. 1 , Chicago: The University of ChicagoPress

References 54

LAMPRECHT, J. 1999. Biologische Forschung von der Planung bis zur Publikation .Fürth:FilanderVerlag LECHEMEREOERTEL,R.G.&COWLING,R.M.2001.Abioticdeterminantsof the fynbos / succulent karoo boundary, South Africa. Journal of Vegetation Science 12:7580 LEROUX,A.,SCHELPE,T.&WAHL,Z.1997. South African Wild Flower Guide 1: Namaqualand .CapeTown:BotanicalSocietyofSouthAfrica LOMBARD, A. T., HILTONTAYLOR, C., REBELO, A. G., PRESSEY, R. L. & COWLING,R.M.1999.ReserveselectionintheSucculentKaroo,SouthAfrica: copingwithhighcompositionalturnover. Plant Ecology ,142,3555 LUBCHENCO, J. 1978. Plant species diversity in a marine intertidal community: Importance of herbivore food preference and algal competitive abilities. The American Naturalist ,112,2339 MANNING,J.&GOLDBLATT,P.1998 South African Wild Flower Guide 7: West Coast. CapeTown:BotanicalSocietyofSouthAfrica MILTON,S.J.,DEAN;W.R.J.,DUPLESSIS;M.A.&SIEGFRIED;W.R.1994.A conceptualmodelofaridrangelandsdegradation. Bioscience ,44,7076 MILTON,S.J.,YEATON,R.I.,DEAN,W.R.J.&VLOK,J.H.J.1997.Succulent Karoo.In:Cowling,R.M.,Richardson,D.M&Pierce,S.M.(eds.), The Vegetation of Southern Africa .131.166.Cambridge:CambridgeUniversityPress

MURPHY, W.J., ELZIRIK, E., JOHNSON, W.E., ZHANG, YAPHING, RYDER, O.A. & O’BRIEN, S.J. 2001. Molecular phylogenetics and the origin of placental mammals. Nature 409,614618.

References 55

MYERS,N.,MITTERMEIER,R.A.,MITTERMEIER,C.G.,FONSECA,G.A.B.D. & KENT, J. 2000. Biodiversity hotspots for conservation priorities. Nature , 403 , 853858.

NOWAK, R. M. (ed.). 1991. Walker's Mammals of the World (Fifth Edition). Baltimore:TheJohnsHopkinsUniversityPress.

OFTEDAL,O.T.2002.NutritionalecologyofthedeserttortoiseintheMohaveand Sonoran deserts. In Van Devender, T.R. (ed) The Sonoran Desert Tortoise. Natural History, Biology, and Conservation . 194241. Tuscon: University of ArizonaPress

PAINE, R.T. 1966. Food web complexity and species diversity. The American Naturalist ,100,6575. PILLAY,N.2001.ReproductionandpostnataldevelopmentinthebushKaroorat Otomys unisulcatus (,Otomyinae). Journal of Zoology London ,254,515 520 RATHBUN, G.B. & FONS, R. 1988. Russelspringer. In: B. Grzimek (ed.). Grzimeks Enzyklopadie Saugetiere .Pp.520531,München,W.Germany:Kindler Verlag,. RÖSCH,H.2001.Theidentificationanddescription ofthemanagementunitsof theGoegapNatureReserve. Koedoe ,44(1),1730 ROSSA; B. & VON WILLERT, D. J. 1999. Physiological characteristics of geophytesinsemiaridNamaqualand.SouthAfrica. Plant ecology ,142,121132 SCHRADIN, C. in press. Whole day follows of the striped mouse, Journal of Ethology

