SSA 2016 Detailed Program Schedule

Total Page:16

File Type:pdf, Size:1020Kb

SSA 2016 Detailed Program Schedule • Meeting Program, 416 Program for 2016 SSA Annual Meeting Presenting author is indicated in bold. Wednesday, 20 April—Oral Sessions Time Tuscany 1/2 Tuscany 3/4 Tuscany 5/6 Tuscany 7/8 Tuscany A Advances in Seismotectonics Past and Multidisciplinary Induced Seismicity Noninvasive Beyond the Plate Future Seismic Studies of Session Chairs: Approaches to Boundary Moment Release: Earthquakes—Slow, Thomas Braun, Ivan Characterizing Session Chairs: Contributions Fast, and In Between: G. Wong, Justin Seismic Site Conveners: Will from Statistics and A Broad Range of Rubinstein, Thomas Conditions Levandowski, Geodesy Fault Behavior in Goebel, David Eaton, Session Chairs: Alan Christine Powell, and Session Chairs: Corné Space and Time Gail Atkinson, and Yong, Sheri Molnar, Oliver Boyd (see page Kreemer and Ilya Session Chair: Abhijit Honn Kao (see page and Aysegul Askan 449) Zaliapin (see page Ghosh (see page 462) 466) (see page 449) 458) 8:30 Site Response Damaged Crust and Invited: Assessing Invited: Universality Invited: am Implications Concentrations of the Sensitivity of of Slow Earthquakes Observations of Associated with North American Statistical Tests in the Very Low Numerous Hydraulic Common Methods Intraplate Seismic on Earthquake Frequency Band: Fracturing Induced used to Account for Vs Zones. Thomas, W. A., Catalogs. Daub, E. Summary of Regional Earthquake Profile Uncertainty. Powell, C. A. G., Trugman, D. T., Studies. Ide, S. Sequences in Cox, B. R., Teague, Johnson, P. A. Harrison County D. P. Ohio since 2013. Friberg, P. A., Brudzinski, M. R., Skoumal, R. J., Currie, B. S. 8:45 Blind-Test Case Roaming Invited: Earthquake Very Low Frequency Invited: Linking am Studies to Validate Midcontinental Forecasts based Earthquakes (VLFEs) Fossil Reefs with Non-Invasive Shear- Earthquakes: on Seismological, in Cascadia NOT Earthquakes: Wave Velocity Occurrence, Causes, Geological, and Coincident with Geologic Insight Profiling in Diverse and Hazards. Liu, M., Geodetic Information. Strong Tremor. to Where Induced Geologic Settings in Stein, S. Jackson, D. D. Ghosh, A., Seismicity occurs in Canada and Chile. Hutchison, A. Alberta. Schultz, Molnar, S., Ventura, R., Corlett, H., C. E., Boroschek, R., Haug, K., Kocon, K., Crow, H. MacCormack, K., Stern, V., Shipman, T. 416 Seismological Research Letters Volume 87, Number 2B March/April 2016 Wednesday, 20 April (continued) Time Tuscany 1/2 Tuscany 3/4 Tuscany 5/6 Tuscany 7/8 Tuscany A Noninvasive Seismotectonics Past and Future Slow, Fast, and In Induced Seismicity Approaches… Beyond the Plate Seismic Moment Between… Boundary Release… 9:00 Student: Bayesian North America’s On the Uncertainty Slow Active Intra- Natural Versus am Trans-Dimensional Midcontinent Rift: of the Seismic to plate Faults: the Anthropic Trigger Inversion of Surface- when Rift met LIP. Geodetic Moment Paleoseismology of of the Emilia 2012 Wave Dispersion Stein, S., Stein, C., Rate Ratio. Kreemer, the Rurrand Fault, Earthquakes. Pezzo, for Earthquake Site Kley, J., Keller, G. R., C., Zaliapin, I. Germany. Reicherter, G., Chiarabba, C., Response Estimation Wiens, D., Wysession, K. R., Grützner, C., De Gori, P., Lucente, in Northern British M., Aleqabi, G., Fischer, P. F. P. Columbia, Canada. Shen, W., Merino, Gosselin, J. M., M., Fredricksen, A., Cassidy, J. F., Dosso, S. Darbyshire, F., Jurdy, E., Brillon, C. D., Waite, G., Rose, W., Rooney, T., Moucha, R., Brown E. 9:15 Vs IMASW and Invited: Moho Invited: Complete Student: Cascadia Wastewater Disposal, am Vp-Depth Profiling, Temperature and Seismic Release of Seismogenic Zone Hydraulic Fracturing, NEHRP Site Compositional Tectonic Strain Earthquake Detection and Seismicity in Classifications, and Controls on and Earthquake and Location. Southern Kansas. Linear Shallow Lithospheric Bending Recurrence in the