Strike-Slip Faulting Along the Wassuk Range of the Northern Walker Lane, Nevada

Total Page:16

File Type:pdf, Size:1020Kb

Strike-Slip Faulting Along the Wassuk Range of the Northern Walker Lane, Nevada Origin and Evolution of the Sierra Nevada and Walker Lane themed issue Strike-slip faulting along the Wassuk Range of the northern Walker Lane, Nevada Shaopeng Dong1,2,*, Gulsen Ucarkus3,*, Steven G. Wesnousky2,*, Jillian Maloney3,*, Graham Kent4,*, Neal Driscoll3,*, and Robert Baskin5,* 1Key Laboratory of Active Tectonics and Volcanoes, Institute of Geology, China Earthquake Administration, Beijing 100029, China 2Center for Neotectonics Studies, University of Nevada Reno, Reno, Nevada 89557, USA 3Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California 92093, USA 4Nevada Seismological Laboratory, University of Nevada Reno, Reno, Nevada 89557, USA 5U.S. Geological Survey, West Valley City, Utah 84119, USA ABSTRACT tions begin to reconcile what was a mismatch (e.g., Wesnousky, 2005). Based on geodesy, as between geodetically predicted deformation much as one-fi fth of the right-lateral relative A strike-slip fault is present outboard rates and geological fault slip rate studies plate motion between the Pacifi c and North and subparallel to the Wassuk Range front along the Wassuk Range front, and pro- America plates is accommodated east of the within the central Walker Lane (Nevada, vide another example of strain partitioning Sierra Nevada, with the majority localized USA). Recessional shorelines of pluvial Lake between predominantly normal and strike- within the Walker Lane (Bennett et al., 1999; Lahontan that reached its highstand ca. slip faults that occurs in regions of oblique Hammond and Thatcher, 2007; Thatcher et al., 15,475 ± 720 cal. yr B.P. are displaced ~14 m extension such as the Walker Lane. 1999). The eastern escarpment of the Wassuk and yield a right-lateral slip-rate estimate Range is steep, abrupt, and bounded by a normal approaching 1 mm/yr. The strike-slip fault INTRODUCTION fault just west of Walker Lake (Fig. 2; e.g., Wes- trace projects southeastward toward the east- nousky, 2005). Here we present both terrestrial ern margin of Walker Lake, which is ~15 km The Wassuk Range (Nevada, USA) is a and lacustrine observations that place bounds to the southeast. The trace is obscured in this north-trending ~80-km-long mountain block on the late Pleistocene rate of uplift due to dis- region by recessional shorelines features that within the central Walker Lane (Figs. 1 and 2), placement on the range-bounding normal fault record the historical dessication of the lake which is an ~100-km-wide zone of discontinu- and document the presence of an active strike- caused by upstream water diversion and con- ous active faults and disrupted topography that slip fault system outboard and subparallel to the sumption. High-resolution seismic CHIRP trends along the east fl ank of the Sierra Nevada range front. The observations begin to reconcile (compressed high intensity radar pulse) pro- fi les acquired in Walker Lake reveal ~20 k.y. of stratigraphy that is tilted westward ~20– 30 m to the Wassuk Range front, consistent W ~200KM ? E S with ~1.0–1.5 mm/yr (20–30 m/20 k.y.) of T E vertical displacement on the main range- W R bounding normal fault. Direct evidence of a N Figure 1. Tectonic map show- l the northwest-trending right-lateral strike- S k G ing the location of the Wassuk A e Wassuk R N r E slip fault is not observed, although a set of Sierra Nev Range Range within the Walker Lane A folds and faults trending N35°E, conjugate to A T (shaded). The range-bounding N D the trend of the strike-slip fault observed to B fault of the Wassuk Range is 38°N R the north, is superimposed on the west-dip- E A A shown as a thick black line with S ping strata. The pattern and trend of folding S ad IN hachures