Estimates of the Neogene to Modern Regional Strain for Northern Walker Lane, Basin and Range Province, Usa

Total Page:16

File Type:pdf, Size:1020Kb

Estimates of the Neogene to Modern Regional Strain for Northern Walker Lane, Basin and Range Province, Usa ESTIMATES OF THE NEOGENE TO MODERN REGIONAL STRAIN FOR NORTHERN WALKER LANE, BASIN AND RANGE PROVINCE, USA A Thesis Presented for the Master of Science Degree The University of Memphis Norman Richard Mannikko August 1998 ABSTRACT Northern Walker Lane is an intracontinental area of complex faulting. It is comprised of northwest-trending right-lateral strike-slip faults, northeast-trending left-lateral strike-slip faults, and north-trending normal faults. Regional strain causes the motion across active faults in the upper crust. The displacement of the rocks adjacent to these faults is the structural relief. The regional strain, therefore, can be estimated by examining the structural relief and topography assuming that they are a consequence of motion across active faults. The tool used to forward model the development of structural relief is a 3-dimensional boundary element program. An orthogonal far field strain, represented as a displacement gradient tensor, is imposed on a homogeneous elastic half-space with a series of dislocation elements. The relative displacement of these elements give the sense of slip along each fault. A horizontal inspection plane is placed at zero elevation to represent the earths surface. The boundary element algorithm explicitly accounts for the interaction of the faults and permits calculation of the vertical displacement of the inspection plane. This modeled structural relief can be used to discriminate between regional strain orientations. Volume strain and fault slip motion is also used to discriminate between models. The modeled e1 orientations with characteristics approximating northern Walker Lane are E-W through N70˚W. The modeled e1 orientations of N70˚W through E-W show remarkable similarities to the structural relief and topographic features of the northern Walker Lane. The modeled volumetric strain show areas of positive volume strain (locations susceptible to volcanic activity) which correlate with the volcanic activity with few discrepancies. The modeled fault offsets are in agreement with their corresponding faults in northern Walker Lane. 1. INTRODUCTION Northern Walker Lane is an intracontinental area of active deformation over 250 km east of the Pacific-North American plate margin (figure 1). The focus of this research is to estimate the Neogene to modern regional strain for an area of complex faulting within northern Walker Lane. Plate tectonic theory has provided a means to derive kinematics of plate margins, but analysis is limited when working on intracontinental deformation because, by definition, plates are rigid and do not deform. Nevertheless, knowledge of the relative poles of rotation between two plates allows us to derive components of the deformation field in a diffusely deforming zone between two plates (e.g., Jackson and Mackenzie, 1988). Other methods to derive the strain field include the use of high precision surveying (e.g., global positioning satellite system [GPS]) and various geologic markers (e.g., faults, dikes, etc.). The former is limited to time-scales that may be more representative of interseismic deformation and in response to the activity of perhaps a limited number of faults in any particular region. In this case, these observations may not represent the long-term average (~105 - 106 years). The use of geological markers may be limited by the local setting (e.g., influenced by local anomalies in the regional stress field) or, in a practical sense, by the extensive amount of data needed to determine the regional stress field. In this thesis, I present a relatively new method of estimating the regional and long-term (~105 - 106 years) average strain field. If we make the assumption that the structural relief and topography is directly influenced by the motion across active faults, then the structural relief and topography reflects the regional strain. Therefore, we can estimate the regional strain by rigorously looking at the structural relief and topography of a faulted region such as northern Walker Lane. The method I use to make this estimate is with a three-dimensional boundary element model. The numerical model can help distinguish orientations of regional strain by comparing three of the modeled structural characteristics to the actual structural characteristics. One is by comparing the deformation of an originally horizontal surface displacement field to the local topography and structural relief; the second is by comparing modeled fault slip directions and rates to what is observed in the field; and thirdly, the volumetric strains can be compared to areas of volcanic activity. The results obtained here may be useful in two respects. First, they allow us to test the plate tectonic predictions and thereby evaluate the interactions among plates. Second, the boundary element model provides a means of determining the regional strain and provides quantitative estimates about fault slip-rates, which are useful in