Morton, E. A., Bilek, Rubinstein, J. L., Amplification Strength in the Apennines (Italy). S. L., Rowe, C. A. Ellsworth, W. L. Functions: Western United States. D’Agostino, N. Geophysical Site Schutt, D. L., Lowry, Characterization of A. R., Buehler, J. S. Bay Area Seismic Monitoring Stations Following the M6.0 South Napa Earthquake. Turner, J. P., Brossy, C. C., O’Connell, D. R. H., Roughley, C. 9:30 Invited: Invited: Joint A Discussion of Fortnightly Tidal Stress Variations am Applications Inversion of Rayleigh the Earthquake Triggering of Low- Across Oklahoma of Refraction Wave Ellipticity and Risk at The Geysers frequency Earthquakes and Kansas, Natural Microtremor Done Phase Velocity across Geothermal Area, Constrains the Stress Earthquakes, Induced Right, and Pitfalls USArray. Lin, F., California, Based Budget of the Deep Seismicity, and of Microtremor Schmandt, B. on Strain Rates and San Andreas Fault. Their Links with Arrays Done Wrong. Seismic Moment van der Elst, N. J., Crustal and Upper Louie, J. N., Rates. Turcotte, Delorey, A. A., Shelly, Mantle Structure. Pullammanappallil, S. D. L., Hawkins, D. R., Johnson, P. A. Levandowski, W., A., Yikilmaz, M. McNamara, D. E. B., Kellogg, L. H., Rundle, J. B. 9:45– 10:45 Break am Seismological Research Letters Volume 87, Number 2B March/April 2016 417 Wednesday, 20 April (continued) Time Tuscany 1/2 Tuscany 3/4 Tuscany 5/6 Tuscany 7/8 Tuscany A Noninvasive Seismotectonics Past and Future Slow, Fast, and In Induced Seismicity Approaches… Beyond the Plate Seismic Moment Between… Boundary Release… 10:45 Inversion of Velocity Invited: GPS Comparison of Invited: Prospecting Wastewater Disposal am Structures Based Imaging of the Geodetic and for Stress Changes and Earthquake on the Empirical North American Geological/ Driven by SSEs Swarm Activity Relationship of Intracontinental Seismological Moment with the HOBITSS at the Southern Earthquake and Strain Rate Field. Rates for the Wasatch Ocean-bottom End of the Central Microtremor Kreemer, C., Front Region, Utah. Array, Offshore New Valley, California. Horizontal-to- Hammond, W. C., Pechmann, J. C., Zealand. Fry, B., Goebel, T. H. W., Vertical Ratios. Blewitt, G. Zeng, Y., Thomas, P. Henrys, S., Wallace, Hosseini, S. M., Mori, Y., Kawase, A., Petersen, M. D. L., Mochizuki, K., Cappa, F., Hauksson, H., Matsushima, S., Lebedev, S., Sheehan, E., Ampuero, J. P., Nagashima, F. A., Schwartz, S., Aminzadeh, F., Webb, S. Saleeby, J. B. 11:00 Directional Crustal Model of the Long-Term and Student: Student: am Dependent H/V St. Lawrence Corridor Short-Term Understanding the Mechanism Spectral Ratio of from Charlevoix to Seismicity Rates in Size and Impact of Intraplate Microtremors at Montreal. Bent, A. L., Cascadia: Gutenberg- of Non-Volcanic Earthquakes and Onahama, Japan. Kao, H. Richter instead Tremors in Parkfield: Anthropogenic Matsushima, of Characteristic. Deriving Tremor Causes in USA. S., Kosaka, H., Brocher, T. M. Energy Magnitudes Hagen, M. H. Kobayashi, T., Kawase, and Exploring H. their Statistics. Staudenmaier, N., Edwards, B., Tormann, T., Wiemer, S. 11:15 Source and Stability A Map of Faults and Earthquakes in the UAVSAR Observation Seismic Hazard am of Ambient Noise Lineaments of the Clockwork Earth. of Multi-Temporal Assessment for Gas in the Mississippi St. Lawrence Rift Rundle, J. B., Multi-Fault Behavior Extraction Induced Embayment, Central System. Lamontagne, Donnellan, A., Grant Associated with the Seismicity in the United States. M., Nadeau, L., Ludwig, L., Turcotte, 2010 M7.2 El Mayor— Context of Building Langston, C. A., Brouillette, P., Bédard, D. L. Cucapah Earthquake. Codes. Kraaijpoel, Shahjouei, A. M. P. Donnellan, A., D. A., Steenbergen, Parker, J. W. R. D. J. M. 11:30 Invited: Shallow Location of CEUS Student: Supercycles Student: A Ground Motion am 3D Velocity Imaging vs. Gulf Coast Q and Synchronization Detailed Spatio- Prediction Equation based on Seismic