on the hanging wall. F L and faulting beneath the lake are not simply A a a The majority of ~50 mm/yr U n explained; they may record development of L e of northwest-directed Pacific T 36°N Nevada Riedel shears in a zone of northwest-directed S Californi plate motion is taken up by the Y strike slip. Regardless of their genesis, the ~50 mm/yr S San Andreas and Walker Lane T faults and folds appear to have been inactive EM fault systems (adapted from a during the past ~10.5 k.y. These observa- Wesnousky, 2005). *Emails: Shaopeng Dong: dshaopeng@ gmail .com; Ucarkus: gucarkus@ucsd .edu; Wesnousky: PACIFIC wesnousky@unr .edu; Maloney: jmaloney@ucsd .edu; Kent: gkent@unr .edu; Driscoll: ndriscoll@ PLATE 114°W ucsd.edu; Baskin: rbaskin@usgs .gov 120°W Geosphere; February 2014; v. 10; no. 1; p. 40–48; doi:10.1130/GES00912.1; 8 fi gures. Received 14 February 2013 ♦ Revision received 9 October 2013 ♦ Accepted 21 November 2013 ♦ Published online 19 December 2013 40 For permission to copy, contact [email protected] © 2014 Geological Society of America Downloaded from http://pubs.geoscienceworld.org/gsa/geosphere/article-pdf/10/1/40/3333427/40.pdf by guest on 27 September 2021 Strike slip along Wassuk Figure 2. The range-bounding An enlarged portion of a 1:40,000-scale fault along the Wassuk Range 119°W 118.5°W Nevada Bureau of Mines and Geology low- is shown as a dark line. Global sun-angle photo of the fault trace where it cuts positioning system (GPS) recessional shorelines of Lake Lahontan is measured displacement field 39°N shown in Figure 4A. The fault trace cuts from (reported in Wesnousky et al., Strike slip fault trace northwest to southeast across the central portion 2012) (red arrows emanating Reese River Canyon Figure 3a of the image. Several of the tonal bands result- from small white circle) is plot- ing from shadows cast by the recessional beach ted with respect to an assumed 0.2-0.4 ridges are offset right laterally across the trace. 0.9-1.0 stable Sierra Nevada block. Ori- Penrod Canyon To measure the amount of offset, the photo was entation and increasing length W 0.7-1.3 georeferenced to existing U.S. Geological Sur- Location of two seismic of arrows to northeast show a vey digital raster graphics and orthophotoquads Walker Lake Walker reflection profiles that shear is oriented oblique to s s encompassing the site. The dashed line pairs in the Wassuk Range. White boxes u Figure 4B are along interpreted piercing point k are geologically determined lines that follow the three most distinct tonal R values of fault-normal exten- a contrasts. The right-lateral offset of the tonal sion (black—upper text), geo- n g lineaments across the fault range from 11.7 to detic estimates of fault-normal Rose Creek e 0.5-0.8 15.2 m with an average of 13.5 m. In addition, extension (magenta—middle 0.4-0.7 38.5°N we used a backpack global positioning system text), and geodetic estimates of 1.2-1.6 (GPS) to survey along our interpretation by eye fault-parallel strike slip (blue— of the crests and swales of a number of beach North Canyon lower text) (rates reported in ridges (dotted line pairs in Fig. 4C). The range Wesnousky et al., 2012). Two- of 4 offsets measured in this way range from headed arrows schematically 12.3 m to 14.3 m, with an average of 13.9 m. show ranges of the same values Figure 4D shows the Lidar image at the same and correspond in arrange- 5 mm/yr scale as Figures 4B and 4C. In this case, the ment and color to the values in offsets observed in the low-sun-angle image are boxes. The geologically deter- not clearly evident in the Lidar image. mined extension-rate arrows The offset shorelines postdate the highstand are placed adjacent to the sites of pluvial Lake Lahontan (15,475 ± 720 yr B.P.). of studies. The dashed white box Dividing the ~14 m offset of the shorelines by shows the extent of