Drugs for the Treatment of Helminth Infections: Anthelmintics 13 Tad B

Total Page:16

File Type:pdf, Size:1020Kb

Drugs for the Treatment of Helminth Infections: Anthelmintics 13 Tad B Drugs for the Treatment of Helminth Infections: Anthelmintics 13 Tad B. Coles and Randy C. Lynn Chapter Outline ANTHELMINTICS BROAD-SPECTRUM COMBINATIONS Macrolides Emodepside Plus Praziquantel Benzimidazoles Pyrantel Plus Praziquantel Tetrahydropyrimidines Pyrantel Plus Praziquantel Plus Febantel Cyclic Depsipeptides Ivermectin Plus Pyrantel Piperazines Ivermectin Plus Pyrantel Plus Praziquantel Isoquinolones Milbemycin Oxime Plus Lufenuron Arsenicals Imidacloprid Plus Moxidectin Miscellaneous Practicing veterinarians commonly use drugs to treat and KEY POINT 13-1 Helminth infections are common in pets. prevent helminth infections in small animals. Th e life cycle and biology of the most important parasites are well under- stood by graduate veterinarians and are not discussed here; KEY POINT 13-2 Testing, treatment, and prevention of however, current textbooks of parasitology may be consulted helminth infections in pets have profound zoonotic for review. 1-4 Gastrointestinal parasites are among the most implications. common infectious agents that veterinarians in small animal practice face. A landmark parasite prevalence study evalu- Although these parasites are important to the health of ated more than 6000 canine fecal specimens from all 50 states dogs, several are also important zoonotic pathogens. Asca- and the District of Columbia.5 Th e results indicate that para- rid larvae migrate through human tissues, causing a variety sites are common in American dogs. Nationwide, 36% of the of signs correlated to the location of the migration. Th ese are samples tested were positive for roundworm (Toxocara canis) , primarily Toxocara species ascarids, but the raccoon ascarid, hookworm (Ancylostoma caninum) , or whipworm (Trichuris Baylisascaris procyonis, is being increasingly implicated as a vulpis) . Even more surprising, 52% of the samples from the cause of human disease in the United States.10 Th e Centers for southeastern United States were positive for at least one nema- Disease Control and Prevention (CDC) have published Guide- tode. In a recent study of the results of heartworm and fecal lines for Veterinarians: Prevention of Zoonotic Transmission of testing in the western United States, the importance of annual Ascarids and Hookworms of Dogs and Cats, which is an excel- testing and routine use of preventives was highlighted. 6 Clin- lent resource and is available online as a PDF download. 11 ics in 11 states were surveyed, and local dogs with no history of travel were diagnosed with heartworms in every state but KEY POINT 13-3 The raccoon ascarid is an emerging Idaho and Wyoming. Th e prevalence of intestinal parasites zoonotic threat. in companion animals in Ontario and Quebec, Canada, dur- ing the winter was recently evaluated.7 Th e fact that 30% of feline and 39% of canine fecal samples were positive for gas- Worldwide, helminth infections are a major animal and trointestinal parasites prompted the authors to recommend human health concern, 12 with hookworms infecting large that all veterinarians follow the Companion Animal Parasite numbers of people worldwide, especially those of low eco- Council (CAPC) guidelines8 regarding use of year-round nomic status. 13 More than 30% of the human population, in broad-spectrum deworming protocols. Another reason for vast areas of South America and Asia, is infected with hook- following CAPC guidelines, in this instance regarding routine worms. More than half of the population is infected with heartworm testing and prophylaxis, is concern about animals hookworms in many southern areas of the African continent. moving from heartworm-endemic areas to those with limited Experts estimate that a billion people, more than a fi ft h of the heartworm exposure. Th ese concerns were realized when Hur- planet’s human inhabitants, harbor hookworms. 