Boundary from Signatures in Synthetic Temporal Evolution for Induced Noise. Pilz, M. USArray Data. Seismic Sequences. of Aftershocks Earthquakes in Cramer, C. H., Al Milner, K. R., Jordan, and Repeating Oklahoma. Yenier, Noman, M. N. T. H. Earthquakes E., Atkinson, G. M., Following the 2012 Sumy, D. F. Mw7.6 Nicoya Earthquake. Yao, D., Meng, X., Peng, Z., Newman, A. V., Walter, J. I., Schwartz, S. Y., Protti, M. 418 Seismological Research Letters Volume 87, Number 2B March/April 2016 Wednesday, 20 April (continued) Time Tuscany 1/2 Tuscany 3/4 Tuscany 5/6 Tuscany 7/8 Tuscany A Noninvasive Seismotectonics Past and Future Slow, Fast, and In Induced Seismicity Approaches… Beyond the Plate Seismic Moment Between… Boundary Release… 11:45 Non-Linear Seismic An Issue with the Student: How Student: Detection Invited: am Site Characterization National Seismic Detailed Should and Location of Geomechanical Using Noninvasive Hazard Maps: Where Earthquake Hazard Earthquakes Along Analysis of Fluid Geophysics and Is the Boundary That Maps Be: Comparing the West Coast of Injection and Seismic Strong-Motion Separates the Use the Performance Chile: Examining Fault Slip for the Recordings. Wang, Z., of the Western U.S. of Japan’s Maps Seismicity in the 2010 M4.8 Timpson, Woolery, E. W., Rong, and CEUS Ground to Uniform, M 8.8 Maule Rupture Texas, Earthquake. M. Motion Prediction Randomized, and Zone. Diniakos, R. Fan, Z., Eichhubl, P., Models? Wong, I. G. Smoothed Maps. S., Bilek, S. L., Rowe, Gale, J. F. W. Brooks, E. M., Stein, C., Dragonov, D. S., Spencer, B. D., Liu, M. 12:00 –2:15 Annual Luncheon pm Earthquake Ground Motion Theoretical and Near Field and Induced Seismicity Early Warning: Spatial Variability: Methodological Directivity (continued) Network Design, Models, Methods and Innovations for
Recommended publications
  • Tectonic Influences on the Spatial and Temporal Evolution of the Walker Lane: an Incipient Transform Fault Along the Evolving Pacific – North American Plate Boundary
    Arizona Geological Society Digest 22 2008 Tectonic influences on the spatial and temporal evolution of the Walker Lane: An incipient transform fault along the evolving Pacific – North American plate boundary James E. Faulds and Christopher D. Henry Nevada Bureau of Mines and Geology, University of Nevada, Reno, Nevada, 89557, USA ABSTRACT Since ~30 Ma, western North America has been evolving from an Andean type mar- gin to a dextral transform boundary. Transform growth has been marked by retreat of magmatic arcs, gravitational collapse of orogenic highlands, and periodic inland steps of the San Andreas fault system. In the western Great Basin, a system of dextral faults, known as the Walker Lane (WL) in the north and eastern California shear zone (ECSZ) in the south, currently accommodates ~20% of the Pacific – North America dextral motion. In contrast to the continuous 1100-km-long San Andreas system, discontinuous dextral faults with relatively short lengths (<10-250 km) characterize the WL-ECSZ. Cumulative dextral displacement across the WL-ECSZ generally decreases northward from ≥60 km in southern and east-central California, to ~25 km in northwest Nevada, to negligible in northeast California. GPS geodetic strain rates average ~10 mm/yr across the WL-ECSZ in the western Great Basin but are much less in the eastern WL near Las Vegas (<2 mm/ yr) and along the northwest terminus in northeast California (~2.5 mm/yr). The spatial and temporal evolution of the WL-ECSZ is closely linked to major plate boundary events along the San Andreas fault system. For example, the early Miocene elimination of microplates along the southern California coast, southward steps in the Rivera triple junction at 19-16 Ma and 13 Ma, and an increase in relative plate motions ~12 Ma collectively induced the first major episode of deformation in the WL-ECSZ, which began ~13 Ma along the N60°W-trending Las Vegas Valley shear zone.