seismic hazard analysis. Study area The study area is located near the northern extent of Walker Lane (figure 1). The Walker Lane Belt is described by Stewart (1980) as being a fundamental structural unit whose topography contrasts the typical north-northeast-trending ranges of the Basin and Range Province and the north-northwest-trending ranges of the Sierra Nevada. The belt is a diffuse shear zone of comparatively subtle topography and complex structural faults located in western Nevada and parts of California. This northwest trending zone is about 700 km long and 100-300 km wide. The focus of this research is in the area of Reno, Nevada and vicinity and part of California extending 160 km x 120 km (figure 2). The study area runs from the Eastern extent of the Sierra Nevada block of Honey Valley south to Lake Tahoe and extends east to the Walker River and Mason Valley then north to Lake Winnemucca. Geology The geology of the study area is dominated (~ 90%) by Tertiary volcanic rocks and Quaternary deposits (Bonham, 1969). The major portion of Tertiary rocks are volcanic flows, breccias, and water-lain tuff, the remainder are intrusive and non-marine sediments. The Quaternary sediments include glacial deposits, landslide debris, and fluvial and lacustrian deposits. The remaining approximately 10% of surface area is pre-Tertiary (Bonham, 1969). Most of the pre-Tertiary rocks are Mesozoic-age granitoid intrusions. The intrusions are of stock dimensions and intrude questionable Permian to Jurrasic-age metamorphic volcanic and sedimentary rocks. The Mesozoic intrusive rocks that crop out in the area consist of granitoid plutonic rocks. The metavolcanic rocks are locally interbedded with marine sedimentary rocks. Therefore, the volcanic rocks must have been, at least in part, laid down in a marine environment (Bonham, 1969). Physiography Northern Walker Lane belt is characterized by mountain ranges with varying topography and trends and strike-slip faulting breaking up the structural grain. The mountain ranges have moderate to high relief separated by Quaternary alluvial basins that frequently contain playas (Stewart, 1980). The relief, although typically moderate, varies throughout the study area. High relief is associated with the eastern extent of the Sierra Nevada, which is approximately 1150 m above the adjacent valley to the east. The average relief away from the Sierra Nevada is about 600 m +/- 100 m . 2. LINKING NORTHERN WALKER LANE TO PLATE TECTONICS AND DEVELOPMENT OF CENOZOIC STRUCTURES We can use the relative poles of rotation between plates to derive components of the deformation field in a diffusely deforming zone. These velocity vector models can be tested based on regional strain determinations. The topography can be used to determine the best fit model of the regional strain. Therefore, it is prudent to investigate the tectonic history of northern Walker Lane to show that it may be part of a wide diffuse boundary between two plates and that the present topography seems to have developed since the Neogene, and therefore, reflects the motion across Cenozoic faults. Pre-Cenozoic Northern Walker Lane and western Nevada was a deep oceanic basin along the passive margin of North America during the early Paleozoic. This Atlantic-style margin changed to an Andean-style convergent margin in late Devonian time, and convergence continued through the Eocene. Two main thrust systems occurred in central Nevada as a result of this convergence. The Golconda and Roberts Mountain thrusts created a lower Triassic uplands in central Nevada that was a source of detritus to the east and west. Deposition from the highlands to the east had ceased by late Lower Jurassic. Northern Walker Lane was changing from a geosyncline to a subaerially exposed or near-shore marine environment. Moore (1960) pointed out in his discussion on the age of sequences of metabasalt and metarhyolite in Lyon, Douglas, and Ormsby Counties, that although the metavolcanic rocks are interbedded with marine sedimentary rocks and must be, at least in part, of submarine origin, the rarity of pillow lavas within the metavolcanics and the local association of the volcanic rocks with bedded gypsum indicates that a substantial part of the volcanics were formed in a subaerial or near-shore environment. This is also indicated by the occurrence of welded ash-flow tuffs within the volcanic section (Bonham, 1969). Subaerial exposure during the Mesozoic is also indicated by the decrease in abundance of marine sedimentary rocks and the scarcity of Cretaceous sedimentary rocks. Cenozoic The North American western margin makes a drastic change after its long duration of convergence to a new margin dominated by right-lateral strike-slip faulting during the Cenozoic. The convergent plate margin comes to a close along most of the California coast with the consumption of the Farallon plate and the East Pacific Rise. This tectonic change brought about structural changes throughout California. The magnetic anomaly patterns in the northeast Pacific combined with plate theory have been used to determine the tectonic setting and geometry of the western margin (Atwater, 1970; Severinghaus and Atwater, 1990).