14 One study ricane Katrina resulted in thousands of dogs and cats being showed that nearly all dogs in a remote community of north- shipped from Louisiana, where heartworm prevalence is quite eastern India were infested with one or more zoonotic gas- high, to shelters across the United States.9 trointestinal parasites.15 Th is study demonstrated that dogs 451 452 Drugs Targeting Infections or Infestations SECTION 2 played a major zoonotic role both in transmitting parasites that use dogs as their defi nitive and paratenic host and in Macrolides mechanically transmitting and spreading the dissemination Macrolides, which include both avermectins and milbemycins, range of an array of human-specifi c parasites. A recent feline have revolutionized the control of parasites in both humans study in metropolitan Rio de Janeiro revealed an 89.6% preva- and animals. Ivermectin is the best known agent in this class. lence of overall gastrointestinal helminth parasites in cats. 16 Th e dual activity of some macrolides, such as ivermectin and selamectin, against endoparasites, such as helminths, and ecto- KEY POINT 13-4 The practicing veterinarian who judiciously parasites, such as fl eas, gave rise to the term endectocide . Th ese uses anthelmintics is in a unique position to have a products are similar in that they are large complex macrocyclic dramatic impact on the health of pets and people. structures produced by soil microorganisms in the Streptomy- ces genus. Th ey are generally regarded as the most eff ective and least toxic parasiticides yet developed. Commercially, they Th rough the prudent use of anthelmintics in companion ani- have crushed the competition. Many conventional drugs that mals, the practicing veterinarian is in a unique position to posi- were direct competitors of this class were retired from com- tively aff ect not only the patient’s health but also public health. mon use and eventually discontinued by the manufacturer. ANTHELMINTICS KEY POINT 13-5 Macrolides are large complex macrocyclic products of soil microorganisms. This class includes the In this chapter anthelmintics that are approved by the U.S. most effective, least toxic parasiticides. Food and Drug Administration (FDA) and commercially available in the United States are grouped together by class according to their generic names. Th e literature on antipara- Macrolides are excreted in the feces as active drug. Drugs in sitic drugs is enormous. In the interest of both economy and this class, especially the avermectins, are toxic to dung-feeding readability, only a few references are listed for each drug. Th ese insects, but not birds, plants, and earthworms. Elimination of will guide the veterinarian who needs more specifi c informa- coprophagous insects appears to delay processing of nutrients, tion about the subject. Table 13-1 provides a general overview but the overall environmental impact of this fi nding is unclear.23 of anthelmintic drug spectrum against the common canine Although originally believed to act by disturbing gamma- and feline helminths. aminobutyric acid (GABA) – mediated neurotransmission, it Since the last edition of this text was published, there have now appears that they act with high affi nity to a nematode- been considerable changes, most notably the more widespread specifi c glutamate-gated chloride channel. 24,25 Macrolides use of ivermectin and the emergence of other macrocyclic trigger chloride ion infl ux, which hyperpolarizes the para- lactones. New information on avermectin toxicity is covered site neuron and prevents initiation or propagation of normal in the ivermectin section. Drug manufacturers have discon- action potentials. Th e selectivity of macrolides is due to diff er- tinued production of many tried-and-true anthelmintics such ent glutamate function in invertebrates compared with that of as dichlorvos (Task Capsules) and diethylcarbamazine citrate vertebrates. Glutamate acts as an inhibitory neurotransmitter (Filaribits). In addition, some drugs, such as N-butyl chloride, in invertebrates and an excitatory neurotransmitter in mam- have simply been superseded. For simplicity’s sake, discon- mals. 2 Th e net eff ect is paralysis and death of the target parasite. tinued products and drugs that are not widely available do Despite their benefi cial activities, macrocyclic lactones not appear in the current edition; however, an earlier edition have several fl aws. Th ey are ineff ective against cestodes and of this text can certainly be consulted for information about trematodes, and they are sometimes expensive. Th at said, the them. Th e latest information about diethylcarbamazine citrate U.S. patent on ivermectin has now expired, allowing generic can be obtained from the American Heartworm Society 2005 competitors to enter the market and reduce the cost of iver- guidelines for the diagnosis, prevention, and management of mectin treatment, but to date the cost savings have not been heartworm infection in dogs.17 Th is organization produced realized on products for dogs and cats to the same degree as similar guidelines for cats in 2007 18 and updated the guide- those for horses and food animals. Although macrolides are lines for dogs in 2010.18a generally regarded as the most eff ective and least toxic para- New anthelmintic products are continuously researched and siticides yet developed, toxicity may occur with overdosage, frequently launched. Th e Compendium of Veterinary Prod- especially in Collies, many of which are unusually sensitive to ucts provides a comprehensive list of commercially available macrolide endectocides. An excellent summarized overview products approved by the FDA. 19 An exhaustive review of the of the pharmacology,
