FSC-STD-40-004A V2-0 D1-0 EN FSC Product Classificationx
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
26 the Carton Packaging Fact File CARTONBOARD
26 The Carton Packaging Fact File CARTONBOARD 5 The Carton Packaging Fact File 27 KEY FACTS Cartonboard is a multilayered material. The main types of cartonboard are solid bleached board, solid unbleached board, folding boxboard and white lined chipboard. Cartonboard usually has a white, pigmented coating on one or both surfaces Cartonboard specifications Cartonboard can be vary with respect to the pulp combined with other composition of the various materials to vary the visual layers and by the grammage appearance and to extend (weight per sq. metre in the protective properties grammes) and thickness (microns or 0.001 millimetre) Laminations, coatings and impregnations can be added to extend the range of carton applications 28 The Carton Packaging Fact File CARTONBOARD COMMON ABBREVIATIONS SBB Solid Bleached Board SUB Solid Unbleached Board FBB Folding Box Board WLC White Lined Chipboard Different types and grades the range 200-600g/m 2 for grammage product aroma, flavour and hygiene are of cartonboard and their and 350-800µm for thickness. critical. Examples of cartons where abbreviations. The principles SBB is used are perfumes, cosmetics, of cartonboard manufacture, What are the main characteristics chocolates, pharmaceuticals, frozen developments and treatments of cartonboard? foods and cigarettes. Cartonboard is mechanically strong. What is cartonboard? Its stiffness, rigidity and toughness SBB is sometimes referred to as SBS Cartonboard is a multilayer material provide compression strength to protect or GZ. with, usually, three or more layers, or products in distribution and use. It can plies, of cellulose fibre (pulp) derived be cut, creased, folded and glued, giving What is Solid Unbleached Board? from wood. -
Tate Report 08-09
Tate Report 08–09 Report Tate Tate Report 08–09 It is the Itexceptional is the exceptional generosity generosity and and If you wouldIf you like would to find like toout find more out about more about PublishedPublished 2009 by 2009 by vision ofvision individuals, of individuals, corporations, corporations, how youhow can youbecome can becomeinvolved involved and help and help order of orderthe Tate of the Trustees Tate Trustees by Tate by Tate numerousnumerous private foundationsprivate foundations support supportTate, please Tate, contact please contactus at: us at: Publishing,Publishing, a division a divisionof Tate Enterprisesof Tate Enterprises and public-sectorand public-sector bodies that bodies has that has Ltd, Millbank,Ltd, Millbank, London LondonSW1P 4RG SW1P 4RG helped Tatehelped to becomeTate to becomewhat it iswhat it is DevelopmentDevelopment Office Office www.tate.org.uk/publishingwww.tate.org.uk/publishing today andtoday enabled and enabled us to: us to: Tate Tate MillbankMillbank © Tate 2009© Tate 2009 Offer innovative,Offer innovative, landmark landmark exhibitions exhibitions London LondonSW1P 4RG SW1P 4RG ISBN 978ISBN 1 85437 978 1916 85437 0 916 0 and Collectionand Collection displays displays Tel 020 7887Tel 020 4900 7887 4900 A catalogue record for this book is Fax 020 Fax7887 020 8738 7887 8738 A catalogue record for this book is available from the British Library. DevelopDevelop imaginative imaginative education education and and available from the British Library. interpretationinterpretation programmes programmes AmericanAmerican Patrons Patronsof Tate of Tate Every effortEvery has effort been has made been to made locate to the locate the 520 West520 27 West Street 27 Unit Street 404 Unit 404 copyrightcopyright owners ownersof images of includedimages included in in StrengthenStrengthen and extend and theextend range the of range our of our New York,New NY York, 10001 NY 10001 this reportthis and report to meet and totheir meet requirements. -
3. Baseboard Physical Properties
3. Baseboard physical properties Performance properties 111 Laws of nature 112 Flatness and stability 116 Strength and toughness 123 Defi ned physical properties 125 Tensile strength 125 Compression strength 126 Complex physical properties 128 Tearing resistance 128 Impact burst strength 128 Delamination, interlaminar strength 129 Stiffness 134 Box compression strength 138 Performance properties 110 Reference Manual | IGGESUND PAPERBOARD Performance properties Performance properties The performance properties are related to the physical Measurable properties characteristics of the paperboard. These properties relate The measurable properties are those which are com- to how the paperboard will withstand the surrounding monly found when describing the technical data for a environment. The following performance properties are paperboard grade. The methods described are those described in this chapter: most commonly used. They are also used by Iggesund • fl atness and dimensional stability Paperboard. • strength and toughness For further information about specific testing equip- • stiffness ment see the manufacturers’ product catalogues • box compression strength. (e.g. Lorentzen & Wettre). The measuring methods for the properties listed are described in the following pages: • tensile strength • tearing resistance • interlayer strength, plybond • bending stiffness • bending resistance • bending moment • density • dimensional properties - Flatness • grammage • grammage (plastic-coated products) • thickness • compression strength • moisture content • stiffness • curl and twist. IGGESUND PAPERBOARD | Reference Manual 111 Laws of nature Laws of nature Two of the most basic physical properties that defi ne a pa- Test method and equipment perboard are grammage and thickness. These properties During production the grammage is measured con- tell us how much fibres and coating that is used for one tinuously on-line with an IR device. -