Recommended publications
  • Washington Division of Geology and Earth Resources Open File Report
    l 122 EARTHQUAKES AND SEISMOLOGY - LEGAL ASPECTS OPEN FILE REPORT 92-2 EARTHQUAKES AND Ludwin, R. S.; Malone, S. D.; Crosson, R. EARTHQUAKES AND SEISMOLOGY - LEGAL S.; Qamar, A. I., 1991, Washington SEISMOLOGY - 1946 EVENT ASPECTS eanhquak:es, 1985. Clague, J. J., 1989, Research on eanh- Ludwin, R. S.; Qamar, A. I., 1991, Reeval­ Perkins, J. B.; Moy, Kenneth, 1989, Llabil­ quak:e-induced ground failures in south­ uation of the 19th century Washington ity of local government for earthquake western British Columbia [abstract). and Oregon eanhquake catalog using hazards and losses-A guide to the law Evans, S. G., 1989, The 1946 Mount Colo­ original accounts-The moderate sized and its impacts in the States of Califor­ nel Foster rock avalanches and auoci­ earthquake of May l, 1882 [abstract). nia, Alaska, Utah, and Washington; ated displacement wave, Vancouver Is­ Final repon. Maley, Richard, 1986, Strong motion accel­ land, British Columbia. erograph stations in Oregon and Wash­ Hasegawa, H. S.; Rogers, G. C., 1978, EARTHQUAKES AND ington (April 1986). Appendix C Quantification of the magnitude 7.3, SEISMOLOGY - NETWORKS Malone, S. D., 1991, The HAWK seismic British Columbia earthquake of June 23, AND CATALOGS data acquisition and analysis system 1946. [abstract). Berg, J. W., Jr.; Baker, C. D., 1963, Oregon Hodgson, E. A., 1946, British Columbia eanhquak:es, 1841 through 1958 [ab­ Milne, W. G., 1953, Seismological investi­ earthquake, June 23, 1946. gations in British Columbia (abstract). stract). Hodgson, J. H.; Milne, W. G., 1951, Direc­ Chan, W.W., 1988, Network and array anal­ Munro, P. S.; Halliday, R. J.; Shannon, W.