References 56

SCHRADIN, C. in press. , Nest site competition in two diurnal rodents of the succulentkaroo, Journal of Mammalogy SCHRADIN, C. & PILLAY, N. 2005. Demography of the striped mouse (Rhabdomys pumilio )inthesucculentkaroo. Mammalian Biology inpress SCHUBERT, M. 2005. Female Reproductive Strategies in the Striped Mouse: Communal versus Singular Breeders. Unpublished Diploma thesis, University of Bayreuth,Germany. SHEARING, D. & HEERDEN, K. V. 1998. South African Wild Flower Guide 6: Karoo. CapeTown:BotanicalSocietyofSouthAfrica SHORTRIDGE, G. 1934. The mammals of South West Africa , Vol. 1. London: WilliamHeinemann SKINNER, J. D. & SMITHERS, R. H. N. 1990 . The mammals of the Southern African Subregions 2 nd edn.Pretoria:UniversityofPretoria STUART,C.&STUART,T.2001. A Field Guide to Mammals of Southern Africa. ChelseaGreenPublishingCo,U.S. TODD, S. W. & HOFFMAN, M. T. 1999. A fenceline contrast reveals effects of heavy grazing on plant diversity and community composition in Namaqualand, SouthAfrica. Plant Ecology ,142 ,169178. TODD, S. W. & HOFFMAN, M. T. 1999. Correlates of stocking rate and overgrazingintheLeliefonteinCommunalReserve,centralNamaqualand. African Journal of Range & Forage Science ,17,3645 VANJAARSVELD,E.1987.TherichesofSouthAfricaandNamibia, Aloe, 24,45 92

References 57

VANROOYEN,G.,STEYN,H.P.&DeVILLIERSSOUTH,R.1999. African Wild Flower Guide 10: Cederberg – Clanwilliam and Biedouw Valley . Cape Town: BotanicalSocietyofSouthAfrica WEIß, J., MAEß, J., NEBENDAHL, K., ROSSBACH, W. (eds.) 1995. Haus- und Versuchstierpflege,Stuttgart,Jena,NewYork:GustavFischerVerlag WILMANNS, O. 1989. Ökologische Pflanzensoziologie , 4., überarb. Aufl., HeidelbergWiesbaden ZELLER, U. 2002. Functional Zoodiversity in Southern Africa under changing environmentsandhumanuse.Unpublisheddata

