California North Coast Offshore Wind Studies

Total Page:16

File Type:pdf, Size:1020Kb

California North Coast Offshore Wind Studies California North Coast Offshore Wind Studies Overview of Geological Hazards This report was prepared by Mark A. Hemphill-Haley, Eileen Hemphill-Haley, and Wyeth Wunderlich of the Humboldt State University Department of Geology. It is part of the California North Coast Offshore Wind Studies collection, edited by Mark Severy, Zachary Alva, Gregory Chapman, Maia Cheli, Tanya Garcia, Christina Ortega, Nicole Salas, Amin Younes, James Zoellick, & Arne Jacobson, and published by the Schatz Energy Research Center in September 2020. The series is available online at schatzcenter.org/wind/ Schatz Energy Research Center Humboldt State University Arcata, CA 95521 | (707) 826-4345 California North Coast Offshore Wind Studies Disclaimer This study was prepared under contract with Humboldt State University Sponsored Programs Foundation with financial support from the Department of Defense, Office of Economic Adjustment. The content reflects the views of the Humboldt State University Sponsored Programs Foundation and does not necessarily reflect the views of the Department of Defense, Office of Economic Adjustment. This report was created under Grant Agreement Number: OPR19100 About the Schatz Energy Research Center The Schatz Energy Research Center at Humboldt State University advances clean and renewable energy. Our projects aim to reduce climate change and pollution while increasing energy access and resilience. Our work is collaborative and multidisciplinary, and we are grateful to the many partners who together make our efforts possible. Learn more about our work at schatzcenter.org Rights and Permissions The material in this work is subject to copyright. Please cite as follows: Hemphill-Haley, M.A., Hemphill-Haley, E. and Wunderlich, W. (2020). Overview of Geological Hazards. In M. Severy, Z. Alva, G. Chapman, M. Cheli, T. Garcia, C. Ortega, N. Salas, A. Younes, J. Zoellick, & A. Jacobson (Eds.) California North Coast Offshore Wind Studies. Humboldt, CA: Schatz Energy Research Center. schatzcenter.org/pubs/2020-OSW-R16.pdf. All images remain the sole property of their source and may not be used for any purpose without written permission from that source. Overview of Geological Hazards ii California North Coast Offshore Wind Studies CONTENTS 1 EXECUTIVE SUMMARY................................................................................................................... 1 2 INTRODUCTION ................................................................................................................................ 7 3 STRONG MOTION .............................................................................................................................. 7 3.1 Potential Sources of Seismicity and Strong Shaking ................................................................. 10 3.1.1 Cascadia subduction zone (CSZ) .......................................................................................... 10 3.1.2 San Andreas fault (SAF) ....................................................................................................... 15 3.1.3 Mendocino Fault (MF) .......................................................................................................... 20 3.1.4 Gorda plate ............................................................................................................................ 21 3.1.5 Faults in the Fold and Thrust Belt of the Accretionary Wedge ............................................. 23 3.1.5.1 Table Bluff Fault and Anticline .................................................................................... 27 3.1.5.2 Little Salmon Fault ....................................................................................................... 29 3.2 North Coast Earthquakes >M6 Since 1960 ............................................................................... 32 3.2.1 1980 M7.2 Earthquake .......................................................................................................... 36 3.2.2 1992 M7.2 Earthquake .......................................................................................................... 38 3.2.3 2010 M6.5 Earthquake .......................................................................................................... 41 4 SURFACE RUPTURE ....................................................................................................................... 43 5 GAS HYDRATES AND SHALLOW-SEAFLOOR FREE GAS....................................................... 52 5.1 Gas Hydrate Occurrence ............................................................................................................ 53 5.2 Gas Hydrates Offshore of Northern California ......................................................................... 56 6 LIQUEFACTION ............................................................................................................................... 59 6.1 Overview of Liquefaction Processes and Related Ground Failure ............................................ 60 6.2 Liquefaction in the Marine Environment .................................................................................. 62 6.3 Documented Liquefaction from North Coast Earthquakes........................................................ 63 7 SUBMARINE LANDSLIDES ........................................................................................................... 69 7.1 Overview of Submarine Landslides........................................................................................... 