THE REVISION of EU ECOLABEL CRITERIA for Converted Paper Products
THE REVISION OF EU ECOLABEL CRITERIA for Converted Paper Products Draft Preliminary Report Malgorzata Kowalska, Antonios Konstantas, Oliver Wolf Marzia Traverso, Rose Nangah Mankaa, Sabrina Neugebauer November 2018 EUR xxxxx xx 1 This publication is a Science for Policy report by the Joint Research Centre, the European Commission’s in-house science service. It aims to provide evidence-based scientific support to the European policy-making process. The scientific output expressed does not imply a policy position of the European Commission. Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use which might be made of this publication. Contact information Name: Address: E-mail: Tel.: JRC Science Hub https://ec.europa.eu/jrc JRCxxxxx EUR xxxxx xx PDF ISBN xxx-xx-xx-xxxxx-x ISSN xxxx-xxxx doi:xx.xxxx/xxxxxx XX-NA-xxxxx-EN-N Print ISBN xxx-xx-xx-xxxxx-x ISSN xxxx-xxxx doi:xx.xxxxx/xxxxxx XX-NA-xxxxx-EN-C © European Union, 20xx Reproduction is authorised provided the source is acknowledged. How to cite: Authors; title; EUR; doi All images © European Union 20xx, except: 2 Table of contents ABSTRACT ............................................................................................................ 3 Executive summary ............................................................................................... 3 1. Introduction ...................................................................................................... 4 2. Task 1: Scope and definition analysis .................................................................. -
Improved Oil Resistance of Cellulose Packaging Paper By
1 Improved Oil Resistance of Cellulose Packaging Paper by 2 Coating with Natural Polymer Derived Materials 3 Feijie Wang1, Liqiang Wang1,*, Xinchang Zhang1, Shufeng Ma2 4 1 Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment 5 Technology, School of Mechanical Engineering, Jiangnan University, Wuxi, 214122, 6 China 7 2 School of Food Engineering, Jiangnan University, Wuxi, 214122, China 8 *Email: [email protected] 9 10 Abstract: Paper is widely used as food packaging due to its good mechanical strength 11 and degradability. However, it has a relatively strong affinity for water and oil, which 12 limits its application scope. In this work, we prepare two types of coated paper to 13 investigate, the influence the air permeability and polarity on the oil resistance of the 14 coated paper. The results showed that reducing the air permeability improved the grease 15 resistance of the coated paper. High surface energy coatings also showed better oil 16 resistance because of their higher content of polar components that resulted in a higher 17 resistance to grease. The mechanical properties of the paper also improved after 18 applying the coating. These natural derived materials offer an alternative to the fluoride- 19 containing materials currently used in the market to improve the wettability of paper. 20 Keywords: coated paper · oil resistance · air permeability · polarity 21 Introduction 22 As the variety of foods containing grease is abundant, the types of oil-resistant 23 materials used in food packaging has diversified in recent years. Environmental 24 protection and safety issues continue to be important, and as a result, scholars have paid 25 increasing attention to paper packaging materials (Coltelli et al. -
Crumpling Feasibility of Flexible Paper Sheets. Application to Packaging in the Food Industry Serge Rohmer1, Alexis Mérat1
KES Transactions on Sustainable Design and Manufacturing I Sustainable Design and Manufacturing 2014 : pp.26-37 : Paper sdm14-028 Crumpling feasibility of flexible paper sheets. Application to packaging in the food industry Serge Rohmer1, Alexis Mérat1 1University of Technology of Troyes, CS42060, Troyes, 10004, France [email protected] [email protected] Abstract Flexible packages are considered as the most-reduced form of packaging in terms of environmental performances. In order to contribute to their development, this paper proposes to explore some mechanical properties brought by a new folding process that confers elasticity to flexible materials and consequently new environmental advantages. The innovative folding process consists in sequences of crumpling actions transforming a 2D sheet into a dynamic 3D flexible structure, without cutting or gluing actions. In order to prove the efficiency of the crumpling process, a methodology is proposed to evaluate the ability of a material to be crumpled. The procedure is then applied on different types of papers used in the food industry, and a study case of a crumpled packaging highlights new innovative functionalities as well as its potential environmental gain. 1. Introduction Sustainability is gradually becoming a worldwide challenge for companies, they are conscious of the growing importance of taking into account environmental considerations in their development strategies. The directives and certification schemes adopted by public authorities [1-3] oblige industries and the packaging sector in particular to face the environmental challenge by developing new strategies and new products. Some propose their own certification to demonstrate their commitment to sustainable packaging. United Parcel Service company (UPS) proposes for example its own certification in its Eco Responsible Packaging Program for business customers [4]. -