Appendix 58

8. Appendix Table4:Trappingdatafromthewintertrappingseason species number date time area station weight(g) sex -=nodataavailable M. minutoides 16.7.2004 20:05 1 30 m=male M. minutoides 28.7.2004 08:06 1 28 f=female A. namquensis 06.7.2004 19:55 1 15 X=animalescapedbeforeit A. namquensis 15.7.2004 19:55 1 29 m couldbemarked Recapture A. namquensis 18.7.2004 06:31 1 29 m E. rupestris 18.7.2004 07:53 1 7 m G. paeba 15.7.2004 21:20 2 14 G. paeba 25.7.2004 21:30 2 29 G. paeba 36.7.2004 20:22 2 10 G. paeba 49.7.2004 06:45 2 4 27 M. proboscideus 15.7.2004 20:20 2 28 f M. proboscideus 25.7.2004 20:25 2 30 f G. paeba 610.7.2004 21:28 4 27 23 G. paeba 711.7.2004 19:42 4 29 24 R. pumilio 110.7.2004 19:45 4 11 32 R. pumilio 110.7.2004 21:12 4 11 R. pumilio 111.7.2004 21:12 4 9 37 R. pumilio 114.7.2004 07:00 4 7 30 G. valinus 110.7.2004 21:13 4 15 26 m G. paeba 115.7.2004 21:10 5 19 29 G. paeba 219.7.2004 06:25 5 5 26 G. paeba 120.7.2004 21:00 7 4 25 G. paeba 220.7.2004 21:05 7 10 27 G. paeba 221.7.2004 19:20 7 4 27 G. paeba 320.7.2004 21:10 7 12 26 m G. paeba 420.7.2004 21:17 7 24 27 m G. paeba 520.7.2004 21:17 7 27 30 m G. paeba 12 21.7.2004 20:50 7 5 24 f G. paeba 17 23.7.2004 06:20 7 19 27 G. paeba 18 23.7.2004 06:30 7 30 27 m G. paeba 20 28.7.2004 06:30 7 1 25 R. pumilio 121.7.2001 16:43 8 3 52 m R. pumilio 121.7.2004 18:10 8 3 m R. pumilio 128.7.2004 09:35 8 2 50 m R. pumilio 128.7.2004 11:10 8 2 m R. pumilio 223.7.2004 11:00 8 1 37 m O. unisulcatus 120.7.2004 18:12 8 2 106 m G. paeba 620.7.2004 21:45 8 13 27 G. paeba 720.7.2004 21:50 8 19 25 f G. paeba 820.7.2004 22:02 8 24 25 f G. paeba 921.7.2004 19:40 8 26 30 m G. paeba 10 21.7.2004 19:47 8 9 30 G. paeba 11 21.7.2004 20:00 8 2 26 G. paeba 13 21.7.2004 21:15 8 30 25 f G. paeba 14 21.7.2004 21:25 8 19 28 G. paeba 15 21.7.2004 21:30 8 13 25 Appendix 59 species number date time area station weight(g) sex G. paeba 16 21.7.2004 21:36 8 5 28 -=nodataavailable G. paeba 16 23.7.2004 06:50 8 24 25 m=male G. paeba 19 23.7.2004 06:59 8 21 26 f=female M. proboscideus 120.7.2004 21:55 8 24 23 f X=animalescapedbeforeit M. proboscideus 221.7.2004 20:03 8 1 49 f couldbemarked M. proboscideus 328.7.2004 06:50 8 11 40 f Recapture G. paeba 14.8.2004 10:45 9 29 55 m G. paeba 131.7.2004 19:43 9 8 27 m G. paeba 14.8.2004 06:12 9 4 24 m G. paeba 231.7.2004 21:05 9 29 20 f G. paeba 33.8.2004 06:09 9 5 28 m G. paeba 34.8.2004 06:20 9 6 27 m G. paeba 43.8.2004 07:46 9 4 25 G. paeba 54.8.2004 06:12 9 3 26 G. paeba 64.8.2004 06:26 9 8 25 m G. paeba 74.8.2004 06:37 9 25 22 E. edwardii 331.7.2004 18:02 9 26 55 E. edwardii 431.7.2004 18:10 9 30 54 f E. edwardii 44.8.2004 07:55 9 28 53 M. proboscideus 129.7.2004 19:30 9 5 41 m M. proboscideus 131.7.2004 19:38 9 5 40 m M. proboscideus 13.8.2004 06:14 9 9 45 m M. proboscideus 14.8.2004 06:31 9 13 46 m M. proboscideus 14.8.2004 07:50 9 2 43 M. proboscideus 229.7.2017 19:37 9 12 54 f M. proboscideus 231.7.2004 19:34 9 2 45 f M. proboscideus 23.8.2004 07:54 9 13 57 f M. minutoides 129.7.2004 19:56 10 3 10 m M. minutoides 231.7.2004 20:06 10 3 10 M. minutoides 04.8.2004 07:04 10 28 12 A. namaquensis 129.7.2004 18:31 10 28 f A. namaquensis 131.7.2004 18:35 10 28 47 f A. namaquensis 131.7.2004 20:42 10 28 46 f A. namaquensis 229.7.2004 18:40 10 29 39 f A. namaquensis 229.7.2004 20:27 10 26 44 f A. namaquensis 231.7.2004 18:36 10 29 38 f A. namaquensis 23.8.2004 06:43 10 27 40 A. namaquensis 24.8.2004 07:04 10 29 43 f A. namaquensis 24.8.2004 08:22 10 27 46 f A. namaquensis 329.7.2004 18:40 10 29 39 m A. namaquensis 329.7.2004 20:40 10 29 50 m A. namaquensis 331.7.2004 18:36 10 30 47 m A. namaquensis 331.7.2004 20:46 10 29 46 m A. namaquensis 331.7.2004 21:22 10 23 44 m A. namaquensis 33.8.2004 08:37 10 28 46 m A. namaquensis 429.7.2004 20:10 10 17 52 m A. namaquensis 43.8.2004 08:06 10 1 58 m A. namaquensis 529.7.2004 20:27 10 28 57 m A. namaquensis 531.7.2004 20:20 10 11 51 m A. namaquensis 629.7.2004 21:35 10 28 46