69 7.2 Slumps and Slides ...................................................................................................................... 69 7.3 Unstable Sediment Masses ........................................................................................................ 71 7.4 Turbidity currents ...................................................................................................................... 74 8 TSUNAMIS ........................................................................................................................................ 76 8.1 Overview of Tsunami Hazards .................................................................................................. 76 8.2 Tsunami Record for the North Coast at Humboldt Bay ............................................................ 80 9 COSEISMIC LAND-LEVEL CHANGES ......................................................................................... 81 9.1 Coseismic Subsidence ............................................................................................................... 81 9.2 Coseismic Uplift ........................................................................................................................ 85 9.3 Interseismic Subsidence at Humboldt Bay ................................................................................ 86 10 RECOMMENDATIONS FOR FUTURE WORK.......................................................................... 87 11 REFERENCES ............................................................................................................................... 90 Overview of Geological Hazards iii California North Coast Offshore Wind Studies FIGURES Figure 1. Map showing the Northern California Offshore Wind (NCOW) study area, including the location of proposed offshore wind farms (Humboldt Call Area) and proposed locations of associated infrastructure (“NCOW facilities”). .............................................................................................................. 2 Figure 2. Map of the intersection of the Gorda, Pacific, and North America plates at the Mendocino triple junction. ........................................................................................................................................................ 8 Figure 3. Map showing the extent of the Cascadia subduction zone off northwestern North America. ..... 11 Figure 4. USGS base map of the San Andreas fault in California. ............................................................. 16 Figure 5. Map showing the 1906 rupture length of the San Andreas fault and area of impact from the earthquake. .................................................................................................................................................. 17 Figure 6. Modified Mercalli Intensity shake map of northern California for the 1906 San Andreas fault earthquake. .................................................................................................................................................. 18 Figure 7. Probabilistic seismic hazard model showing a 10% probability of peak ground accelerations exceeded 0.4-0.8 g in coastal Northern California over the next 50 years. ................................................ 20 Figure 8. Map of the Gorda plate ("Gorda deformation zone") by Rollins and Stein, 2010.. ..................... 22 Figure 9. Cascadia subduction zone accretionary prism relative to the location of the Humboldt Call Area.. ........................................................................................................................................................... 25 Figure 10. Uninterpreted and interpreted seismic reflection profile constructed in NE to SW azimuth roughly parallel to the coastline. ................................................................................................................. 26 Figure 11. Multi-channel seismic profile constructed in a NE-SW azimuth that transects the
Recommended publications
  • Washington Division of Geology and Earth Resources Open File Report
    l 122 EARTHQUAKES AND SEISMOLOGY - LEGAL ASPECTS OPEN FILE REPORT 92-2 EARTHQUAKES AND Ludwin, R. S.; Malone, S. D.; Crosson, R. EARTHQUAKES AND SEISMOLOGY - LEGAL S.; Qamar, A. I., 1991, Washington SEISMOLOGY - 1946 EVENT ASPECTS eanhquak:es, 1985. Clague, J. J., 1989, Research on eanh- Ludwin, R. S.; Qamar, A. I., 1991, Reeval­ Perkins, J. B.; Moy, Kenneth, 1989, Llabil­ quak:e-induced ground failures in south­ uation of the 19th century Washington ity of local government for earthquake western British Columbia [abstract). and Oregon eanhquake catalog using hazards and losses-A guide to the law Evans, S. G., 1989, The 1946 Mount Colo­ original accounts-The moderate sized and its impacts in the States of Califor­ nel Foster rock avalanches and auoci­ earthquake of May l, 1882 [abstract). nia, Alaska, Utah, and Washington; ated displacement wave, Vancouver Is­ Final repon. Maley, Richard, 1986, Strong motion accel­ land, British Columbia. erograph stations in Oregon and Wash­ Hasegawa, H. S.; Rogers, G. C., 1978, EARTHQUAKES AND ington (April 1986). Appendix C Quantification of the magnitude 7.3, SEISMOLOGY - NETWORKS Malone, S. D., 1991, The HAWK seismic British Columbia earthquake of June 23, AND CATALOGS data acquisition and analysis system 1946. [abstract). Berg, J. W., Jr.; Baker, C. D., 1963, Oregon Hodgson, E. A., 1946, British Columbia eanhquak:es, 1841 through 1958 [ab­ Milne, W. G., 1953, Seismological investi­ earthquake, June 23, 1946. gations in British Columbia (abstract). stract). Hodgson, J. H.; Milne, W. G., 1951, Direc­ Chan, W.W., 1988, Network and array anal­ Munro, P. S.; Halliday, R. J.; Shannon, W.