Recommended publications
  • (12) United States Patent (10) Patent No.: US 8,227,427 B2 Coracci Neto Et Al
    USOO8227427B2 (12) United States Patent (10) Patent No.: US 8,227,427 B2 Coracci Neto et al. (45) Date of Patent: Jul. 24, 2012 (54) VETERINARIAN COMPOSITION (52) US. Cl. ........................................ .. 514/27; 514/368 COMPRISING AN ORGANIC SALT 0F (58) Field of Classi?cation Search ................. .. 513/71; LEVAMISOLE IN COMBINATION WITH AT 548/155; 514/27, 368 LEAST ONE AVERMECTIN AND/OR See application ?le for complete search history. MILBEMYCIN (75) Inventors: Dolivar Coracci Neto, Sertaozinho (56) References Cited (BR); Nelson Henriques Fernandes Filho, Jaboticabal (BR); Ricardo da FOREIGN PATENT DOCUMENTS Silva Sercheli, Jaboticabal (BR) BR PI0505716 A 9/2007 GB 2150024 A 6/1985 (73) Assignee: NPA—Nucleo de Pesquisas Aplicadas WO 00/74489 A1 12/2000 Ltda., Jaboticabal (BR) WO 2004/009080 A1 1/2004 OTHER PUBLICATIONS ( * ) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 International Search Report. U.S.C. 154(b) by 575 days. Analytical Report Characterization of Pharmaceutical Input Aurixazol (Feb. 20, 2010). (21) App1.No.: 12/097,683 Primary Examiner * Elli Peselev (22) PCT Filed: Dec. 18, 2006 (74) Attorney, Agent, or Firm * Laurence P. Colton; Smith Risley Tempel Santos LLC (86) PCT No.: PCT/BR2006/000282 § 371 (0X1)’ (57) ABSTRACT (2), (4) Date: Nov. 3, 2008 Veterinarian composition comprising an organic salt of (87) PCT Pub. No.: WO2007/068073 levamisole in combination With at least one avermectin and/ or milbemycin. A veterinarian formulation comprising of organ PCT Pub. Date: Jun. 21, 2007 ics salts of levamisole, more speci?cally to the levamisole salt of 2,6-diiodo-4-nitrophenol and the levamisole salt of 4-hy (65) Prior Publication Data droxy-3-iodo-5-nitrobenzonitrile With avermectins and mil US 2009/0075918 A1 Mar.
    [Show full text]
  • Bulletin Leading the Fight Against Heartworm Disease
    BULLETIN LEADING THE FIGHT AGAINST HEARTWORM DISEASE SEPTEMBER HEARTWORM 2017 Q&A VOLUME 44 No. 3 Heartworm History: In What Year Was Heartworm First INSIDE THIS ISSUE Treated? Page 4 From the President Page 8 Research Update Abstracts from the Literature Page 14 Heartworm Hotline: Role of Heat Treatment in Diagnostics Page 19 NEW! Best Practices: Minimizing Heartworm Transmission in Relocated Dogs uestions from members, prac- published in the 1998 AHS Symposium 1 titioners, technicians, and the Proceedings. Dr. Roncalli wrote, “The Page 21 Qgeneral public are often submit- first trial to assess the efficacy of a Welcome Our New AHS ted to the American Heartworm Society microfilaricide (natrium antimonyl tar- Student Liaisons (AHS) via our website. Two of our AHS trate) was conducted some 70 years Board members, Dr. John W.McCall and ago (1927) in Japan by S. Itagaki and R. Page 25 Dr. Tom Nelson, provided the resources Makino.2 Fuadin (stibophen), a trivalent In the News: Surgeons to answer this question: In What Year antimony compound, was tested, intra- Remove a Heartworm from Was Heartworm First Treated? venously, as a microfilaricide by Popescu the Femoral Artery of a Cat The first efforts to treat canine heart- in 1933 in Romania and by W.H. Wright worm disease date back to the 1920s. Dr. and P.C. Underwood in 1934 in the USA. Page 26 Nelson referenced a review article by Dr. In 1949, I.C. Mark evaluated its use Quarterly Update Raffaele Roncalli, “Tracing the History of intraperitoneally.” What’s New From AHS? Heartworms: A 400 Year Perspective,” Continues on page 7 American Heartworm Society / PO Box 8266, Wilmington, DE 19803-8266 Become an American Heartworm Society www.heartwormsociety.org / [email protected] fan on Facebook! Follow us on Twitter! OUR GENEROUS SPONSORS PLATINUM LEVEL PO Box 8266 Wilmington, DE 19803-8266 [email protected] www.heartwormsociety.org Mission Statement The mission of the American Heartworm Society is to lead the vet- erinary profession and the public in the understanding of heartworm disease.