Appendix 60 species number date time area station weight(g) sex -=nodataavailable A. namaquensis 631.7.2001 20:34 10 25 39 m=male A. namaquensis 731.7.2004 20:25 10 17 46 f f=female A. namaquensis 73.8.2004 08:16 10 10 46 f X=animalescapedbeforeit A. namaquensis 74.8.2004 08:59 10 21 45 f couldbemarked A. namaquensis X 29.7.2004 20:20 10 22 Recapture

E. edwardii 13.8.2004 06:30 10 1 50 m E. edwardii 14.8.2004 06:50 10 3 52 m E. edwardii 229.7.2004 21:20 10 3 52 E. edwardii 231.7.2004 16:38 10 1 60 E. rupestris 129.7.2004 18:18 10 25 74 f E. rupestris 13.8.2004 08:25 10 20 64f E. rupestris 14.8.2004 07:04 10 30 65 f E. rupestris 231.7.2004 18:33 10 23 59 E. rupestris 23.8.2004 08:30 10 21 58 f E. rupestris 04.8.2004 08:10 10 20 63 m Table5:Trappingdatafromthesummertrappingseason species number date time area station weight(g) sex A. namaquensis 08.11.2004 22:24 1 10 30 A. namaquensis 010.11.2004 04:40 1 13 33 A. namaquensis 20 7.11.2004 22:18 1 9 28 f A. namaquensis 30 8.11.2004 22:19 1 9 57 E. rupestris 07.11.2004 20:58 1 9 25 f E. rupestris 20 7.11.2004 17:48 1 9 61 m E. rupestris 20 10.11.2004 06:00 1 30 64 m E. rupestris 20 11.11.2004 07:36 1 12 65 E. rupestris 30 7.11.2004 17:55 1 12 73 f E. rupestris 30 7.11.2004 20:55 1 7 E. rupestris 30 8.11.2004 18:02 1 5 73 f E. rupestris 30 8.11.2004 19:07 1 7 E. rupestris 30 8.11.2004 21:05 1 10 E. rupestris 30 10.11.2004 07:30 1 5 78 E. rupestris 30 11.11.2004 06:05 1 4 80 E. rupestris 100 8.11.2004 18:03 1 10 28 f E. rupestris 100 8.11.2004 21:00 1 9 29 f E. rupestris 100 10.11.2004 06:01 1 9 30 E. rupestris 100 11.11.2004 06:10 1 9 34 E. rupestris 200 10.11.2004 04:37 1 10 31 f E. rupestris 200 11.11.2004 06:08 1 7 25,5 R. pumilio 010.11.2004 07:50 2 30 44 m R. pumilio 011.11.2004 07:50 2 29 48 m R. pumilio 561 11.11.2004 09:00 2 30 48 m G. paeba 011.11.2004 05:00 2 4 16,5 f G. paeba 27.11.2004 22:41 2 19 30 m G. paeba 211.11.2004 05:11 2 17 34 G. paeba 47.11.2004 22:44 2 21 33 m G. paeba 48.11.2004 22:50 2 21 30 G. paeba 411.11.2004 05:05 2 7 34 G. paeba 10 11.11.2004 05:14 2 25 29 m