    [Show full text]
  • Cambridge University Press 978-1-108-44568-9 — Active Faults of the World Robert Yeats Index More Information
    Cambridge University Press 978-1-108-44568-9 — Active Faults of the World Robert Yeats Index More Information Index Abancay Deflection, 201, 204–206, 223 Allmendinger, R. W., 206 Abant, Turkey, earthquake of 1957 Ms 7.0, 286 allochthonous terranes, 26 Abdrakhmatov, K. Y., 381, 383 Alpine fault, New Zealand, 482, 486, 489–490, 493 Abercrombie, R. E., 461, 464 Alps, 245, 249 Abers, G. A., 475–477 Alquist-Priolo Act, California, 75 Abidin, H. Z., 464 Altay Range, 384–387 Abiz, Iran, fault, 318 Alteriis, G., 251 Acambay graben, Mexico, 182 Altiplano Plateau, 190, 191, 200, 204, 205, 222 Acambay, Mexico, earthquake of 1912 Ms 6.7, 181 Altunel, E., 305, 322 Accra, Ghana, earthquake of 1939 M 6.4, 235 Altyn Tagh fault, 336, 355, 358, 360, 362, 364–366, accreted terrane, 3 378 Acocella, V., 234 Alvarado, P., 210, 214 active fault front, 408 Álvarez-Marrón, J. M., 219 Adamek, S., 170 Amaziahu, Dead Sea, fault, 297 Adams, J., 52, 66, 71–73, 87, 494 Ambraseys, N. N., 226, 229–231, 234, 259, 264, 275, Adria, 249, 250 277, 286, 288–290, 292, 296, 300, 301, 311, 321, Afar Triangle and triple junction, 226, 227, 231–233, 328, 334, 339, 341, 352, 353 237 Ammon, C. J., 464 Afghan (Helmand) block, 318 Amuri, New Zealand, earthquake of 1888 Mw 7–7.3, 486 Agadir, Morocco, earthquake of 1960 Ms 5.9, 243 Amurian Plate, 389, 399 Age of Enlightenment, 239 Anatolia Plate, 263, 268, 292, 293 Agua Blanca fault, Baja California, 107 Ancash, Peru, earthquake of 1946 M 6.3 to 6.9, 201 Aguilera, J., vii, 79, 138, 189 Ancón fault, Venezuela, 166 Airy, G.
    [Show full text]
  • Lower Eel River and Van Duzen River Juvenile Coho Salmon (Oncorhynchus Kisutch) Spatial Structure Survey 2013-2016 Summary Report
    Pacific States Marine Fisheries Commission in partnership with the State of California Department of Fish and Wildlife and Humboldt Redwood Company Summary Report to the California Department of Fish and Wildlife Fisheries Restoration Grant Program Grantee Agreement: P1210516 Lower Eel River and Van Duzen River Juvenile Coho Salmon (Oncorhynchus kisutch) Spatial Structure Survey 2013-2016 Summary Report Prepared by: David Lam and Sharon Powers December 2016 Abstract Monitoring of coho salmon population spatial structure was conducted, as a component of the California Department of Fish and Wildlife’s Coastal Salmonid Monitoring Program, in the lower Eel River and its tributaries, inclusive of the Van Duzen River, in 2013, 2014, 2015, and 2016. Potential coho salmon habitat within the lower Eel River and Van Duzen River study areas was segmented into a sample frame of 204 one-to-three kilometer stream survey reaches. Annually, a randomly selected subset of sample frame stream reaches was monitored by direct observation. Using mask and snorkel, surveyors conducted two independent pass dive observations to estimate fish species presence and numbers. A total of 211 surveys were conducted on 163 reaches, with 2,755 pools surveyed during the summers of 2013, 2014, 2015, and 2016. Coho salmon were observed in 13.5% of reaches and 7.5% of pools surveyed, and the percent of the study area occupied by coho salmon juveniles was estimated at 7% in 2013 and 2014, 3% in 2015, and 4% in 2016. i Table of Contents Abstract .........................................................................................................................................................