Figure 3A. The dashed blue line approximates the 1252 m historical high- the age of the highstand yields a minimum fault stand shoreline of Walker Lake documented by Adams (2007) and marked in Figure 3A. slip rate equal to ~0.9 mm/yr. The approximate fault slip rate assumes the total offset is due to multiple earthquakes. an existing mismatch between geodetically pre- vation of ~1330 m ca. 13,070 ± 60 14C B.P. (e.g., dicted deformation rates compared to geologi- Adams and Wesnousky, 1998), or ~15,475 ± Submarine CHIRP Survey cally determined slip rates reported from studies 720 cal. yr B.P. (Briggs and Wesnousky, 2004). along the range-bounding fault (Bormann et al., Below the ~1330 m pluvial highstand and above Methods 2012; Wesnousky et al., 2012). The study also the ~1262 m latest Holocene highstand of the Approximately 200 line-km of seismic provides another example of the partitioning of lake mapped by House and Adams (2009, 2010), CHIRP (compressed high intensity radar pulse, slip between primarily normal and strike-slip the lineament cuts wave-washed surfaces of acoustic variant) data were acquired in Walker faults that occur in regions of oblique extension pluvial Lake Lahanton and alluvial fan depos- Lake in 2012 and 2013 (Fig. 5). The survey (e.g., Wesnousky and Jones, 1994). its developed since that time. The fi eld expres- employed Scripps Institution of Oceanogra- sion of the lineament is characterized by the phy’s Edgetech SUBSCAN CHIRP profi ler and OBSERVATIONS presence of alternate facing scarps along strike, was operated with a 50 ms swept pulse of 1–15 which are typically associated with strike-slip kHz, which provides decimeter vertical reso- Terrestrial displacement (e.g., Wallace, 1991).
Recommended publications
  • Tectonic Influences on the Spatial and Temporal Evolution of the Walker Lane: an Incipient Transform Fault Along the Evolving Pacific – North American Plate Boundary
    Arizona Geological Society Digest 22 2008 Tectonic influences on the spatial and temporal evolution of the Walker Lane: An incipient transform fault along the evolving Pacific – North American plate boundary James E. Faulds and Christopher D. Henry Nevada Bureau of Mines and Geology, University of Nevada, Reno, Nevada, 89557, USA ABSTRACT Since ~30 Ma, western North America has been evolving from an Andean type mar- gin to a dextral transform boundary. Transform growth has been marked by retreat of magmatic arcs, gravitational collapse of orogenic highlands, and periodic inland steps of the San Andreas fault system. In the western Great Basin, a system of dextral faults, known as the Walker Lane (WL) in the north and eastern California shear zone (ECSZ) in the south, currently accommodates ~20% of the Pacific – North America dextral motion. In contrast to the continuous 1100-km-long San Andreas system, discontinuous dextral faults with relatively short lengths (<10-250 km) characterize the WL-ECSZ. Cumulative dextral displacement across the WL-ECSZ generally decreases northward from ≥60 km in southern and east-central California, to ~25 km in northwest Nevada, to negligible in northeast California. GPS geodetic strain rates average ~10 mm/yr across the WL-ECSZ in the western Great Basin but are much less in the eastern WL near Las Vegas (<2 mm/ yr) and along the northwest terminus in northeast California (~2.5 mm/yr). The spatial and temporal evolution of the WL-ECSZ is closely linked to major plate boundary events along the San Andreas fault system. For example, the early Miocene elimination of microplates along the southern California coast, southward steps in the Rivera triple junction at 19-16 Ma and 13 Ma, and an increase in relative plate motions ~12 Ma collectively induced the first major episode of deformation in the WL-ECSZ, which began ~13 Ma along the N60°W-trending Las Vegas Valley shear zone.