    [Show full text]
  • Rockwell International Corporation 1049 Camino Dos Rios (P.O
    SC543.J6FR "Mads available under NASA sponsrislP in the interest of early and wide dis­ *ninatf of Earth Resources Survey Program information and without liaoility IDENTIFICATION AND INTERPRETATION OF jOr my ou mAOthereot." TECTONIC FEATURES FROM ERTS-1 IMAGERY Southwestern North America and The Red Sea Area may be purchased ftohu Oriinal photograPhY EROS D-aa Center Avenue 1thSioux ad Falls. OanOta So, 7 - ' ... +=,+. Monem Abdel-Gawad and Linda Tubbesing -l Science Center, Rockwell International Corporation 1049 Camino Dos Rios (P.O. Box 1085) Thousand Oaks, California 91360 U.S.A. N75-252 3 9 , (E75-10 2 9 1 ) IDENTIFICATION AND FROM INTERPRETATION OF TECTONIC FEATURES AMERICA ERTS-1 IMAGERY: SOUTHWESTERN NORTH Unclas THE RED SEA AREA Final Report, 30 May !AND1972 - 11 Feb. 1975 (Rockwell International G3/43 00291 _ May 5, 1975 , Type III Fihnal Report for Period: May 30, 1972 - February 11, 1975, . ­ Prepared for NASAIGODDARD SPACE FLIGHT CENTER Greenbelt, Maryland 20071 Pwdu. by NATIONAL TECHNICAL INFORMATION SERVICE US Dopa.rm.nt or Commerco Snrnfaield, VA. 22151 N O T I C E THIS DOCUMENT HAS BEEN REPRODUCED FROM THE BEST COPY FURNISHED US BY THE SPONSORING AGENCY. ALTHOUGH IT IS RECOGN.IZED THAT CER- TAIN PORTIONS ARE ILLEGIBLE, IT IS-BE'ING RE- LEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE. SC543.16FR IDENTIFICATION AND INTERPRETATION OF TECTONIC FEATURES FROM ERTS-1 IMAGERY Southwestern North America and The Red Sea Area Monem Abdel-Gawad and Linda Tubbesi'ng Science Center/Rockwell International Corporation 1049 Camino Dos Rios, P.O. Box 1085 Thousand Oaks, California 91360 U.S.A.
    [Show full text]
  • Long-Term Fault Slip Rates, Distributed Deformation Rates, and Forecast Of
    1 Long-term fault slip rates, distributed deformation rates, and forecast of seismicity 2 in the western United States from joint fitting of community geologic, geodetic, 3 and stress-direction datasets 4 Peter Bird 5 Department of Earth and Space Sciences 6 University of California 7 Los Angeles, CA 90095-1567 8 [email protected] 9 Second revision of 2009.07.08 for J. Geophys. Res. (Solid Earth) 10 ABSTRACT. The long-term-average velocity field of the western United States is computed 11 with a kinematic finite-element code. Community datasets include fault traces, geologic offset 12 rates, geodetic velocities, principal stress directions, and Euler poles. There is an irreducible 13 minimum amount of distributed permanent deformation, which accommodates 1/3 of Pacific- 14 North America relative motion in California. Much of this may be due to slip on faults not 15 included in the model. All datasets are fit at a common RMS level of 1.8 datum standard 16 deviations. Experiments with alternate weights, fault sets, and Euler poles define a suite of 17 acceptable community models. In pseudo-prospective tests, fault offset rates are compared to 18 126 additional published rates not used in the computation: 44% are consistent; another 48% 19 have discrepancies under 1 mm/a, and 8% have larger discrepancies. Updated models are then 20 computed. Novel predictions include: dextral slip at 2~3 mm/a in the Brothers fault zone, two 21 alternative solutions for the Mendocino triple junction, slower slip on some trains of the San 22 Andreas fault than in recent hazard models, and clockwise rotation of some domains in the 23 Eastern California shear zone.