    [Show full text]
  • Middle Main Eel (PDF)
    12 3° 55'0 "W 123 ° 52'30 "W 123 ° 50'0" W 123 °4 7'30 "W 123 °4 5'0" W 123 °4 2'30 "W 123°40'0"W 1 23° 3 7'30" W 1 23° 35 '0" W 1 23° 32 '30" W B 2 a Lar lc a b k o ee Cr e e 5 1 m S e 5 4 re 2 S C k l l C 3 w k r co i 4 Da ry e i i M M e t h f C re e t c t y a ns Can on 3 2 k C n a C C Bro w r x r h ee w a r A f th e k k B r e v e o e l e u G A l e e en D l e s ounta e l M k i r C r in a a n d n u o re C d R p l e l i t d l o s k i h C M a 7 M in eek d y r Cr C e is 11 S v re e a 12 e k c k D 10 8 o t 9 t v Pea C i n r e h Roa e d k e c P a n R e k 10 n th e a e o r 7 C R r a C l len 11 12 r d A e r 8 l 7 k e ek ig e k b e d r 12 Middle Main Eel Planninge 10 Watershed 89 10 n C re 9 i 11 12 e ek C s Cre l l W r 11 s 25 4 i k !( o M oo H reek r r C C 15 Dee k e 13 r e 18 14 C r C e 17 nack re ek b 16 K o st We 15 18 Fr Cree k 40°22'30"N Cre 17 s ek 14 15 tth ew 16 14 13 Ma 13 17 18 16 L 13 k i 14 e t k Existing Land Use e t Martin Cr e le re C 01S 03E V 15 a s 40 °2 2'30 "N n e r k D o ee u l r ze o in C n D 01Srt 04E T R 20 Ma ive h r k u 01S 05E N e e r wm r e m k a n C e 24 a 21 n e 19 r 22 C C 23 r n e r 23 e a k B k k 19 ee Perr e 24 21 k t C r ott Cre 20 n e 22 19 la k rth Cre k 24 B 24 k o e 23 k e e s w 20 23 e e e o r B e r 22 r C C 21 C e an l n p o m p s w p e a Ca N K m bi o n Cre h ek 26 T V i F la ek n r t Cre n e u k Boul d m 25 29 27 e R 28 e o r E 30 d a a South Fork Bar n C o d e 26 R C le l Poison Oak Creek Watersh ed tto 25 a Ma R m e i r 30 25 29 v o 29 28 27 25 n 26 28 e r Paci fi c Lu mber Co mpa ny C 26 k r 27
    [Show full text]
  • A Review of Geological Records of Large Tsunamis at Vancouver Island, British Columbia, and Implications for Hazard John J
    Quaternary Science Reviews 19 (2000) 849}863 A review of geological records of large tsunamis at Vancouver Island, British Columbia, and implications for hazard John J. Clague! " *, Peter T. Bobrowsky#, Ian Hutchinson$ !Depatment of Earth Sciences and Institute for Quaternary Research, Simon Fraser University, Burnaby, BC, Canada V5A 1S6 "Geological Survey of Canada, 101 - 605 Robson St., Vancouver, BC, Canada V6B 5J3 #Geological Survey Branch, P.O. Box 9320, Stn Prov Govt, Victoria, BC, Canada V8W 9N3 $Department of Geography and Institute for Quaternary Research, Simon Fraser University, Burnaby, Canada BC V5A 1S6 Abstract Large tsunamis strike the British Columbia coast an average of once every several hundred years. Some of the tsunamis, including one from Alaska in 1964, are the result of distant great earthquakes. Most, however, are triggered by earthquakes at the Cascadia subduction zone, which extends along the Paci"c coast from Vancouver Island to northern California. Evidence of these tsunamis has been found in tidal marshes and low-elevation coastal lakes on western Vancouver Island. The tsunamis deposited sheets of sand and gravel now preserved in sequences of peat and mud. These sheets commonly contain marine fossils, and they thin and "ne landward, consistent with deposition by landward surges of water. They occur in low-energy settings where other possible depositional processes, such as stream #ooding and storm surges, can be ruled out. The most recent large tsunami generated by an earthquake at the Cascadia subduction zone has been dated in Washington and Japan to AD 1700. The spatial distribution of the deposits of the 1700 tsunami, together with theoretical numerical modelling, indicate wave run-ups of up to 5 m asl along the outer coast of Vancouver Island and up to 15}20 m asl at the heads of some inlets.