Appendix 61 species number date time area station weight(g) sex -=nodataavailable G. paeba 20 7.11.2004 22:36 2 11 16 m m=male G. paeba 30 7.11.2004 22:47 2 30 25 f f=female G. paeba 100 8.11.2004 22:42 2 7 29 X=animalescapedbeforeit G. paeba 200 8.11.2004 22:46 2 11 15 m couldbemarked G. paeba 300 10.11.2004 04:54 2 11 18 m Recapture G. paeba 300 11.11.2004 05:09 2 11 18 G. paeba 300 11.11.2004 06:00 2 11 G. paeba X 10.11.2004 05:00 2 30 29 G. paeba X 11.11.2004 05:17 2 26 28 G. paeba 318.10.2004 06:17 3 27 32 R. pumilio 119.10.2004 04:39 3 4 36 f O. unisulcatus 115.10.2004 19:25 4 5 113 m O. unisulcatus 218.10.2004 06:32 4 5 91 f G. paeba 015.10.2004 21:00 4 19 8f G. paeba 115.10.2004 21:10 4 26 13 m G. paeba X 18.10.2004 04:55 4 7 G. paeba 218.10.2004 04:58 4 9 23 G. paeba 219.10.2004 05:05 4 23 27 m G. paeba 318.10.2004 06:17 4 27 32 G. paeba 719.10.2004 04:58 4 10 26 f M. proboscideus 119.10.2004 05:10 4 30 32 f G. paeba 02.11.2004 10:31 5 15 14 G. paeba 03.11.2004 10:28 5 11 14 f G. paeba 20 2.11.2004 10:34 5 17 33 f G. paeba 30 2.11.2004 09:10 5 5 16 m G. paeba 30 6.11.2004 04:50 5 5 15 G. paeba 100 2.11.2004 10:39 5 23 28 f G. paeba 100 5.11.2004 04:55 5 17 31 G. paeba 200 5.11.2004 04:48 5 3 15 m G. paeba 300 5.11.2004 04:58 5 30 22 m G. paeba 800 6.11.2004 03:17 5 17 31 m G. paeba 10 6.11.2004 05:00 5 28 30 f G. paeba 221.10.2004 22:14 7 25 33 G. paeba 222.10.2004 22:10 7 28 31 m G. paeba 225.10.2004 06:10 7 3 30 m G. paeba 624.10.2004 04:28 7 9 33 f G. paeba 10 25.10.2004 04:31 7 7 30 f G. paeba 11 25.10.2004 04:40 7 21 28 m M. proboscideus 025.10.2004 06:20 7 17 37 m M. proboscideus 121.10.2004 19:04 7 1 30 f M. proboscideus 124.10.2004 04:20 7 4 32 f M. proboscideus 125.10.2004 06:05 7 1 37 f M. proboscideus 221.10.2004 20:55 7 19 51 f M. proboscideus 224.10.2004 04:35 7 19 53 f M. proboscideus 321.10.2004 21:00 7 28 52 f M. proboscideus 324.10.2004 04:40 7 30 53 f M. proboscideus 421.10.2004 21:00 7 29 41 m M. proboscideus 621.10.2004 22:08 7 9 38 m M. proboscideus 722.10.2004 20:45 7 4 38 m M. proboscideus 724.10.2004 07:19 7 4 42 m