    [Show full text]
  • Connecting Plate Boundary Processes to Earthquake Faults
    Connecting Plate Boundary Processes to Earthquake Faults using Geodetic and Topographic Imaging Andrea Donnellan(1), Ramón Arrowsmith(2), Yehuda Ben-Zion(3), John Rundle(4), Lisa Grant Ludwig(5), Margaret Glasscoe(1), Adnan Ansar(1), Joseph Green(1), Jay Parker(1), John Pearson(1), Cathleen Jones(1), Paul Lundgren(1), Stephen DeLong(6), Taimi Mulder(7), Eric De Jong(1), William Hammond(8), Klaus Reicherter(9), Ted Scambos(10) (1)Jet Propulsion Laboratory, California Institute of Technology, (2)Arizona State University, (3)University of Southern California, (4)University of California Davis, (5)University of California, Irvine, (6)US Geological Survey, (7)Pacific Geoscience Center, Natural Resources Canada, (8)University of Nevada, Reno, (9)RWTH Aachen University, (10)National Snow and Ice Data Center Large earthquakes cause billions of dollars in damage and extensive loss of life and property. Losses are escalating due to increasing urbanization near plate boundaries and aging buildings and infrastructure. Earthquakes occur when accumulated stress from plate tectonic motions exceeds the strength of faults within the Earth’s crust. Stress in the Earth’s crust and lithosphere cannot be measured directly, but stress conditions and fault properties can be inferred from seismology, measurement of surface deformation, and topography. Remote sensing from air or space provides measurements of transient and long-term crustal deformation, which are needed to improve our understanding of earthquake processes. While our main focus is on topographic imaging, geodetic imaging provides the necessary context of present-day crustal deformation. We advocate for continued GPS and InSAR crustal deformation measurements from the existing global geodetic network, the Plate Boundary Observatory, international Interferometric Synthetic Aperture Radar (InSAR) satellites, NASA’s airborne UAVSAR platform, and NASA/ISRO’s planned NISAR mission.
    [Show full text]
  • Analysis of Earthquake Data from the Greater Los Angeles Basin and Adjacent Offshore Area, Southern California
    1 Final Technical Report Submitted to the U.S. GEOLOGICAL SURVEY By the Seismological Laboratory CALIFORNIA INSTITUTE OF TECHNOLOGY Grant No.: Award No. 07HQGR0048 Name of Contractor: California Institute of Technology Principal Investigator: Dr. Egill Hauksson Caltech, Seismo Lab; MC 252-21 Pasadena, CA, 91125 Government Technical Officer: Elizabeth Lemersal External Research Support Manager Earthquake Hazards Program, USGS Title of Work: Analysis of Earthquake Data From the Greater Los Angeles Basin and Adjacent Offshore Area, Southern California Program Objective: I & III Effective Date of Contract: January 1, 2007 Expiration Date: December 31, 2007 Period Covered by report: 1 January 2007 – 31 December 2007 Amount of Contract: $61,000 Date: 15 March 2008 This work is sponsored by the U.S. Geological Survey under Contract Award No. 07HQGR0048. The views and conclusions contained in this document are those of the authors and should not be interpreted as necessary representing the official policies, either expressed or implied of the U.S. Government. 2 Analysis of Earthquake Data from the Greater Los Angeles Basin and Adjacent Offshore Area, Southern California U.S. Geological Survey Award No. 07HQGR0048 Element I & III Key words: Geophysics, seismology, seismotectonics Egill Hauksson Seismological Laboratory, California Institute of Technology, Pasadena, CA 91125 Tel.: 626-395 6954 Email: [email protected] FAX: 626-564 0715 ABSTRACT We synthesize and interpret local earthquake data recorded by the Caltech/USGS Southern California Seismographic Network (SCSN/CISN) in southern California. The goal is to use the existing regional seismic network data to: (1) refine the regional tectonic framework; (2) investigate the nature and configuration of active surficial and concealed faults; (3) determine spatial and temporal characteristics of regional seismicity; (4) determine the 3D seismic properties of the crust; and (5) delineate potential seismic source zones.