    [Show full text]
  • This Report Is Preliminary and Has Not Bee Reviewed for Conformity with US
    UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY Northeast-trending subcrustal fault transects western Washington by Kenneth F. Fox, Jr.* Open-File Report 83-398 This report is preliminary and has not bee reviewed for conformity with U.S Geological Survey editorial standards and stratigraphic nomenclature. *U.S. Geological Survey 3^5 Middlefield Road Menlo Park, California 9^025 Page Table of Contents Tectonic setting......................................................... 1 Seisraicity............................................................... 4 Discussion............................................................... 4 References cited......................................................... 6 Figures Figure 1. Magnetic anomalies in the northeastern Pacific................ 8 Figure 2. Bathymetry at intersection of Columbia lineament and Blanco fracture zone................................................. 9 Figure 3. Plane vector representation of movement of Gorda plate........ 10 Figure 4. Reconstruction of Pacific-Juan de Fuca plate geometry 2 m.y. before present................................................ 11 Figure 5. Epicenters of historical earthquakes with intensity greater than V........................................................ 12 TECTONIC SETTING The north-trending magnetic anomalies of the Juan de Fuca plate are off­ set along two conspicuous northeast-trending lineaments (fig. 1), named the Columbia offset and the Destruction offset by Carlson (1981). The northeast­ ward projections of these lineaments intersect the continental area of western Washington, hence are of potential significance to the tectonics of the Pacific Northwest region. Pavoni (1966) suggested that these lineaments were left-lateral faults, and that the Columbia, 280 km in length, had 52 km of offset, and the Destruction, with a length of 370 km, had 75 km of offset. Based on Vine's (1968) correlation of the magnetic anomalies mapped in this area by Raff and Mason (1961), with the magnetic reversal time scale, Silver (1971b, p.
    [Show full text]
  • Lower Eel River Total Maximum Daily Loads For· Temperature and Sediment
    ., U.s. Environmental Protection Agency Region IX Lower Eel River Total Maximum Daily Loads for· Temperature and Sediment Approved by: l~ltl(Jl Alexis Strauss, Date Director, Water Division TABLE OF CONTENTS CHAPTER 1: INTRODUCTION................................................................................................ 1 1.1. OVERVIEW OF THE TMDL PROGRAM ................................................................... 1 1.2. WATERSHED CHARACTERISTICS .......................................................................... 2 1.3. ENDANGERED SPECIES ACT CONSULTATION.................................................... 4 1.4. DOCUMENT ORGANIZATION .................................................................................. 5 CHAPTER 2: PROBLEM STATEMENT ................................................................................. 7 2.1. WATER QUALITY STANDARDS............................................................................... 7 2.2. FISH POPULATION AND ENDANGERED SPECIES CONCERNS......................... 9 2.3. STREAM TEMPERATURE PROBLEMS .................................................................. 14 2.4. SEDIMENT PROBLEMS ............................................................................................ 26 CHAPTER 3: TEMPERATURE TMDLS ............................................................................... 30 3.1. INTERPRETING THE EXISTING WATER QUALITY STANDARDS FOR TEMPERATURE ........................................................................................................