    [Show full text]
  • Slip Rate of the Western Garlock Fault, at Clark Wash, Near Lone Tree Canyon, Mojave Desert, California
    Slip rate of the western Garlock fault, at Clark Wash, near Lone Tree Canyon, Mojave Desert, California Sally F. McGill1†, Stephen G. Wells2, Sarah K. Fortner3*, Heidi Anderson Kuzma1**, John D. McGill4 1Department of Geological Sciences, California State University, San Bernardino, 5500 University Parkway, San Bernardino, California 92407-2397, USA 2Desert Research Institute, PO Box 60220, Reno, Nevada 89506-0220, USA 3Department of Geology and Geophysics, University of Wisconsin-Madison, 1215 W Dayton St., Madison, Wisconsin 53706, USA 4Department of Physics, California State University, San Bernardino, 5500 University Parkway, San Bernardino, California 92407-2397, USA *Now at School of Earth Sciences, The Ohio State University, 275 Mendenhall Laboratory, 125 S. Oval Mall, Columbus, Ohio 43210, USA **Now at Department of Civil and Environmental Engineering, 760 Davis Hall, University of California, Berkeley, California, 94720-1710, USA ABSTRACT than rates inferred from geodetic data. The ously published slip-rate estimates from a simi- high rate of motion on the western Garlock lar time period along the central section of the The precise tectonic role of the left-lateral fault is most consistent with a model in which fault (Clark and Lajoie, 1974; McGill and Sieh, Garlock fault in southern California has the western Garlock fault acts as a conju- 1993). This allows us to assess how the slip rate been controversial. Three proposed tectonic gate shear to the San Andreas fault. Other changes as a function of distance along strike. models yield signifi cantly different predic- mechanisms, involving extension north of the Our results also fi ll an important temporal niche tions for the slip rate, history, orientation, Garlock fault and block rotation at the east- between slip rates estimated at geodetic time and total bedrock offset as a function of dis- ern end of the fault may be relevant to the scales (past decade or two) and fault motions tance along strike.
    [Show full text]
  • Cambridge University Press 978-1-108-44568-9 — Active Faults of the World Robert Yeats Index More Information
    Cambridge University Press 978-1-108-44568-9 — Active Faults of the World Robert Yeats Index More Information Index Abancay Deflection, 201, 204–206, 223 Allmendinger, R. W., 206 Abant, Turkey, earthquake of 1957 Ms 7.0, 286 allochthonous terranes, 26 Abdrakhmatov, K. Y., 381, 383 Alpine fault, New Zealand, 482, 486, 489–490, 493 Abercrombie, R. E., 461, 464 Alps, 245, 249 Abers, G. A., 475–477 Alquist-Priolo Act, California, 75 Abidin, H. Z., 464 Altay Range, 384–387 Abiz, Iran, fault, 318 Alteriis, G., 251 Acambay graben, Mexico, 182 Altiplano Plateau, 190, 191, 200, 204, 205, 222 Acambay, Mexico, earthquake of 1912 Ms 6.7, 181 Altunel, E., 305, 322 Accra, Ghana, earthquake of 1939 M 6.4, 235 Altyn Tagh fault, 336, 355, 358, 360, 362, 364–366, accreted terrane, 3 378 Acocella, V., 234 Alvarado, P., 210, 214 active fault front, 408 Álvarez-Marrón, J. M., 219 Adamek, S., 170 Amaziahu, Dead Sea, fault, 297 Adams, J., 52, 66, 71–73, 87, 494 Ambraseys, N. N., 226, 229–231, 234, 259, 264, 275, Adria, 249, 250 277, 286, 288–290, 292, 296, 300, 301, 311, 321, Afar Triangle and triple junction, 226, 227, 231–233, 328, 334, 339, 341, 352, 353 237 Ammon, C. J., 464 Afghan (Helmand) block, 318 Amuri, New Zealand, earthquake of 1888 Mw 7–7.3, 486 Agadir, Morocco, earthquake of 1960 Ms 5.9, 243 Amurian Plate, 389, 399 Age of Enlightenment, 239 Anatolia Plate, 263, 268, 292, 293 Agua Blanca fault, Baja California, 107 Ancash, Peru, earthquake of 1946 M 6.3 to 6.9, 201 Aguilera, J., vii, 79, 138, 189 Ancón fault, Venezuela, 166 Airy, G.