    [Show full text]
  • Baylisascariasis
    Baylisascariasis Importance Baylisascaris procyonis, an intestinal nematode of raccoons, can cause severe neurological and ocular signs when its larvae migrate in humans, other mammals and birds. Although clinical cases seem to be rare in people, most reported cases have been Last Updated: December 2013 serious and difficult to treat. Severe disease has also been reported in other mammals and birds. Other species of Baylisascaris, particularly B. melis of European badgers and B. columnaris of skunks, can also cause neural and ocular larva migrans in animals, and are potential human pathogens. Etiology Baylisascariasis is caused by intestinal nematodes (family Ascarididae) in the genus Baylisascaris. The three most pathogenic species are Baylisascaris procyonis, B. melis and B. columnaris. The larvae of these three species can cause extensive damage in intermediate/paratenic hosts: they migrate extensively, continue to grow considerably within these hosts, and sometimes invade the CNS or the eye. Their larvae are very similar in appearance, which can make it very difficult to identify the causative agent in some clinical cases. Other species of Baylisascaris including B. transfuga, B. devos, B. schroeder and B. tasmaniensis may also cause larva migrans. In general, the latter organisms are smaller and tend to invade the muscles, intestines and mesentery; however, B. transfuga has been shown to cause ocular and neural larva migrans in some animals. Species Affected Raccoons (Procyon lotor) are usually the definitive hosts for B. procyonis. Other species known to serve as definitive hosts include dogs (which can be both definitive and intermediate hosts) and kinkajous. Coatimundis and ringtails, which are closely related to kinkajous, might also be able to harbor B.
    [Show full text]
  • Chemotherapy of Gastrointestinal Helminths
    Chemotherapy of Gastrointestinal Helminths Contributors J. H. Arundel • J. H. Boersema • C. F. A. Bruyning • J. H. Cross A. Davis • A. De Muynck • P. G. Janssens • W. S. Kammerer IF. Michel • M.H. Mirck • M.D. Rickard F. Rochette M. M. H. Sewell • H. Vanden Bossche Editors H. Vanden Bossche • D.Thienpont • P.G. Janssens UNIVERSITATS- BlfiUOTHElC Springer-Verlag Berlin Heidelberg New York Tokyo Contents CHAPTER 1 Introduction. A. DAVIS A. Pathogenic Mechanisms in Man 1 B. Modes of Transmission 2 C. Clinical Sequelae of Infection 3 D. Epidemiological Considerations 3 E. Chemotherapy 4 F. Conclusion 5 References 5 CHAPTER 2 Epidemiology of Gastrointestinal Helminths in Human Populations C. F. A. BRUYNING A. Introduction 7 B. Epidemiological or "Mathematical" Models and Control 8 C. Nematodes 11 I. Angiostrongylus costaricensis 11 II. Anisakis marina 12 III. Ascaris lumbricoides 14 IV. Capillaria philippinensis 21 V. Enterobius vermicularis 23 VI. Gnathostoma spinigerum 25 VII. Hookworms: Ancylostoma duodenale and Necator americanus . 26 VIII. Oesophagostoma spp 32 IX. Strongyloides stercoralis 33 X. Ternidens deminutus 34 XI. Trichinella spiralis 35 XII. Trichostrongylus spp 38 XIII. Trichuris trichiura 39 D. Trematodes 41 I. Echinostoma spp 41 II. Fasciolopsis buski 42 III. Gastrodiscoides hominis 44 IV. Heterophyes heterophyes 44 V. Metagonimus yokogawai 46 X Contents E. Cestodes 47 I. Diphyllobothrium latum 47 II. Dipylidium caninum 50 III. Hymenolepis diminuta 51 IV. Hymenolepis nana 52 V. Taenia saginata 54 VI. Taenia solium 57 VII. Cysticercosis cellulosae 58 References 60 CHAPTER 3 Epidemiology and Control of Gastrointestinal Helminths in Domestic Animals J. F. MICHEL. With 20 Figures A. Introduction 67 I.