    [Show full text]
  • Historic American Engineering Record Western Regional Office National Park Service U.S
    Van Duzen River ttridge (Alton Bridge) HAER No. CA-129 Spanning Van Duzen River on California Slate Highway 10! Alton vicinity Humboldt County ///IT £> California /-1 A} /J?" // / PHOTOGRAPHS WRITTEN HISTORICAL AND DESCRIPTIVE DATA Historic American Engineering Record Western Regional Office National Park Service U.S. Department of the Irterior San Francisco, California 94102 t UCAL HISTORIC AMERICAN ENGINEERING RECORD IX- ALT if Van Duzen River Bridge (Alton Bridge) HAER No. CA-129 Location: Spanning the Van Duzen River on California State Highway 101 Alton vicinity, Humboldt County, California UTM: 10 402887.4487745 Quad: Fortuna, California Date of Construction: 1924-1925 Engineer: Harlan D. Miller Bridge Department California Division of Highways Present Owner: California Department of Transportation District 1 1656 Union Street Eureka, California 95501 Present Use: Highway bridge Significance: The Van Duzen River Bridge, also known as the Alton Bridge, was determined eligible for listing in the National Register of Historic Places in 1986. It represents a transitional design in the evolution of concrete arch bridges, and is the earliest surviving bridge designed under the direction of Harlan D. Miller, California's second state bridge engineer and the man most responsible for providing engineering design and aesthetic direction for California bridges between 1924 and 1940. Report prepared by: John W. Snyder Chief Architectural and Historic Studies California Department of Transportation 1120 N Street Sacramento, California 95814 Van Duzen River Bridge (Alton Bridge) HAER No. CA-129 (Page 2) PARTI. HISTORICAL INFORMATION The Van Duzen Bridge crosses the Van Duzen River just south of Alton in Humboldt County. The river was originally called Van Dusen's Fork of the Eel River, being so named in January 1850 after a member of the Gregg party of gold prospectors.
    [Show full text]
  • Geology and Ground-Water Features of the Eureka Area Humboldt County, California
    Geology and Ground-Water Features of the Eureka Area Humboldt County, California By R, E. EVENSON GEOLOGICAL SURVEY WATER-SUPPLY PAPER 1470 Prepared in cooperation with the California Department of Water Resources UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1959 UNITED STATES DEPARTMENT OF THE INTERIOR FRED A. S EATON, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director The U. S. Geological Survey Library has cataloged this publication as follows: Evenson, Robert Edward, 1924- Geology and ground-water features of the Eureka area, Humboldt County, California. Prepared in cooperation with the California Dept. of Water Eesources. Washing­ ton, U. S. Govt. Print. Off., 1959 iv, 80 p. maps, diagrs., tables. 25 cm. (U. S. Geological Survey Water-supply paper 1470) Part of illustrative matter fold. col. in pocket. Bibliography: p. 77. 1. Water-supply California Humboldt Co. 2. Water, Under­ ground California Humboldt Co. i. Title: Eureka area, Hum­ boldt County, California. (Series) TC801.U2 no. 1470 551.490979412 GS 59-169 copy 2. GB1025.C2E9 For sale by the Superintendent of Documents, U. S. Government Printing Office Washington 25, D. C. CONTENTS Page Abstract___-_____-__--_--_-_-_________-__--_--_-_-______ ___ 1 Introduction._____________________________________________________ 2 Purpose and scope of the work________ _________________________ 2 Location and extent of the area_______________-_-__-__--________ 3 Previous work_______________________________________________ 3 Well-numbering system________________________________________
    [Show full text]
  • Significant Aspects of Geotechnical and Seismic Engineering and Management of Bridges and Structures in the U.S
    SIGNIFICANT ASPECTS OF GEOTECHNICAL AND SEISMIC ENGINEERING AND MANAGEMENT OF BRIDGES AND STRUCTURES IN THE U.S. M. Myint Lwin1 Abstract It is important to integrate the knowledge and experience of geotechnical and seismic engineering and management of bridges to make sound decisions to reduce earthquake damages to highways, bridges and structures. Research continues to play important roles in developing modern bridge seismic design criteria, detailing practices and seismic retrofit strategies for reducing structural damages and casualties. Bridge management systems can be used effectively to incorporate seismic assessment data for prioritizing seismic retrofit needs. Introduction Major earthquakes, such as the 1964 Alaska Earthquake, Anchorage, Alaska; the 1989 Loma Prieta Earthquake, California; the 1994 Northridge Earthquake, California; the 1995 Kobe Earthquake, Japan; and so on, have taken thousands of lives, caused billions of dollars in damages, and incurred other indirect costs as a result of damage to bridges and structures, highways, and other public facilities. It is necessary to integrate the knowledge and experience in geotechnical and seismic engineering, and the management of bridges and structures, and other public facilities to mitigate seismic hazards. The important seismic hazards are strong ground shaking, ground failures (such as, liquefaction, lateral spread, differential settlement, landslides), soil-structure interaction, and other indirect effects caused by ground shaking and failures, such as, tsunamis, seiches, floods and fires. The engineers and code writers must take these seismic hazards into account in developing earthquake-resistant design, construction and management. Seismologic and Geologic Aspect of Earthquakes When an earthquake occurs, seismic waves traveled from the source to the earth’s surface through body waves and surface waves.