Appendix 62 species number date time area station weight(g) sex -=nodataavailable R. pumilio 022.10.1004 17:54 8 11 55 m m=male R. pumilio 024.10.2004 09:17 8 2 52 m f=female R. pumilio 025.10.2004 07:55 8 12 50 m X=animalescapedbeforeit R. pumilio 121.10.2004 17:56 8 30 46 m couldbemarked R. pumilio 221.10.2004 19:20 8 29 44 f Recapture R. pumilio 222.10.2004 17:50 8 30 41 f R. pumilio 222.10.2004 19:15 8 30 41 R. pumilio 224.10.2004 07:36 8 28 35 f R. pumilio 225.10.2004 07:50 8 29 41 R. pumilio 324.10.2004 07:52 8 2 55 m R. pumilio 424.10.2004 09:17 8 4 60 f R. pumilio 525.10.2004 06:55 8 1 59 R. pumilio 625.10.2004 06:55 8 2 60 f R. pumilio 725.10.2004 09:20 8 11 59 m R. pumilio 825.10.2004 09:25 8 29 41 f R. pumilio 925.10.2004 09:25 8 29 18 f R. pumilio 10 25.10.2004 09:13 8 5 15 m R. pumilio 11 24.10.2004 09:16 8 27 14 O. unisulcatus 025.10.2004 06:37 8 15 100 m O. unisulcatus 122.10.2004 18:01 8 2 114 m O. unisulcatus 222.10.2004 21:12 8 2 121 m O. unisulcatus 324.10.2004 06:16 8 29 131 f O. unisulcatus 424.10.2004 07:45 8 10 102 O. unisulcatus 525.10.2004 06:40 8 13 105 f G. paeba 021.10.2004 22:30 8 30 31 G. paeba 024.10.2004 04:58 8 19 34 f G. paeba 321.10.2004 22:38 8 4 29 f G. paeba 422.10.2004 21:10 8 15 28 G. paeba 522.10.2004 22:28 8 27 25 f G. paeba 521.10.2004 21:20 8 29 33 f G. paeba 724.10.2004 04:54 8 26 27 m G. paeba 725.10.2004 04:55 8 27 28 m G. paeba 824.10.2004 05:02 8 17 30 m G. paeba 825.10.2004 04:59 8 26 32 m G. paeba 924.10.2004 05:08 8 2 28 f G. paeba 12 25.10.2004 05:08 8 5 25 f M. proboscideus 521.10.2004 21:20 8 29 33 f M. proboscideus 825.10.2004 06:49 8 9 45 m M. minutoides 030.10.2004 05:03 9 28 18 R. pumilio X 26.10.2004 17:37 9 1 49 R. pumilio 029.10.2004 07:47 9 29 juv. R. pumilio 126.10.2004 19:10 9 22 38 f R. pumilio 127.10.2004 17:40 9 26 37 f R. pumilio 129.10.2004 07:39 9 17 R. pumilio 130.10.2004 09:00 9 17 34 R. pumilio 10 27.10.2004 17:28 9 2 57 f R. pumilio 11 27.10.2004 17:30 9 5 24 m R. pumilio 12 27.10.2004 18:58 9 10 62 m R. pumilio 12 30.10.2004 07:18 9 10 62 R. pumilio 13 27.10.2004 18:58 9 11 65 m

Appendix 63 species number date time area station weight(g) sex -=nodataavailable R. pumilio 13 29.10.2004 07:44 9 23 m=male R. pumilio 13 29.10.2004 09:00 9 23 f=female R. pumilio 13 30.10.2004 07:25 9 23 59 X=animalescapedbeforeit R. pumilio 13 30.10.2004 08:55 9 11 58 couldbemarked G. paeba 126.10.2004 20:42 9 17 13 Recapture G. paeba 127.10.2004 21:06 9 19 13 f G. paeba 130.10.2004 04:48 9 15 15 G. paeba 226.10.2004 20:46 9 23 13 G. paeba 227.10.2004 21:16 9 28 15 m G. paeba 229.10.2004 04:56 9 25 18 G. paeba 230.10.2004 05:00 9 27 17 f G. paeba 326.10.2004 20:50 9 25 13 m G. paeba 327.10.2004 21:14 9 26 16 G. paeba 329.10.2004 04:54 9 21 15 G. paeba 426.10.2004 22:02 9 3 11 m G. paeba 427.10.2004 20:55 9 4 13 m G. paeba 427.10.2004 22:00 9 3 11 G. paeba 429.10.2004 04:35 9 4 15 G. paeba 430.10.2004 06:04 9 3 16 G. paeba 526.10.2004 22:00 9 1 29 f G. paeba 529.10.2004 04:29 9 1 30 G. paeba 530.10.2004 06:07 9 5 29 G. paeba 530.10.2004 04:32 9 5 30 f G. paeba 626.10.2004 20:35 9 3 36 f G. paeba 826.10.2004 22:06 9 4 32 f G. paeba 827.10.2004 20:46 9 3 34 f G. paeba 827.10.2004 22:02 9 7 G. paeba 829.10.2004 04:37 9 5 35 G. paeba 829.10.2004 05:59 9 5 36 G. paeba 829.10.2004 07:30 9 4 34 G. paeba 830.10.2004 04:39 9 7 37 G. paeba 926.10.2004 22:12 9 10 29 f G. paeba 927.10.2004 21:00 9 15 30 f G. paeba 929.10.2004 04:44 9 15 34 G. paeba 930.10.2004 04:45 9 12 34 f G. paeba 20 30.10.2004 04:54 9 21 17 m E. edwardii 726.10.2004 19:20 9 28 77 f E. rupestris 427.10.2004 17:26 9 1 38 f E. rupestris 330.10.2004 04:28 9 1 67 m E. rupestris 330.10.2004 06:17 9 30 65 m E. rupestris 10 27.10.2004 20:45 9 1 79 f E. rupestris 029.10.2004 06:06 9 30 80 f M. macroscelides 126.10.2004 19:05 9 7 45 f M. macroscelides 129.10.2004 04:40 9 9 49 f M. macroscelides 130.10.2004 04:31 9 4 47 f M. macroscelides 130.10.2004 06:10 9 11 46 f M. macroscelides 10 27.10.2004 21:10 9 21 18 m M. macroscelides 10 29.10.2004 04:50 9 19 21 M. macroscelides 10 30.10.2004 04:52 9 19 22 f M. macroscelides 11 29.10.2004 04:59 9 29 35 m