    [Show full text]
  • Veterinary Guide to Resistance & Parasites
    Veterinary Guide to Resistance & Parasites How to make the Get Rotation Right deworming strategy part of your equine health wellness protocol. ||||||||||||||||||||||||||||||||||||||||| GET ROTATION RIGHT Resistant parasites – veterinary involvement is needed now. Deworming has come a long way in the past 50 years – from products that were nearly toxic and required complicated tubing to the easy-to-administer dewormers we know now. As more horse owners recognize the value of regular deworming, past troublemakers such as large strongyles have become much less of a threat. Still, deworming is nothing to take lightly. As internal parasites become more resistant, your expertise is needed Horseowners unknowingly more than ever to make sure deworming programs remain efficient contribute to resistance. and effective. Only with veterinary involvement will we control parasite • Rotating brand names, not populations, combat resistance and get rotation right. chemical classes – general confusion about when and RESISTANCE IS REAL: MULTIPLE DRUGS, MULTIPLE PARASITES. how to use different classes • No new drug class since avermectins in 1981. of dewormers. • Benzimidazole resistance in cyathostomes.1-3 • Lack of knowledge about • Pyrantel resistance in cyathostomes and ascarids.4-8,11 resistance issues. • Ivermectin and moxidectin resistance among ascarids.8,9,11 • Deworming many horses more • Early warning signs of macrocyclic-lactone-resistant cyathostomes.10 frequently than necessary. • Health-related issues caused by parasites: • Misunderstanding about the ~ Ascarids (roundworms) unique properties of larvicidal Verminous pneumonia: cough, nasal discharge, low-grade fever treatments and how to maximize Unthriftiness – rough hair coat their efficacy. Intestinal obstruction/colic • Underdosing their horses. Intestinal perforation leading to peracute death Decreased performance and reduced weight gain ~ Cyathostomes (small strongyles) Most common in young and old horses, but can afflict any horse.
    [Show full text]
  • WSAVA List of Essential Medicines for Cats and Dogs
    The World Small Animal Veterinary Association (WSAVA) List of Essential Medicines for Cats and Dogs Version 1; January 20th, 2020 Members of the WSAVA Therapeutic Guidelines Group (TGG) Steagall PV, Pelligand L, Page SW, Bourgeois M, Weese S, Manigot G, Dublin D, Ferreira JP, Guardabassi L © 2020 WSAVA All Rights Reserved Contents Background ................................................................................................................................... 2 Definition ...................................................................................................................................... 2 Using the List of Essential Medicines ............................................................................................ 2 Criteria for selection of essential medicines ................................................................................. 3 Anaesthetic, analgesic, sedative and emergency drugs ............................................................... 4 Antimicrobial drugs ....................................................................................................................... 7 Antibacterial and antiprotozoal drugs ....................................................................................... 7 Systemic administration ........................................................................................................ 7 Topical administration ........................................................................................................... 9 Antifungal drugs .....................................................................................................................