    [Show full text]
  • Wasatch Fault
    WASATCH FAULT NORTHERN POI=ITION Raymond Lundgren WOODWARD· CLYDE ASSOCIATES George E.Hervert & B. A. Vallerga CONSULTING SOIL ENGINEERS AND GEOLOGISTS SAN FRANCISCO - OAKLAND - SAN JOSE OFFICES Wm.T.Black Lloyd S. Cluff Edward Margeson 2730 Adeline Street Keshavan Nair Oakland, Ca 94607 Lewis L.Oriard (415) 444-1256 Mahmut OtU5 C.J.VanTiI P. O. Box 24075 Oaklllnd, ea 94623 July 17, 1970 Project G-12069 Utah Geological and Mineralogical Survey 103 Utah Geological Survey Building University of Utah Salt Lake City, Utah 84112 Attention: Dr. William P. Hewitt Director Gentlemen: WASATCH FAULT - NORTHERN PORTION EARTHQUAKE FAULT INVESTIGATION AND EVALUATION The enclosed report and maps presents the results at our investigation and evaluation of the Wasatch fault from near Draper to Brigham City, Utah. The completion of this work marks another important step in Utah's forward-looking approach to minimizing the effects of earthquake and geologic hazards. We are proud to have been associated with the Utah Geological and Mineralogical Survey in completing this study, and we appreciate the opportunity of assisting you with such an inter­ esting and challenging problem. If we can be of further assistance, please do not hesitate to contact us. Very truly yours, {4lJ~ Lloyd S. Cluff Vice President and Chief Engineering Geologist LSC: jh Enclosure LOS ANGELES-ORANGE' SAN DIEGO' NEW YORK-CLIFTON' DENVER' KANSAS CITY-ST. LOUIS' PHILADELPHIA-WASHINGTON Affiliated with MATERIALS RESEARCH & DEVELOPMENT, INC. WASATCH FAULT NORTHERN PORTION EARTHBUAKE FAULT INVESTIGATION & EVALUATION av LLOYO S. CLUFF. GEORGE E. BROGAN & CARL E. GLASS PROPERll Of mAR GEOLOGICAL AND. MINfBAlOGICAL SURVEY A GUIDE·TO LAND USE PLANNING FOR UTAH GEOLOGICAL & MINERALOGICAL SURVEY WOODWARD- CLYDE & ASSOCIATES CONSULTING ENGINEERS AND GEOLOGISTS OAKLAND.
    [Show full text]
  • Rupture Process of the 2019 Ridgecrest, California Mw 6.4 Foreshock and Mw 7.1 Earthquake Constrained by Seismic and Geodetic Data, Bull
    Rupture process of the 2019 Ridgecrest, M M California w 6.4 Foreshock and w 7.1 Earthquake Constrained by Seismic and Geodetic Data Kang Wang*1,2, Douglas S. Dreger1,2, Elisa Tinti3,4, Roland Bürgmann1,2, and Taka’aki Taira2 ABSTRACT The 2019 Ridgecrest earthquake sequence culminated in the largest seismic event in California M since the 1999 w 7.1 Hector Mine earthquake. Here, we combine geodetic and seismic data M M to study the rupture process of both the 4 July w 6.4 foreshock and the 6 July w 7.1 main- M shock. The results show that the w 6.4 foreshock rupture started on a northwest-striking right-lateral fault, and then continued on a southwest-striking fault with mainly left-lateral M slip. Although most moment release during the w 6.4 foreshock was along the southwest- striking fault, slip on the northwest-striking fault seems to have played a more important role M ∼ M in triggering the w 7.1 mainshock that happened 34 hr later. Rupture of the w 7.1 main- shock was characterized by dominantly right-lateral slip on a series of overall northwest- striking fault strands, including the one that had already been activated during the nucleation M ∼ of the w 6.4 foreshock. The maximum slip of the 2019 Ridgecrest earthquake was 5m, – M located at a depth range of 3 8kmnearthe w 7.1 epicenter, corresponding to a shallow slip deficit of ∼ 20%–30%. Both the foreshock and mainshock had a relatively low-rupture veloc- ity of ∼ 2km= s, which is possibly related to the geometric complexity and immaturity of the eastern California shear zone faults.