    [Show full text]
  • Tectonic Influences on the Spatial and Temporal Evolution of the Walker Lane: an Incipient Transform Fault Along the Evolving Pacific – North American Plate Boundary
    Arizona Geological Society Digest 22 2008 Tectonic influences on the spatial and temporal evolution of the Walker Lane: An incipient transform fault along the evolving Pacific – North American plate boundary James E. Faulds and Christopher D. Henry Nevada Bureau of Mines and Geology, University of Nevada, Reno, Nevada, 89557, USA ABSTRACT Since ~30 Ma, western North America has been evolving from an Andean type mar- gin to a dextral transform boundary. Transform growth has been marked by retreat of magmatic arcs, gravitational collapse of orogenic highlands, and periodic inland steps of the San Andreas fault system. In the western Great Basin, a system of dextral faults, known as the Walker Lane (WL) in the north and eastern California shear zone (ECSZ) in the south, currently accommodates ~20% of the Pacific – North America dextral motion. In contrast to the continuous 1100-km-long San Andreas system, discontinuous dextral faults with relatively short lengths (<10-250 km) characterize the WL-ECSZ. Cumulative dextral displacement across the WL-ECSZ generally decreases northward from ≥60 km in southern and east-central California, to ~25 km in northwest Nevada, to negligible in northeast California. GPS geodetic strain rates average ~10 mm/yr across the WL-ECSZ in the western Great Basin but are much less in the eastern WL near Las Vegas (<2 mm/ yr) and along the northwest terminus in northeast California (~2.5 mm/yr). The spatial and temporal evolution of the WL-ECSZ is closely linked to major plate boundary events along the San Andreas fault system. For example, the early Miocene elimination of microplates along the southern California coast, southward steps in the Rivera triple junction at 19-16 Ma and 13 Ma, and an increase in relative plate motions ~12 Ma collectively induced the first major episode of deformation in the WL-ECSZ, which began ~13 Ma along the N60°W-trending Las Vegas Valley shear zone.
    [Show full text]
  • Rockwell International Corporation 1049 Camino Dos Rios (P.O
    SC543.J6FR "Mads available under NASA sponsrislP in the interest of early and wide dis­ *ninatf of Earth Resources Survey Program information and without liaoility IDENTIFICATION AND INTERPRETATION OF jOr my ou mAOthereot." TECTONIC FEATURES FROM ERTS-1 IMAGERY Southwestern North America and The Red Sea Area may be purchased ftohu Oriinal photograPhY EROS D-aa Center Avenue 1thSioux ad Falls. OanOta So, 7 - ' ... +=,+. Monem Abdel-Gawad and Linda Tubbesing -l Science Center, Rockwell International Corporation 1049 Camino Dos Rios (P.O. Box 1085) Thousand Oaks, California 91360 U.S.A. N75-252 3 9 , (E75-10 2 9 1 ) IDENTIFICATION AND FROM INTERPRETATION OF TECTONIC FEATURES AMERICA ERTS-1 IMAGERY: SOUTHWESTERN NORTH Unclas THE RED SEA AREA Final Report, 30 May !AND1972 - 11 Feb. 1975 (Rockwell International G3/43 00291 _ May 5, 1975 , Type III Fihnal Report for Period: May 30, 1972 - February 11, 1975, . ­ Prepared for NASAIGODDARD SPACE FLIGHT CENTER Greenbelt, Maryland 20071 Pwdu. by NATIONAL TECHNICAL INFORMATION SERVICE US Dopa.rm.nt or Commerco Snrnfaield, VA. 22151 N O T I C E THIS DOCUMENT HAS BEEN REPRODUCED FROM THE BEST COPY FURNISHED US BY THE SPONSORING AGENCY. ALTHOUGH IT IS RECOGN.IZED THAT CER- TAIN PORTIONS ARE ILLEGIBLE, IT IS-BE'ING RE- LEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE. SC543.16FR IDENTIFICATION AND INTERPRETATION OF TECTONIC FEATURES FROM ERTS-1 IMAGERY Southwestern North America and The Red Sea Area Monem Abdel-Gawad and Linda Tubbesi'ng Science Center/Rockwell International Corporation 1049 Camino Dos Rios, P.O. Box 1085 Thousand Oaks, California 91360 U.S.A.