    [Show full text]
  • Environmental Setting
    Draft PEIR July 2010 8.5 FLOODING This section evaluates flooding impacts associated with the proposed General Plan, including whether implementing the plan will: (1) permit the construction of housing within a 100-year Flood Hazard Area; (2) allow structures within a 100-year Flood Hazard Area that impede or redirect flood flows; and (3) expose people or structures to a significant risk involving flooding as a result of levee failure or mudflows. Water quality and drainage impacts are evaluated in Sections 5.1 and 7.3, respectively. Environmental Setting Watersheds The Eel River has the largest watershed in Humboldt County. The river flows in a northwesterly direction, turning north as it passes Fortuna, then west at Fernbridge before reaching the Pacific Ocean north of Ferndale. The Fortuna Planning Area’s watersheds represent a small portion of the Eel River Watershed and either replenish local groundwater supplies or drain to the Eel and Van Duzen rivers and their tributary streams. The Rohner Creek and Strongs Creek watersheds are the largest in the Fortuna Planning Area. Smaller watersheds in the Planning Area include the Jameson Creek and Mill Creek watersheds; both tributary to Strongs Creek. The Hillside Creek watershed is a tributary of Rohner Creek and the North Fortuna drainage area discharges directly to the Eel River. North of the Fortuna city limits are the Palmer and Little Palmer Creek watersheds. Wolverton Gulch watershed lies to the south. Planning Area watersheds, rivers, and streams serve as natural resources, storm water drainages, and flood conveyance channels. Surface Water Flows Surface water flows have shaped the Planning Area topography.
    [Show full text]
  • Convention Program and Abstracts
    in H sights istoric In Ar ew ea N s Ventura, 2009 ANOTHER GREAT MEETING ON THE PACIFIC COAST PACIFIC SECTION S AAPG-SEPM-SEG CONVENTION May 2 - 6, 2009 - Ventura, California Great Technical Papers and Field Trips Seep Tour San Miguelito Amphitheater Great Activities Channel Islands National Monument Ventura Music Festival 2 Pacific Sections AAPG • SEPM • SEG 2009 Annual Meeting Table of Contents Letter from the General Chair - 4 RESERVOIR CHARACTERIZATION GEOLOGY PETROPHYSICS DATABASE MANAGEMENT Letter from the Host Society - 5 DIGITIZING & SCANNING Letter from the Pacific Section AAPG - 6 EarthQuest Technical Services, LLC David R. Walter Sponsors - 7 2201 ‘F’ Street [email protected] Bakersfield, CA 93301 www.eqtservices.com 661•321•3136 Conference Committee - 10 Highlights - 11 Luncheons - 12 Conference at a Glance - 13 Technical Program at a Glance - 14 Technical Sessions - 17 Short Courses - 30 Field Trips - 32 Guest Activities - 36 Les Collins Regional Operations Manager Floor Plans - 38 4030 Well Tech Way Bakersfield, CA 93308 Abstracts - 40 Formation Evaluation Specialists Tel: +1 (661) 750-4010 Ext 107 Fax: +1 (661) 840-6602 Cell: +1 (661) 742-2720 General & Emergency Information - 62 www.dhiservices.com Email: [email protected] in H sights istoric In Ar ew ea N s Ventura, 2009 Pacific Sections AAPG • SEPM • SEG 2009 Annual Meeting 3 Letter from the General Chair Welcome to Ventura, California Welcome to the 2009 Convention of the Pacific Sections AAPG, SEPM and SEG. Our Logo is appropriately adapted from our host, the Coast Geological Society. Members of the CGS have formed the committees and worked tire- lessly to make this meeting an informative and enjoyable event.
    [Show full text]