    [Show full text]
  • Rockwell International Corporation 1049 Camino Dos Rios (P.O
    SC543.J6FR "Mads available under NASA sponsrislP in the interest of early and wide dis­ *ninatf of Earth Resources Survey Program information and without liaoility IDENTIFICATION AND INTERPRETATION OF jOr my ou mAOthereot." TECTONIC FEATURES FROM ERTS-1 IMAGERY Southwestern North America and The Red Sea Area may be purchased ftohu Oriinal photograPhY EROS D-aa Center Avenue 1thSioux ad Falls. OanOta So, 7 - ' ... +=,+. Monem Abdel-Gawad and Linda Tubbesing -l Science Center, Rockwell International Corporation 1049 Camino Dos Rios (P.O. Box 1085) Thousand Oaks, California 91360 U.S.A. N75-252 3 9 , (E75-10 2 9 1 ) IDENTIFICATION AND FROM INTERPRETATION OF TECTONIC FEATURES AMERICA ERTS-1 IMAGERY: SOUTHWESTERN NORTH Unclas THE RED SEA AREA Final Report, 30 May !AND1972 - 11 Feb. 1975 (Rockwell International G3/43 00291 _ May 5, 1975 , Type III Fihnal Report for Period: May 30, 1972 - February 11, 1975, . ­ Prepared for NASAIGODDARD SPACE FLIGHT CENTER Greenbelt, Maryland 20071 Pwdu. by NATIONAL TECHNICAL INFORMATION SERVICE US Dopa.rm.nt or Commerco Snrnfaield, VA. 22151 N O T I C E THIS DOCUMENT HAS BEEN REPRODUCED FROM THE BEST COPY FURNISHED US BY THE SPONSORING AGENCY. ALTHOUGH IT IS RECOGN.IZED THAT CER- TAIN PORTIONS ARE ILLEGIBLE, IT IS-BE'ING RE- LEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE. SC543.16FR IDENTIFICATION AND INTERPRETATION OF TECTONIC FEATURES FROM ERTS-1 IMAGERY Southwestern North America and The Red Sea Area Monem Abdel-Gawad and Linda Tubbesi'ng Science Center/Rockwell International Corporation 1049 Camino Dos Rios, P.O. Box 1085 Thousand Oaks, California 91360 U.S.A.
    [Show full text]
  • Long-Term Fault Slip Rates, Distributed Deformation Rates, and Forecast Of
    1 Long-term fault slip rates, distributed deformation rates, and forecast of seismicity 2 in the western United States from joint fitting of community geologic, geodetic, 3 and stress-direction datasets 4 Peter Bird 5 Department of Earth and Space Sciences 6 University of California 7 Los Angeles, CA 90095-1567 8 [email protected] 9 Second revision of 2009.07.08 for J. Geophys. Res. (Solid Earth) 10 ABSTRACT. The long-term-average velocity field of the western United States is computed 11 with a kinematic finite-element code. Community datasets include fault traces, geologic offset 12 rates, geodetic velocities, principal stress directions, and Euler poles. There is an irreducible 13 minimum amount of distributed permanent deformation, which accommodates 1/3 of Pacific- 14 North America relative motion in California. Much of this may be due to slip on faults not 15 included in the model. All datasets are fit at a common RMS level of 1.8 datum standard 16 deviations. Experiments with alternate weights, fault sets, and Euler poles define a suite of 17 acceptable community models. In pseudo-prospective tests, fault offset rates are compared to 18 126 additional published rates not used in the computation: 44% are consistent; another 48% 19 have discrepancies under 1 mm/a, and 8% have larger discrepancies. Updated models are then 20 computed. Novel predictions include: dextral slip at 2~3 mm/a in the Brothers fault zone, two 21 alternative solutions for the Mendocino triple junction, slower slip on some trains of the San 22 Andreas fault than in recent hazard models, and clockwise rotation of some domains in the 23 Eastern California shear zone.