    [Show full text]
  • Kinematics of the Northern Walker Lane: an Incipient Transform Fault Along the Pacific–North American Plate Boundary
    Kinematics of the northern Walker Lane: An incipient transform fault along the Paci®c±North American plate boundary James E. Faulds Christopher D. Henry Nevada Bureau of Mines and Geology, MS 178, University of Nevada, Reno, Nevada 89557, USA Nicholas H. Hinz ABSTRACT GEOLOGIC SETTING In the western Great Basin of North America, a system of dextral faults accommodates As western North America has evolved 15%±25% of the Paci®c±North American plate motion. The northern Walker Lane in from a convergent to a transform margin in northwest Nevada and northeast California occupies the northern terminus of this system. the past 30 m.y., the northern Walker Lane has This young evolving part of the plate boundary offers insight into how strike-slip fault undergone widespread volcanism and tecto- systems develop and may re¯ect the birth of a transform fault. A belt of overlapping, left- nism. Tertiary volcanic strata include 31±23 stepping dextral faults dominates the northern Walker Lane. Offset segments of a W- Ma ash-¯ow tuffs associated with the south- trending Oligocene paleovalley suggest ;20±30 km of cumulative dextral slip beginning ward-migrating ``ignimbrite ¯are up,'' 22±5 ca. 9±3 Ma. The inferred long-term slip rate of ;2±10 mm/yr is compatible with global Ma calc-alkaline intermediate-composition positioning system observations of the current strain ®eld. We interpret the left-stepping rocks related to the ancestral Cascade arc, and faults as macroscopic Riedel shears developing above a nascent lithospheric-scale trans- 13 Ma to present bimodal rocks linked to Ba- form fault.
    [Show full text]
  • Regional Tectonic Systems of the Pacific Northwest Delineated from ERTS-1 Imagery
    University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 1975 Regional tectonic systems of the Pacific Northwest delineated from ERTS-1 imagery Linda Kay Wackwitz The University of Montana Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Wackwitz, Linda Kay, "Regional tectonic systems of the Pacific Northwest delineated from ERTS-1 imagery" (1975). Graduate Student Theses, Dissertations, & Professional Papers. 7103. https://scholarworks.umt.edu/etd/7103 This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. APR 1 6 1984 (iETo;,pr<i a 1384 ' r' r: ^ REGIONAL TECTONIC SYSTEMS OF THE PACIFIC NORTHWEST DELINEATED FROM ERTS-1 IMAGERY by Linda K. Wackwitz B.A. Colby College, 1972 Presented in partial fulfillment of the requirements for the degree of Master of Arts UNIVERSITY OF MONTANA 1975 Approved by Chairman, Board of Examiners / ^ f - / - - -- Dean, Graduate School I ,y. Date UMI Number: EP37904 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.
    [Show full text]
  • Long-Term Fault Slip Rates, Distributed Deformation Rates, and Forecast Of
    1 Long-term fault slip rates, distributed deformation rates, and forecast of seismicity 2 in the western United States from joint fitting of community geologic, geodetic, 3 and stress-direction datasets 4 Peter Bird 5 Department of Earth and Space Sciences 6 University of California 7 Los Angeles, CA 90095-1567 8 [email protected] 9 Second revision of 2009.07.08 for J. Geophys. Res. (Solid Earth) 10 ABSTRACT. The long-term-average velocity field of the western United States is computed 11 with a kinematic finite-element code. Community datasets include fault traces, geologic offset 12 rates, geodetic velocities, principal stress directions, and Euler poles. There is an irreducible 13 minimum amount of distributed permanent deformation, which accommodates 1/3 of Pacific- 14 North America relative motion in California. Much of this may be due to slip on faults not 15 included in the model. All datasets are fit at a common RMS level of 1.8 datum standard 16 deviations. Experiments with alternate weights, fault sets, and Euler poles define a suite of 17 acceptable community models. In pseudo-prospective tests, fault offset rates are compared to 18 126 additional published rates not used in the computation: 44% are consistent; another 48% 19 have discrepancies under 1 mm/a, and 8% have larger discrepancies. Updated models are then 20 computed. Novel predictions include: dextral slip at 2~3 mm/a in the Brothers fault zone, two 21 alternative solutions for the Mendocino triple junction, slower slip on some trains of the San 22 Andreas fault than in recent hazard models, and clockwise rotation of some domains in the 23 Eastern California shear zone.