    [Show full text]
  • Fault-Rupture Hazard Zones in California
    SPECIAL PUBLICATION 42 Interim Revision 2007 FAULT-RUPTURE HAZARD ZONES IN CALIFORNIA Alquist-Priolo Earthquake Fault Zoning Act 1 with Index to Earthquake Fault Zones Maps 1 Name changed from Special Studies Zones January 1, 1994 DEPARTMENT OF CONSERVATION California Geological Survey STATE OF CALIFORNIA ARNOLD SCHWARZENEGGER GOVERNOR THE RESOURCES AGENCY DEPARTMENT OF CONSERVATION MIKE CHRISMAN BRIDGETT LUTHER SECRETARY FOR RESOURCES DIRECTOR CALIFORNIA GEOLOGICAL SURVEY JOHN G. PARRISH, PH.D. STATE GEOLOGIST SPECIAL PUBLICATION 42 FAULT-RUPTURE HAZARD ZONES IN CALIFORNIA Alquist-Priolo Earthquake Fault Zoning Act With Index to Earthquake Fault Zones Maps by WILLIAM A. BRYANT and EARL W. HART Geologists Interim Revision 2007 California Department of Conservation California Geological Survey 801 K Street, MS 12-31 Sacramento, California 95814 PREFACE The purpose of the Alquist-Priolo Earthquake Fault Zoning Act is to regulate development near active faults so as to mitigate the hazard of surface fault rupture. This report summarizes the various responsibilities under the Act and details the actions taken by the State Geologist and his staff to implement the Act. This is the eleventh revision of Special Publication 42, which was first issued in December 1973 as an “Index to Maps of Special Studies Zones.” A text was added in 1975 and subsequent revisions were made in 1976, 1977, 1980, 1985, 1988, 1990, 1992, 1994, and 1997. The 2007 revision is an interim version, available in electronic format only, that has been updated to reflect changes in the index map and listing of additional affected cities. In response to requests from various users of Alquist-Priolo maps and reports, several digital products are now available, including digital raster graphic (pdf) and Geographic Information System (GIS) files of the Earthquake Fault Zones maps, and digital files of Fault Evaluation Reports and site reports submitted to the California Geological Survey in compliance with the Alquist-Priolo Act (see Appendix E).
    [Show full text]
  • Internal Deformation of the Southern Sierra Nevada Microplate Associated with Foundering Lower Lithosphere, California
    Geodynamics and Consequences of Lithospheric Removal in the Sierra Nevada, California themed issue Internal deformation of the southern Sierra Nevada microplate associated with foundering lower lithosphere, California Jeffrey Unruh1, Egill Hauksson2, and Craig H. Jones3 1Lettis Consultants International, Inc., 1981 North Broadway, Suite 330, Walnut Creek, California 94596, USA 2Seismological Laboratory, California Institute of Technology, Pasadena, California 91125, USA 3Department of Geological Sciences and CIRES (Cooperative Institute for Research in Environmental Sciences), CB 399, University of Colorado Boulder, Boulder, Colorado 80309-0399, USA ABSTRACT here represents westward encroachment of Sierra Nevada east of the Isabella anomaly. The dextral shear into the microplate from the seismicity represents internal deformation of the Quaternary faulting and background eastern California shear zone and southern Sierra Nevada microplate, a large area of central seismicity in the southern Sierra Nevada Walker Lane belt. The strain rotation may and northern California that moves ~13 mm/yr microplate are concentrated east and south refl ect the presence of local stresses associated to the northwest relative to stable North Amer- of the Isabella anomaly, a high-velocity body with relaxation of subsidence in the vicinity ica as an independent and nominally rigid block in the upper mantle interpreted to be lower of the Isabella anomaly. Westward propaga- (Argus and Gordon, 1991, 2001). At the latitude Sierra lithosphere that is foundering into the tion of foundering lithosphere, with spatially of the Isabella anomaly, the majority of micro- astheno sphere. We analyzed seismicity in this associated patterns of upper crustal deforma- plate translation is accommodated by mixed region to evaluate patterns of upper crustal tion similar to those documented herein, can strike-slip and normal faulting in the southern deformation above and adjacent to the Isa- account for observed late Cenozoic time- and Walker Lane belt (Fig.