    [Show full text]
  • Connecting Plate Boundary Processes to Earthquake Faults
    Connecting Plate Boundary Processes to Earthquake Faults using Geodetic and Topographic Imaging Andrea Donnellan(1), Ramón Arrowsmith(2), Yehuda Ben-Zion(3), John Rundle(4), Lisa Grant Ludwig(5), Margaret Glasscoe(1), Adnan Ansar(1), Joseph Green(1), Jay Parker(1), John Pearson(1), Cathleen Jones(1), Paul Lundgren(1), Stephen DeLong(6), Taimi Mulder(7), Eric De Jong(1), William Hammond(8), Klaus Reicherter(9), Ted Scambos(10) (1)Jet Propulsion Laboratory, California Institute of Technology, (2)Arizona State University, (3)University of Southern California, (4)University of California Davis, (5)University of California, Irvine, (6)US Geological Survey, (7)Pacific Geoscience Center, Natural Resources Canada, (8)University of Nevada, Reno, (9)RWTH Aachen University, (10)National Snow and Ice Data Center Large earthquakes cause billions of dollars in damage and extensive loss of life and property. Losses are escalating due to increasing urbanization near plate boundaries and aging buildings and infrastructure. Earthquakes occur when accumulated stress from plate tectonic motions exceeds the strength of faults within the Earth’s crust. Stress in the Earth’s crust and lithosphere cannot be measured directly, but stress conditions and fault properties can be inferred from seismology, measurement of surface deformation, and topography. Remote sensing from air or space provides measurements of transient and long-term crustal deformation, which are needed to improve our understanding of earthquake processes. While our main focus is on topographic imaging, geodetic imaging provides the necessary context of present-day crustal deformation. We advocate for continued GPS and InSAR crustal deformation measurements from the existing global geodetic network, the Plate Boundary Observatory, international Interferometric Synthetic Aperture Radar (InSAR) satellites, NASA’s airborne UAVSAR platform, and NASA/ISRO’s planned NISAR mission.
    [Show full text]
  • Analysis of Earthquake Data from the Greater Los Angeles Basin and Adjacent Offshore Area, Southern California
    1 Final Technical Report Submitted to the U.S. GEOLOGICAL SURVEY By the Seismological Laboratory CALIFORNIA INSTITUTE OF TECHNOLOGY Grant No.: Award No. 07HQGR0048 Name of Contractor: California Institute of Technology Principal Investigator: Dr. Egill Hauksson Caltech, Seismo Lab; MC 252-21 Pasadena, CA, 91125 Government Technical Officer: Elizabeth Lemersal External Research Support Manager Earthquake Hazards Program, USGS Title of Work: Analysis of Earthquake Data From the Greater Los Angeles Basin and Adjacent Offshore Area, Southern California Program Objective: I & III Effective Date of Contract: January 1, 2007 Expiration Date: December 31, 2007 Period Covered by report: 1 January 2007 – 31 December 2007 Amount of Contract: $61,000 Date: 15 March 2008 This work is sponsored by the U.S. Geological Survey under Contract Award No. 07HQGR0048. The views and conclusions contained in this document are those of the authors and should not be interpreted as necessary representing the official policies, either expressed or implied of the U.S. Government. 2 Analysis of Earthquake Data from the Greater Los Angeles Basin and Adjacent Offshore Area, Southern California U.S. Geological Survey Award No. 07HQGR0048 Element I & III Key words: Geophysics, seismology, seismotectonics Egill Hauksson Seismological Laboratory, California Institute of Technology, Pasadena, CA 91125 Tel.: 626-395 6954 Email: [email protected] FAX: 626-564 0715 ABSTRACT We synthesize and interpret local earthquake data recorded by the Caltech/USGS Southern California Seismographic Network (SCSN/CISN) in southern California. The goal is to use the existing regional seismic network data to: (1) refine the regional tectonic framework; (2) investigate the nature and configuration of active surficial and concealed faults; (3) determine spatial and temporal characteristics of regional seismicity; (4) determine the 3D seismic properties of the crust; and (5) delineate potential seismic source zones.