Appendix 64 species number date time area station weight(g) sex -=nodataavailable M. macroscelides 12 29.10.2004 07:34 9 10 42 m m=male M. macroscelides 12 30.10.2004 04:41 9 11 37 m f=female M. minutoides 127.10.2004 22:27 10 25 9 X=animalescapedbeforeit M. minutoides 227.10.2004 22:29 10 27 9m couldbemarked

M. minutoides 329.10.2004 05:36 10 27 13 m Recapture M. minutoides 70 30.10.2004 05:19 10 4 14 m A. namaquensis 126.10.2004 22:28 10 1 A. namaquensis 129.10.2004 05:14 10 2 52 A. namaquensis 226.10.2004 20:59 10 1 54 A. namaquensis 227.10.2004 21:28 10 1 59 A. namaquensis 227.10.2004 22:17 10 1 A. namaquensis 229.10.2004 06:16 10 2 60 A. namaquensis 230.10.2004 05:14 10 1 56 f A. namaquensis 626.10.2004 21:12 10 28 54 f A. namaquensis 726.10.2004 19:34 10 11 53 f A. namaquensis 727.10.2004 21:37 10 11 56 f A. namaquensis 729.10.2004 05:25 10 17 57 A. namaquensis 726.10.2004 21:08 10 11 f A. namaquensis 730.10.2004 05:35 10 21 57 A. namaquensis 10 27.10.2004 21:44 10 30 24 f A. namaquensis 11 29.10.2004 05:19 10 11 33 f A. namaquensis 20 30.10.2004 05:24 10 7 28 m A. namaquensis 30 30.10.2004 05:40 10 26 29 f E. rupestris 326.10.2004 22:35 10 18 67 m E. rupestris 127.10.2004 17:55 10 21 63 f E. edwardii 226.10.2004 19:25 10 1 71 f E. edwardii 727.10.2004 19:15 10 2 74 f E. edwardii 729.10.2004 06:20 10 4 80 f E. edwardii 730.10.2004 05:31 10 16 78 f

Appendix 65

Table6:Trappingdatafromthefencelinestudy species number date time area station weight(g) sex -=nodataavailable G. paeba 110.8.2004 19:56 Farm 26 24 m m=male G. paeba 111.8.2004 19:54 Farm 26 25 m f=female A. namaquensis 110.8.2004 21:22 Farm 18 50 f X=animalescapedbeforeit A. namaquensis 111.8.2004 21:15 Farm 19 49 couldbemarked