    [Show full text]
  • Seismic Imaging of a Portion of the West Chabot Fault At
    SEISMIC IMAGING OF A PORTION OF THE WEST CHABOT FAULT AT CALIFORNIA STATE UNIVERSITY, EAST BAY __________________ A University Thesis Presented to the Faculty Of California State University, East Bay __________________ In Partial Fulfillment of the Requirements for the Degree Master of Science in Geology __________________ By Adrian Thomas McEvilly December 2018 ABSTRACT Located along the Pacific-North American plate boundary, the San Francisco Bay Area is home to more than seven million people and no fewer than a dozen active faults. As documented in the United States Geological Survey (USGS) publication: Earthquake Outlook for the San Francisco Bay Region 2014–2043, the Hayward, West Napa, Greenville, Calaveras, and several other faults of the San Andreas Fault system have all produced earthquakes of magnitude 6.0 or greater in the past 150 years, and the occurrence of lower magnitude (<M6.0) earthquakes is not uncommon on these faults as well as the many other faults within the region. The San Francisco Bay region is statistically likely (72%) to produce one or more M6.7 or greater earthquakes before 2043, with the Hayward Fault as the most statistically likely (33%) to produce such an event. Earthquakes are commonly classified by their moment magnitude, a metric that accounts for the area of fault rupture, the average slip distance along the fault, and the force required to initiate the temblor. However, moment magnitude does not consider the qualities of the earth materials through which the rupture occurs, or the depth of the earthquake. While moment magnitude describes the size of the earthquake, strong shaking is a function of the earthquake’s source, the path the earthquake travels, and the site conditions.
    [Show full text]
  • Introduction: Origin and Evolution of the Sierra Nevada and Walker Lane
    Origin and Evolution of the Sierra Nevada and Walker Lane themed issue Introduction: Origin and Evolution of the Sierra Nevada and Walker Lane Keith D. Putirka1,* and Cathy J. Busby2,* 1California State University, Fresno, Department of Earth and Environmental Sciences, 2345 E. San Ramon Ave., MS/MH24, Fresno, California 93720, USA 2Department of Earth Science, University of California, Santa Barbara, California 93106, USA BACKGROUND AND HISTORY Figure 1. A map showing an outline of the Sierra Nevada This Geosphere themed issue is an outgrowth and approximate boundaries of of our Penrose Conference: Origin and Uplift the Walker Lane belt. The out- of the Sierra Nevada, California, which was line of the Walker Lane (and held in Bridgeport, California, August 16–20, its southern extension into the 2010. The theme is here expanded to include Eastern California Shear Zone) the Walker Lane (Fig. 1), since a large number is modifi ed from Faulds et al. of our Penrose abstracts were oriented to that (2005) and Oldow and Cashman topic, and because that region is no less a part (2009); we draw the western Sierra of the Sierran story than the high peaks them- boundary to coincide with the Walker selves. A fundamental question for the confer- Sierra Nevada range front; the N evada Lane ence and themed issue is “How did the Sierra Walker Lane belt is then drawn Nevada form?” The question can mean many to include the region of the things to disparate disciplines. One might refer Basin and Range province where & to the age and origin of the rocks that form the basins and ranges trend more Sierra Nevada batholith, or instead to the time N–S, rather than NE–SW.
    [Show full text]
  • P Cell N Walkerlane
    STOP 7 John Wakabayashi, 1329 Sheridan Lane, Hayward, CA 94544, [email protected], http://www.tdl.com/~wako/ Soakies Grade Overlook Stop, Seneca Road, Lake Almanor Area At this stop we can view features related to Quaternary volcanic history, stream incision, and faulting in this area. The Basalt of Rock Creek (~1 Ma) is exposed in the roadcut above where you will park along the Seneca road (a section of road known as Soakies Grade). The basal baked zone is easily seen in the roadcut. This steep baked zone overlies a thin zone of colluvium, that, in turn, overlies Paleozoic basement; this represents a buttress unconformity of the base of the flow against the old canyon wall. This is typical of the terrace-like remnants of basalt that occur in the North Fork Feather River canyon. More extensive remnants generally have a large wedge of colluvium on top of them and have stream gravels at their base. After looking at this basalt we can walk toward the northeast a bit along the road to get a view toward the Lake Almanor basin. Lake Almanor is a reservoir that floods a fault-bounded basin along some strands of the Mohawk Valley fault zone (Fig. 7-1). At this point we are at the northern limit of what is generally defined as the Sierra Nevada, as deposits of Plio-Pleistocene volcanic rocks cover essentially all older rocks to the north (the southern part of the Modoc plateau to the north and northeast or southern Cascades to the northwest). 43 In spite of the difference in rock types exposed at the surface, faulting along the Frontal fault system continues northward across the 'transition', part of a fault system that has been termed the Tahoe- Medicine Lake trough (Page et al., 1993).
    [Show full text]