    [Show full text]
  • Rupture Process of the 2019 Ridgecrest, California Mw 6.4 Foreshock and Mw 7.1 Earthquake Constrained by Seismic and Geodetic Data, Bull
    Rupture process of the 2019 Ridgecrest, M M California w 6.4 Foreshock and w 7.1 Earthquake Constrained by Seismic and Geodetic Data Kang Wang*1,2, Douglas S. Dreger1,2, Elisa Tinti3,4, Roland Bürgmann1,2, and Taka’aki Taira2 ABSTRACT The 2019 Ridgecrest earthquake sequence culminated in the largest seismic event in California M since the 1999 w 7.1 Hector Mine earthquake. Here, we combine geodetic and seismic data M M to study the rupture process of both the 4 July w 6.4 foreshock and the 6 July w 7.1 main- M shock. The results show that the w 6.4 foreshock rupture started on a northwest-striking right-lateral fault, and then continued on a southwest-striking fault with mainly left-lateral M slip. Although most moment release during the w 6.4 foreshock was along the southwest- striking fault, slip on the northwest-striking fault seems to have played a more important role M ∼ M in triggering the w 7.1 mainshock that happened 34 hr later. Rupture of the w 7.1 main- shock was characterized by dominantly right-lateral slip on a series of overall northwest- striking fault strands, including the one that had already been activated during the nucleation M ∼ of the w 6.4 foreshock. The maximum slip of the 2019 Ridgecrest earthquake was 5m, – M located at a depth range of 3 8kmnearthe w 7.1 epicenter, corresponding to a shallow slip deficit of ∼ 20%–30%. Both the foreshock and mainshock had a relatively low-rupture veloc- ity of ∼ 2km= s, which is possibly related to the geometric complexity and immaturity of the eastern California shear zone faults.
    [Show full text]
  • Internal Deformation of the Southern Sierra Nevada Microplate Associated with Foundering Lower Lithosphere, California
    Geodynamics and Consequences of Lithospheric Removal in the Sierra Nevada, California themed issue Internal deformation of the southern Sierra Nevada microplate associated with foundering lower lithosphere, California Jeffrey Unruh1, Egill Hauksson2, and Craig H. Jones3 1Lettis Consultants International, Inc., 1981 North Broadway, Suite 330, Walnut Creek, California 94596, USA 2Seismological Laboratory, California Institute of Technology, Pasadena, California 91125, USA 3Department of Geological Sciences and CIRES (Cooperative Institute for Research in Environmental Sciences), CB 399, University of Colorado Boulder, Boulder, Colorado 80309-0399, USA ABSTRACT here represents westward encroachment of Sierra Nevada east of the Isabella anomaly. The dextral shear into the microplate from the seismicity represents internal deformation of the Quaternary faulting and background eastern California shear zone and southern Sierra Nevada microplate, a large area of central seismicity in the southern Sierra Nevada Walker Lane belt. The strain rotation may and northern California that moves ~13 mm/yr microplate are concentrated east and south refl ect the presence of local stresses associated to the northwest relative to stable North Amer- of the Isabella anomaly, a high-velocity body with relaxation of subsidence in the vicinity ica as an independent and nominally rigid block in the upper mantle interpreted to be lower of the Isabella anomaly. Westward propaga- (Argus and Gordon, 1991, 2001). At the latitude Sierra lithosphere that is foundering into the tion of foundering lithosphere, with spatially of the Isabella anomaly, the majority of micro- astheno sphere. We analyzed seismicity in this associated patterns of upper crustal deforma- plate translation is accommodated by mixed region to evaluate patterns of upper crustal tion similar to those documented herein, can strike-slip and normal faulting in the southern deformation above and adjacent to the Isa- account for observed late Cenozoic time- and Walker Lane belt (Fig.
    [Show full text]
  • Introduction: Origin and Evolution of the Sierra Nevada and Walker Lane
    Origin and Evolution of the Sierra Nevada and Walker Lane themed issue Introduction: Origin and Evolution of the Sierra Nevada and Walker Lane Keith D. Putirka1,* and Cathy J. Busby2,* 1California State University, Fresno, Department of Earth and Environmental Sciences, 2345 E. San Ramon Ave., MS/MH24, Fresno, California 93720, USA 2Department of Earth Science, University of California, Santa Barbara, California 93106, USA BACKGROUND AND HISTORY Figure 1. A map showing an outline of the Sierra Nevada This Geosphere themed issue is an outgrowth and approximate boundaries of of our Penrose Conference: Origin and Uplift the Walker Lane belt. The out- of the Sierra Nevada, California, which was line of the Walker Lane (and held in Bridgeport, California, August 16–20, its southern extension into the 2010. The theme is here expanded to include Eastern California Shear Zone) the Walker Lane (Fig. 1), since a large number is modifi ed from Faulds et al. of our Penrose abstracts were oriented to that (2005) and Oldow and Cashman topic, and because that region is no less a part (2009); we draw the western Sierra of the Sierran story than the high peaks them- boundary to coincide with the Walker selves. A fundamental question for the confer- Sierra Nevada range front; the N evada Lane ence and themed issue is “How did the Sierra Walker Lane belt is then drawn Nevada form?” The question can mean many to include the region of the things to disparate disciplines. One might refer Basin and Range province where & to the age and origin of the rocks that form the basins and ranges trend more Sierra Nevada batholith, or instead to the time N–S, rather than NE–SW.