    [Show full text]
  • Connecting Plate Boundary Processes to Earthquake Faults
    Connecting Plate Boundary Processes to Earthquake Faults using Geodetic and Topographic Imaging Andrea Donnellan(1), Ramón Arrowsmith(2), Yehuda Ben-Zion(3), John Rundle(4), Lisa Grant Ludwig(5), Margaret Glasscoe(1), Adnan Ansar(1), Joseph Green(1), Jay Parker(1), John Pearson(1), Cathleen Jones(1), Paul Lundgren(1), Stephen DeLong(6), Taimi Mulder(7), Eric De Jong(1), William Hammond(8), Klaus Reicherter(9), Ted Scambos(10) (1)Jet Propulsion Laboratory, California Institute of Technology, (2)Arizona State University, (3)University of Southern California, (4)University of California Davis, (5)University of California, Irvine, (6)US Geological Survey, (7)Pacific Geoscience Center, Natural Resources Canada, (8)University of Nevada, Reno, (9)RWTH Aachen University, (10)National Snow and Ice Data Center Large earthquakes cause billions of dollars in damage and extensive loss of life and property. Losses are escalating due to increasing urbanization near plate boundaries and aging buildings and infrastructure. Earthquakes occur when accumulated stress from plate tectonic motions exceeds the strength of faults within the Earth’s crust. Stress in the Earth’s crust and lithosphere cannot be measured directly, but stress conditions and fault properties can be inferred from seismology, measurement of surface deformation, and topography. Remote sensing from air or space provides measurements of transient and long-term crustal deformation, which are needed to improve our understanding of earthquake processes. While our main focus is on topographic imaging, geodetic imaging provides the necessary context of present-day crustal deformation. We advocate for continued GPS and InSAR crustal deformation measurements from the existing global geodetic network, the Plate Boundary Observatory, international Interferometric Synthetic Aperture Radar (InSAR) satellites, NASA’s airborne UAVSAR platform, and NASA/ISRO’s planned NISAR mission.
    [Show full text]
  • This Report Is Preliminary and Has Not Bee Reviewed for Conformity with US
    UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY Northeast-trending subcrustal fault transects western Washington by Kenneth F. Fox, Jr.* Open-File Report 83-398 This report is preliminary and has not bee reviewed for conformity with U.S Geological Survey editorial standards and stratigraphic nomenclature. *U.S. Geological Survey 3^5 Middlefield Road Menlo Park, California 9^025 Page Table of Contents Tectonic setting......................................................... 1 Seisraicity............................................................... 4 Discussion............................................................... 4 References cited......................................................... 6 Figures Figure 1. Magnetic anomalies in the northeastern Pacific................ 8 Figure 2. Bathymetry at intersection of Columbia lineament and Blanco fracture zone................................................. 9 Figure 3. Plane vector representation of movement of Gorda plate........ 10 Figure 4. Reconstruction of Pacific-Juan de Fuca plate geometry 2 m.y. before present................................................ 11 Figure 5. Epicenters of historical earthquakes with intensity greater than V........................................................ 12 TECTONIC SETTING The north-trending magnetic anomalies of the Juan de Fuca plate are off­ set along two conspicuous northeast-trending lineaments (fig. 1), named the Columbia offset and the Destruction offset by Carlson (1981). The northeast­ ward projections of these lineaments intersect the continental area of western Washington, hence are of potential significance to the tectonics of the Pacific Northwest region. Pavoni (1966) suggested that these lineaments were left-lateral faults, and that the Columbia, 280 km in length, had 52 km of offset, and the Destruction, with a length of 370 km, had 75 km of offset. Based on Vine's (1968) correlation of the magnetic anomalies mapped in this area by Raff and Mason (1961), with the magnetic reversal time scale, Silver (1971b, p.