VNP Guideline LCA Data for Paper and Board in the Netherlands
VNP Guidelines - LCA data for paper and board products It is of high importance that the data which isused from generic LCA databases (e.g. ecoinvent) are recent as well as representative for the kind of material used. Paper and board are complex materials that appear in different types suitable for the various applications. This document is set-up to assist LCA experts in finding the right data belonging to the type of paper and board studied. General advices: It is not advisable to use the data from European Life Cycle Database (ELCD) as these data are incomplete and also only ‘cradle to grave’: these are aggregated data hence difficult to identify where impacts come from and thus hardly usable for comparisons or to change for specific situations. Of all other generic databases ecoinvent is the most complete and current database. Other public datasets (e.g. GaBi, Base Impacts and ProBas) are less current and less easy to interpret from a user point of view. For LCA assessments on paper and board produced in the Netherlands it is essential to replace the input of the European average enery mix with input the Dutch energy mix. (NB this is not possible with ELCD as these allow no changes at all). Packaging paper Paper for corrugated board - Papier voor golfkarton Description Corrugated board (in Dutch: golfkarton) is the most commonly used transport packaging. Corrugated board consists of one or more layers of corrugated paper, in combination with one or more layers flat paper. The corrugated paper is called fluting or medium. The flat papers are called liners. -
Built-In Oven HEN201S2Z
Built-in oven HEN201S2Z [en] Instruction manual Table of contents[en]Instruction manual Important safety information.....................................................3 E number and FD number ............................................................. 11 Causes of damage .............................................................................5 Energy and environment tips..................................................11 Your new oven............................................................................5 Saving energy...................................................................................11 Control panel .......................................................................................5 Environmentally-friendly disposal.................................................. 11 Function selector.................................................................................5 Measures to be noted during transport....................................... 12 Temperature selector .........................................................................6 Tested for you in our cooking studio .....................................12 Hotplate controls.................................................................................6 Cakes and pastries ......................................................................... 12 Cooking compartment .......................................................................6 Baking tips ........................................................................................13 Your -
Making a Pinhole Camera
Homework – Autumn 11 Making a Pinhole Camera Your task this week is to make a pinhole camera. You will need to do the following: Ensure you have the correct materials to make your camera (see below) Follow the step-by-step guide carefully. Take a photo of your finished creation for us to see. You DO NOT need to bring in your camera to school. Write a paragraph about the process of making your camera. You will need to include: o What materials you used. o Were the instructions easy to follow? o Was it a success? Were you able to create an image? o Would you do anything differently? -------------------------------------------------------------------------------------------------- ----------------------------------------------------------- What is a pinhole camera? The word “camera” comes from camera obscura, which simply means “dark chamber”. A pinhole camera is one of the most basic examples of this concept. Pinhole cameras are made from a lightproof box, some photographic paper and a tiny hole (often made with a pin, hence the name). The pinhole is just an aperture, not a true lens, but because it is so small it will still focus on an image on the opposite side of the box, exposing the photo paper placed there. How to make a pinhole camera You will need: A box with a lid – You can make your own or use a shoebox or similar, but then the lid is on it must not let any light inside. You could also use a wide cardboard tube instead. A roll of aluminium foil or sheet of black paper. Sticky tape. Scissors. A needle or drawing pin. -
Pfass and Alternatives in Food Packaging (Paper and Paperboard): Report on the Commercial Availability and Current Uses