    [Show full text]
  • P Cell N Walkerlane
    STOP 7 John Wakabayashi, 1329 Sheridan Lane, Hayward, CA 94544, [email protected], http://www.tdl.com/~wako/ Soakies Grade Overlook Stop, Seneca Road, Lake Almanor Area At this stop we can view features related to Quaternary volcanic history, stream incision, and faulting in this area. The Basalt of Rock Creek (~1 Ma) is exposed in the roadcut above where you will park along the Seneca road (a section of road known as Soakies Grade). The basal baked zone is easily seen in the roadcut. This steep baked zone overlies a thin zone of colluvium, that, in turn, overlies Paleozoic basement; this represents a buttress unconformity of the base of the flow against the old canyon wall. This is typical of the terrace-like remnants of basalt that occur in the North Fork Feather River canyon. More extensive remnants generally have a large wedge of colluvium on top of them and have stream gravels at their base. After looking at this basalt we can walk toward the northeast a bit along the road to get a view toward the Lake Almanor basin. Lake Almanor is a reservoir that floods a fault-bounded basin along some strands of the Mohawk Valley fault zone (Fig. 7-1). At this point we are at the northern limit of what is generally defined as the Sierra Nevada, as deposits of Plio-Pleistocene volcanic rocks cover essentially all older rocks to the north (the southern part of the Modoc plateau to the north and northeast or southern Cascades to the northwest). 43 In spite of the difference in rock types exposed at the surface, faulting along the Frontal fault system continues northward across the 'transition', part of a fault system that has been termed the Tahoe- Medicine Lake trough (Page et al., 1993).
    [Show full text]
  • Modern Strain Localization in the Central Walker Lane, Western United States
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Trinity University Trinity University Digital Commons @ Trinity Geosciences Faculty Research Geosciences Department 2008 Modern Strain Localization in the Central Walker Lane, Western United States: Implications for the Evolution of Intraplate Deformation in Transtensional Settings Benjamin E. Surpless Trinity University, [email protected] Follow this and additional works at: https://digitalcommons.trinity.edu/geo_faculty Part of the Earth Sciences Commons Repository Citation Surpless, B.E. (2008) Modern strain localization in the central walker lane, western United States: Implications for future seismicity and plate boundary tectonics. Tectonophysics, 457(3-4), 239-253. doi:10.1016/j.tecto.2008.07.001 This Post-Print is brought to you for free and open access by the Geosciences Department at Digital Commons @ Trinity. It has been accepted for inclusion in Geosciences Faculty Research by an authorized administrator of Digital Commons @ Trinity. For more information, please contact [email protected]. 1 Modern strain localization in the central Walker Lane, western United States: Implications for the evolution of intraplate deformation in transtensional settings Benjamin Surpless Department of Geosciences, Trinity University, One Trinity Place, San Antonio, TX 78209, United States Keywords: Transtension , Walker Lane Lake Tahoe , Strain partitioning , North American – Pacific plate boundary *Tel: +1 210 999 7110; fax: +1 210 999 7090 E-mail address: [email protected] ABSTRACT Approximately 25% of the differential motion between the Pacific and North American plates occurs in the Walker Lane, a zone of dextral motion within the western margin of the Basin and Range province.