    [Show full text]
  • Analysis of Earthquake Data from the Greater Los Angeles Basin and Adjacent Offshore Area, Southern California
    1 Final Technical Report Submitted to the U.S. GEOLOGICAL SURVEY By the Seismological Laboratory CALIFORNIA INSTITUTE OF TECHNOLOGY Grant No.: Award No. 07HQGR0048 Name of Contractor: California Institute of Technology Principal Investigator: Dr. Egill Hauksson Caltech, Seismo Lab; MC 252-21 Pasadena, CA, 91125 Government Technical Officer: Elizabeth Lemersal External Research Support Manager Earthquake Hazards Program, USGS Title of Work: Analysis of Earthquake Data From the Greater Los Angeles Basin and Adjacent Offshore Area, Southern California Program Objective: I & III Effective Date of Contract: January 1, 2007 Expiration Date: December 31, 2007 Period Covered by report: 1 January 2007 – 31 December 2007 Amount of Contract: $61,000 Date: 15 March 2008 This work is sponsored by the U.S. Geological Survey under Contract Award No. 07HQGR0048. The views and conclusions contained in this document are those of the authors and should not be interpreted as necessary representing the official policies, either expressed or implied of the U.S. Government. 2 Analysis of Earthquake Data from the Greater Los Angeles Basin and Adjacent Offshore Area, Southern California U.S. Geological Survey Award No. 07HQGR0048 Element I & III Key words: Geophysics, seismology, seismotectonics Egill Hauksson Seismological Laboratory, California Institute of Technology, Pasadena, CA 91125 Tel.: 626-395 6954 Email: [email protected] FAX: 626-564 0715 ABSTRACT We synthesize and interpret local earthquake data recorded by the Caltech/USGS Southern California Seismographic Network (SCSN/CISN) in southern California. The goal is to use the existing regional seismic network data to: (1) refine the regional tectonic framework; (2) investigate the nature and configuration of active surficial and concealed faults; (3) determine spatial and temporal characteristics of regional seismicity; (4) determine the 3D seismic properties of the crust; and (5) delineate potential seismic source zones.
    [Show full text]
  • The Tectonic Evolution of the Madrean Archipelago and Its Impact on the Geoecology of the Sky Islands
    The Tectonic Evolution of the Madrean Archipelago and Its Impact on the Geoecology of the Sky Islands David Coblentz Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, NM Abstract—While the unique geographic location of the Sky Islands is well recognized as a primary factor for the elevated biodiversity of the region, its unique tectonic history is often overlooked. The mixing of tectonic environments is an important supplement to the mixing of flora and faunal regimes in contributing to the biodiversity of the Madrean Archipelago. The Sky Islands region is located near the actively deforming plate margin of the Western United States that has seen active and diverse tectonics spanning more than 300 million years, many aspects of which are preserved in the present-day geology. This tectonic history has played a fundamental role in the development and nature of the topography, bedrock geology, and soil distribution through the region that in turn are important factors for understanding the biodiversity. Consideration of the geologic and tectonic history of the Sky Islands also provides important insights into the “deep time” factors contributing to present-day biodiversity that fall outside the normal realm of human perception. in the North American Cordillera between the Sierra Madre Introduction Occidental and the Colorado Plateau – Southern Rocky The “Sky Island” region of the Madrean Archipelago (lo- Mountains (figure 1). This part of the Cordillera has been cre- cated between the northern Sierra Madre Occidental in Mexico ated by the interactions between the Pacific, North American, and the Colorado Plateau/Rocky Mountains in the Southwest- Farallon (now entirely subducted under North America) and ern United States) is an area of exceptional biodiversity and has Juan de Fuca plates and is rich in geology features, including become an important study area for geoecology, biology, and major plateaus (The Colorado Plateau), large elevated areas conservation management.
    [Show full text]