PFASs and alternatives in food packaging (paper and paperboard): Report on the commercial availability and current uses Series on Risk Management No. 58 1 Series on Risk Management 0 No. 58 PFASs and Alternatives in Food Packaging (Paper and Paperboard) Report on the Commercial Availability and Current Uses PUBE Please cite this publication as: OECD (2020), PFASs and Alternatives in Food Packaging (Paper and Paperboard) Report on the Commercial Availability and Current Uses, OECD Series on Risk Management, No. 58, Environment, Health and Safety, Environment Directorate, OECD. Acknowledgements: The OECD would like to acknowledge the drafting of a consultancy report by Steve Hollins of Exponent International Ltd. upon which this report is based. It was prepared under the framework of the OECD/UNEP Global PFC Group and included the contribution of information by several organisations (see Annex A). The report is published under the responsibility of the OECD Joint Meeting of the Chemicals Committee and the Working Party on Chemicals, Pesticides and Biotechnology. © Photo credits: Cover: Yuriy Golub/Shutterstock.com © OECD 2020 Applications for permission to reproduce or translate all or part of this material should be made to: Head of Publications Service, [email protected], OECD, 2 rue André-Pascal, 75775 Paris Cedex 16, France ABOUT THE OECD 3 About the OECD The Organisation for Economic Co-operation and Development (OECD) is an intergovernmental organisation in which representatives of 36 industrialised countries in North and South America, Europe and the Asia and Pacific region, as well as the European Commission, meet to co-ordinate and harmonise policies, discuss issues of mutual concern, and work together to respond to international problems. -
Ref. 676.03 SMO 2Nd
INDEX Refer to Chapter Refer to Chapter Refer to Chapter A test 14 acid pretreatment 10 acetate 4 acidproof brick 8 abaca 3 acetate laminating 18 acid pulping 8 abatement 20 acetate pulp 4 acid rain 21 odor 21 acetic acid 4 acid-refined tall oil 6 pollution 20 acetic anhydride 4 acid-resistant 14 abatement device 21 acetone 4 acid size 5 abietic acid 6 acetylated starch 5 acid-stable size 5 abrasion 24 acetyl radical 4 acid sulfite process 8 abrasion debarker I acetylating agent 4 acid tower 8 abrasion resistance 14 acid(s) 4, 8 acid treatment 10 abrasion test 14 abietic 6 acidulating 4 abrasive 7 acetic 4 acidulating agent 4 abrasive backing papers 16 accumulator 8 acidulation 6 abrasiveness 14 carbonic 20 acoustical board 16 abrasive segment 7 Caro's 10 acoustical testing 14 abrasivity (of mineral fillers) 13 cooking 8 acoustic leak detector 9 absorbency 11,14 digester 8 acre-foot 20 relative II fatty 6 acrylamide resins 5 water II formamidine sulfinic 10 acrylic binders 17 absorbent 14,24 formic 4 acrylic fiber 3 absorbent capacity II glucuronic 4 activatable chemical 9 absorbent grades 16 humic 20 activated carbon 20 absorption 5 hydroxy 4 activated sludge 20 capillary 13 hypochlorous 10 activated sludge loading 20 ink 14 lignosulfonic 8 activated sludge process 20 light 14 linoleic 6 activation 4 mechanical 13 mineral 4 surface II tensile energy 14 oleic 6 activation energy 8 vapor 13 pectic 4 Arrhenius 4 absorption coefficient 14 peracetic 10 activator 5 accelerated aging 14 raw 8 active alkali 8 accelerated aging test 14 resin -
8 Paper and Paperboard Packaging M.J
8 Paper and Paperboard Packaging M.J. Kirwan 8.1 INTRODUCTION A wide range of paper and paperboard is used in packaging today – from lightweight infusible tissues for tea and coffee bags to heavy duty boards used in distribution. Paper and paperboard are found wherever products are produced, distributed, marketed and used, and account for about one-third of the total packaging market. Over 40% of all paper and paperboard consumption in Europe is used for packaging and over 50% of the paper and paperboard used for packaging is used by the food industry. One of the earliest references to the use of paper for packaging food products is a patent taken out by Charles Hildeyerd on 16 February 1665 for ‘The way and art of making blew paper used by sugar-bakers and others’ (Hills, 1988). The use of paper and paperboard for packaging purposes accelerated during the latter part of the nineteenth century to meet the needs of manufacturing industry. The manufacture of paper had progressed from a laborious manual operation, one sheet at a time, to continuous high speed production with wood pulp replacing rags as the main raw material. There were also developments in the techniques for printing and converting these materials into packaging containers. Today, examples of the use of paper and paperboard packaging for food can be found in many places, such as supermarkets, traditional markets and retail stores, mail order, fast food, dispensing machines, pharmacies, and in hospital, catering and leisure situations. Uses can be found in packaging all the main categories of food, such as: r dry food products – cereals, biscuits, bread and baked products, tea, coffee, sugar, flour, dry food mixes, etc r frozen foods, chilled foods and ice cream r liquid foods and beverages – juice drinks, milk and milk derived products r chocolate and sugar confectionery r fast foods r fresh produce – fruit, vegetables, meat and fish Packaging made from paper and paperboard is found at the point of sale (primary packs), in storage and for distribution (secondary packaging).