    [Show full text]
  • WO 2012/148799 Al 1 November 2012 (01.11.2012) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2012/148799 Al 1 November 2012 (01.11.2012) P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every A61K 9/107 (2006.01) A61K 9/00 (2006.01) kind of national protection available): AE, AG, AL, AM, A 61 47/10 (2006.0V) AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, (21) International Application Number: DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, PCT/US2012/034361 HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, (22) International Filing Date: KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, 20 April 2012 (20.04.2012) MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD, (25) Filing Language: English SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, (26) Publication Language: English TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: (84) Designated States (unless otherwise indicated, for every 61/480,259 28 April 201 1 (28.04.201 1) US kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, (71) Applicant (for all designated States except US): BOARD UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, OF REGENTS, THE UNIVERSITY OF TEXAS SYS¬ TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, TEM [US/US]; 201 West 7th St., Austin, TX 78701 (US).
    [Show full text]
  • Albendazole: a Review of Anthelmintic Efficacy and Safety in Humans
    S113 Albendazole: a review of anthelmintic efficacy and safety in humans J.HORTON* Therapeutics (Tropical Medicine), SmithKline Beecham International, Brentford, Middlesex, United Kingdom TW8 9BD This comprehensive review briefly describes the history and pharmacology of albendazole as an anthelminthic drug and presents detailed summaries of the efficacy and safety of albendazole’s use as an anthelminthic in humans. Cure rates and % egg reduction rates are presented from studies published through March 1998 both for the recommended single dose of 400 mg for hookworm (separately for Necator americanus and Ancylostoma duodenale when possible), Ascaris lumbricoides, Trichuris trichiura, and Enterobius vermicularis and, in separate tables, for doses other than a single dose of 400 mg. Overall cure rates are also presented separately for studies involving only children 2–15 years. Similar tables are also provided for the recommended dose of 400 mg per day for 3 days in Strongyloides stercoralis, Taenia spp. and Hymenolepis nana infections and separately for other dose regimens. The remarkable safety record involving more than several hundred million patient exposures over a 20 year period is also documented, both with data on adverse experiences occurring in clinical trials and with those in the published literature and\or spontaneously reported to the company. The incidence of side effects reported in the published literature is very low, with only gastrointestinal side effects occurring with an overall frequency of just "1%. Albendazole’s unique broad-spectrum activity is exemplified in the overall cure rates calculated from studies employing the recommended doses for hookworm (78% in 68 studies: 92% for A. duodenale in 23 studies and 75% for N.
    [Show full text]
  • These Ain't Your Father's Parasites: Dewormer Resistance and New Strategies for Parasite Control in Horses
    These Ain't Your Father's Parasites: Dewormer Resistance and New Strategies for Parasite Control in Horses Ray M. Kaplan, DVM, PhD, DEVPC Department of Infectious Diseases College of Veterinary Medicine University of Georgia Athens, Georgia 30602 Summary Most veterinarians continue to recommend anthelmintic (dewormer) treatment programs for horses that are based on knowledge and concepts that are more than 40 years old. However, recent studies demonstrate that resistance and multiple-drug resistance in equine parasites is extremely common, but few horse owners or veterinarians take this into account when making treatment decisions. Parasites are highly over-dispersed in hosts, such that a small percentage of hosts (20%) harbor most (80%) of the parasites. The common practices of recommending the same treatment program for all horses despite great differences in parasite burdens, of recommending frequent preventive treatment of all horses without any indication of parasitic disease or knowing what species of parasites are present, of recommending the use of drugs without knowledge of their efficacy, of failing to perform fecal egg count surveillance and of failing to determine if treatments are effective, are all incompatible with achieving optimal and sustainable parasite control. Consequently, it is necessary that attitudes and approaches for parasite control in horses undergo a complete overhaul, and that both horse owners and veterinarians become educated in these important issues. Introduction The introduction of benzimidazole (BZ) anthelmintics (dewormers) led to a revolution in equine in parasite control (Drudge and Lyons 1966). With these new tools came new recommendations; horse owners were advised to deworm all horses every 8 weeks.