A. namaquensis 114.8.2004 08:00 Farm 19 Recapture A. namaquensis 210.8.2004 21:22 Farm 19 37 A. namaquensis 213.8.2004 06:50 Farm 19 37 f A. namaquensis 213.8.2004 09:30 Farm 19 36 f A. namaquensis 213.8.2004 11:20 Farm 19 A. namaquensis 214.8.2004 06:20 Farm 19 40 f A. namaquensis 310.8.2004 21:35 Farm 21 46 f A. namaquensis 313.8.2004 06:55 Farm 21 50 f A. namaquensis 314.8.2004 06:31 Farm 20 50 f A. namaquensis X 11.8.2004 19:18 Farm 21 52 G. paeba 210.8.2004 21:05 Goegap 19 27 f G. paeba 214.8.2004 06:47 Goegap 13 30 f R. pumilio 429 13.8.2004 09:20 Goegap 15 62 m R. pumilio 433 13.8.2004 09:25 Goegap 23 50 m R. pumilio 91 13.8.2004 11:00 Goegap 13 57 m R. pumilio 91 14.8.2004 09:40 Goegap 13 57 m R. pumilio 141 13.8.2004 11:05 Goegap 17 60 m

Acknowledgements 66

9. Acknowledgements Alotofpeoplemadetheircontributionduringthisdiplomathesis. First,IwanttothankProf.NorbertSachser,whogavemethepossibilitytomake thisexternaldiplomathesisandhadthetrusttosendmehalfaroundtheworldin ordertodoit.MostofallIhavetothankmysupervisorDr.CarstenSchradin.He showedareallyexceptionalengagementformydiplomathesisandmeandeven lentmehisbelovedLandrovertocollectmydata.Thedatacollectionwouldnot havebeenpossiblewithoutthehelpofmyfieldassistants.Myspecialthanksgoto Philipp Widmann and Annette Wiedon for bearing my bad mood during many trappingnightsandtheeffectivehelpwithdraggingtrapsandmountainclimbing. For further field assistance I thank Eva Krause, Madeleine Scriba, Melanie Schubert,CarolaSchneiderandBrigitteBritz.Thewholeteamfromtheresearch stationinGoegapNatureReserveowesmygreatthanksforalotofsocialsupport and motivation during difficult times. I got a lot of useful tips and lessons in distinguishing E. rupestris from E. edwardii fromGalenRathbunandthereforealso sendmythankstoCalifornia. For the warm reception back in Münster and a lot of advises I thank the whole team of the Department of Behavioural Biology. Most support came from Oliver Ambreé, who spent a great deal of time helping me to solve all my little problems.ForthecorrectionofmyEnglishIthankProf.Dr.MichaelHennessy.For theirpatienceandcompetenthelpforanignorantzoologist,whotriedtoanalyse soilsamples,IthankDr.NicoleArmbrüsterandHildegardSchwitte.Forproviding ascaleandmanagingtobringittoSouthAfricaIthankProf.Dr.vonWillert. I also have to thank Jens Mecklenborg for providing his laptop and bolstering me, along with many other friends and family members. Especially I wanttomentionmyflatmateJörgHolle,whohadtodealwithaninterimtenantfor six month and was still so generous to provide me an extra desk. I also thank RubenBöhmerforconstantlytellingmethateverythingcanbemanaged. IwouldliketothanktheNorthernCapeDepartmentofAgriculture,LandReform, and Environment for their permission to conduct my studies in Goegap Nature Reserve,andthestaffofGoegapfortheirassistance. For financial support I thank the University of the Witwatersrand, JohannesburgandespeciallyProf.N.PillaytheFrauenförderungoftheUniversity ofMünsterandmyparents,whosupportedmeduringmywholecourseofstudies.

Erklärung

Hiermitversichereich,dievorliegendeArbeitselbstständigverfasstundkeine anderenalsdieangegebenenQuellenundHilfsmittelverwandtzuhaben. Münster,den30.04.2005 . ChristinaKeller