    [Show full text]
  • Fault Segmentation and Controls of Rupture Initiation and Termination
    DEPARTMENT OF THE INTERIOR U. S. GEOLOGICAL SURVEY PROCEEDINGS OF CONFERENCE XLV Fault Segmentation and Controls of Rupture Initiation and Termination Palm Springs, California Sponsored by U.S. GEOLOGICAL SURVEY NATIONAL EARTHQUAKE-HAZARDS REDUCTION PROGRAM Editors and Convenors David P. Schwartz Richard H. Sibson U.S. Geological Survey Department of Geological Sciences Menlo Park, California 94025 University of California Santa Barbara, California 93106 Organizing Committee John Boatwright, U.S. Geological Survey, Menlo Park, California Hiroo Kanamori, California Institute of Technology, Pasadena, California Chris H. Scholz, Lamont-Doherty Geological Observatory, Palisades, New York Open-File Report 89-315 This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards or with the North American Stratigraphic Code. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. 1989 TABLE OF CONTENTS Page Introduction and Acknowledgments i David P. Schwartz and Richard H. Sibson List of Participants v Geometric features of a fault zone related to the 1 nucleation and termination of an earthquake rupture Keitti Aki Segmentation and recent rupture history 10 of the Xianshuihe fault, southwestern China Clarence R. Alien, Luo Zhuoli, Qian Hong, Wen Xueze, Zhou Huawei, and Huang Weishi Mechanics of fault junctions 31 D J. Andrews The effect of fault interaction on the stability 47 of echelon strike-slip faults Atilla Ay din and Richard A. Schultz Effects of restraining stepovers on earthquake rupture 67 A. Aykut Barka and Katharine Kadinsky-Cade Slip distribution and oblique segments of the 80 San Andreas fault, California: observations and theory Roger Bilham and Geoffrey King Structural geology of the Ocotillo badlands 94 antidilational fault jog, southern California Norman N.
    [Show full text]
  • SSA 2016 Detailed Program Schedule
    • Meeting Program, 416 Program for 2016 SSA Annual Meeting Presenting author is indicated in bold. Wednesday, 20 April—Oral Sessions Time Tuscany 1/2 Tuscany 3/4 Tuscany 5/6 Tuscany 7/8 Tuscany A Advances in Seismotectonics Past and Multidisciplinary Induced Seismicity Noninvasive Beyond the Plate Future Seismic Studies of Session Chairs: Approaches to Boundary Moment Release: Earthquakes—Slow, Thomas Braun, Ivan Characterizing Session Chairs: Contributions Fast, and In Between: G. Wong, Justin Seismic Site Conveners: Will from Statistics and A Broad Range of Rubinstein, Thomas Conditions Levandowski, Geodesy Fault Behavior in Goebel, David Eaton, Session Chairs: Alan Christine Powell, and Session Chairs: Corné Space and Time Gail Atkinson, and Yong, Sheri Molnar, Oliver Boyd (see page Kreemer and Ilya Session Chair: Abhijit Honn Kao (see page and Aysegul Askan 449) Zaliapin (see page Ghosh (see page 462) 466) (see page 449) 458) 8:30 Site Response Damaged Crust and Invited: Assessing Invited: Universality Invited: am Implications Concentrations of the Sensitivity of of Slow Earthquakes Observations of Associated with North American Statistical Tests in the Very Low Numerous Hydraulic Common Methods Intraplate Seismic on Earthquake Frequency Band: Fracturing Induced used to Account for Vs Zones. Thomas, W. A., Catalogs. Daub, E. Summary of Regional Earthquake Profile Uncertainty. Powell, C. A. G., Trugman, D. T., Studies. Ide, S. Sequences in Cox, B. R., Teague, Johnson, P. A. Harrison County D. P. Ohio since 2013. Friberg, P. A., Brudzinski, M. R., Skoumal, R. J., Currie, B. S. 8:45 Blind-Test Case Roaming Invited: Earthquake Very Low Frequency Invited: Linking am Studies to Validate Midcontinental Forecasts based Earthquakes (VLFEs) Fossil Reefs with Non-Invasive Shear- Earthquakes: on Seismological, in Cascadia NOT Earthquakes: Wave Velocity Occurrence, Causes, Geological, and Coincident with Geologic Insight Profiling in Diverse and Hazards.
    [Show full text]