    [Show full text]
  • Identification of Drug Candidates That Enhance Pyrazinamide Activity from a Clinical Drug Library
    bioRxiv preprint doi: https://doi.org/10.1101/113704; this version posted March 4, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Identification of drug candidates that enhance pyrazinamide activity from a clinical drug library Hongxia Niub, a, Chao Mac, Peng Cuid, Wanliang Shia, Shuo Zhanga, Jie Fenga, David Sullivana, Bingdong Zhu b, Wenhong Zhangd, Ying Zhanga,d* a Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA b Lanzhou Center for Tuberculosis Research and Institute of Pathogenic Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China c College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China d Key Laboratory of Medical Molecular Virology, Department of Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China *Correspondence: Ying Zhang, E-Mail: [email protected] Tuberculosis (TB) remains a leading cause of morbidity and mortality globally despite the availability of the TB therapy. 1 The current TB therapy is lengthy and suboptimal, requiring a treatment time of at least 6 months for drug susceptible TB and 9-12 months (shorter Bangladesh regimen) or 18-24 months (regular regimen) for multi-drug-resistant tuberculosis (MDR-TB). 1 The lengthy therapy makes patient compliance difficult, which frequently leads to emergence of drug-resistant strains. The requirement for the prolonged treatment is thought to be due to dormant persister bacteria which are not effectively killed by the current TB drugs, except rifampin and pyrazinamide (PZA) which have higher activity against persisters.
    [Show full text]
  • USP Reference Standards Catalog
    Last Updated On: January 6, 2016 USP Reference Standards Catalog Catalog # Description Current Lot Previous Lot CAS # NDC # Unit Price Special Restriction 1000408 Abacavir Sulfate R028L0 F1L487 (12/16) 188062-50-2 $222.00 (200 mg) 1000419 Abacavir Sulfate F0G248 188062-50-2 $692.00 Racemic (20 mg) (4-[2-amino-6-(cyclo propylamino)-9H-pur in-9yl]-2-cyclopenten e-1-methanol sulfate (2:1)) 1000420 Abacavir Related F1L311 F0H284 (10/13) 124752-25-6 $692.00 Compound A (20 mg) ([4-(2,6-diamino-9H- purin-9-yl)cyclopent- 2-enyl]methanol) 1000437 Abacavir Related F0M143 N/A $692.00 Compound D (20 mg) (N6-Cyclopropyl-9-{( 1R,4S)-4-[(2,5-diami no-6-chlorpyrimidin- 4-yloxy)methyl] cyclopent-2-enyl}-9H -purine-2,6-diamine) 1000441 Abacavir Related F1L318 F0H283 (10/13) N/A $692.00 Compound B (20 mg) ([4-(2,5-diamino-6-c Page 1 Last Updated On: January 6, 2016 USP Reference Standards Catalog Catalog # Description Current Lot Previous Lot CAS # NDC # Unit Price Special Restriction hloropyrimidin-4-yla mino)cyclopent-2-en yl]methanol) 1000452 Abacavir Related F1L322 F0H285 (09/13) 172015-79-1 $692.00 Compound C (20 mg) ([(1S,4R)-4-(2-amino -6-chloro-9H-purin-9 -yl)cyclopent-2-enyl] methanol hydrochloride) 1000485 Abacavir Related R039P0 F0J094 (11/16) N/A $692.00 Compounds Mixture (15 mg) 1000496 Abacavir F0J102 N/A $692.00 Stereoisomers Mixture (15 mg) 1000500 Abacavir System F0J097 N/A $692.00 Suitability Mixture (15 mg) 1000521 Acarbose (200 mg) F0M160 56180-94-0 $222.00 (COLD SHIPMENT REQUIRED) 1000532 Acarbose System F0L204 N/A $692.00 Suitability
    [Show full text]
  • Comparative Genomics of the Major Parasitic Worms
    Comparative genomics of the major parasitic worms International Helminth Genomes Consortium Supplementary Information Introduction ............................................................................................................................... 4 Contributions from Consortium members ..................................................................................... 5 Methods .................................................................................................................................... 6 1 Sample collection and preparation ................................................................................................................. 6 2.1 Data production, Wellcome Trust Sanger Institute (WTSI) ........................................................................ 12 DNA template preparation and sequencing................................................................................................. 12 Genome assembly ........................................................................................................................................ 13 Assembly QC ................................................................................................................................................. 14 Gene prediction ............................................................................................................................................ 15 Contamination screening ............................................................................................................................
    [Show full text]