Thermodynamic Activity Measurements with Knudsen Cell Mass Spectrometry

Total Page:16

File Type:pdf, Size:1020Kb

Thermodynamic Activity Measurements with Knudsen Cell Mass Spectrometry Thermodynamic Activity Measurements with Knudsen Cell Mass Spectrometry by Evan H. Copland and Nathan S. Jacobson oupling the Knudsen effusion method with mass spectrome- C try has proven to be one of the most useful experimental tech- niques for studying the equilibrium between condensed phases and com- plex vapors.1 The Knudsen effusion method involves placing a condensed sample in a Knudsen cell, a small enclosure, that is uniformly heated and held until equilibrium is attained between the condensed and vapor phases. The vapor is continuously sampled by effusion through a small orifice in the cell. A molecular beam is formed from the effusing vapor and directed into a mass spectrometer for identification and pressure measure- ment of the species in the vapor phase. Knudsen cell mass spectrometry (KCMS) has been used for nearly fifty years now and continues to be a lead- FIG. 1. Partial schematic of a Knudsen ing technique for obtaining thermody- cell mass spectrometer. (Modified Model 12-90-HT, Spectrumedix, State namic data. Indeed, much of the well- College, PA.) established vapor specie data in the 2 JANAF tables has been obtained from nique and the KCMS technique. Each lar flow is maintained as molecules pass this technique. This is due to the has specific advantages, depending on through the orifice, i.e., molecule-wall extreme versatility of the technique. material and conditions. The EMF tech- collisions dominate over molecule-mol- All classes of materials can be studied nique is suitable for lower temperature ecule collisions. As a general rule, the and all constituents of the vapor phase measurements, provided a suitable cell orifice dimensions must be kept to less can be measured over a wide range of can be constructed. KCMS is useful for then one tenth of the mean free path of -4 -11 pressures (~10 to 10 bar) and tem- higher temperature measurements in a the vapor species, over all experimental peratures (500-2800 K). The ability to system with volatile components. conditions. This, in turn, leads to an selectively measure different vapor In this paper, we briefly review the upper pressure limit of ~10-4 bar for a 1 species makes KCMS a very powerful KCMS technique and identify the major mm orifice. The lower pressure limit is tool for the measurement of compo- experimental issues that must be determined by the sensitivity of the nent activities in metallic and ceramic addressed for precise measurements. instrument and is typically ~10-11 bar. solutions. These issues include temperature mea- As we are dealing with high tempera- Today several groups are applying surement, cell material and cell design, tures and low pressures, the vapor can KCMS to measure thermodynamic and absolute pressure calibration. The be assumed to behave according to the functions in multicomponent metallic resolution of these issues is discussed kinetic theory of ideal gases. On this and ceramic systems. Thermodynamic together with some recent examples of basis, accurate predictions can be made functions, especially component measured thermodynamic data. for the effusion characteristics through activities, are extremely important in the Knudsen cell orifice.5 This allows the development of CALPHAD Basic Technique design of an optimum Knudsen cell (Calculation of Phase Diagrams) type geometry. A well-defined molecular 3 thermodynamic descriptions. These The unique feature of a Knudsen cell beam is sampled from the effusate at descriptions, in turn, are useful for mass spectrometer is the vapor genera- angles close to the normal of the orifice, modeling materials processing and tion system. This has been discussed in collimated by one or more apertures predicting reactions such as oxide for- several excellent reviews.1,4,5 Typically and directed into the ionization cham- mation and fiber/matrix interactions. a Knudsen cell is 1 cm in diameter x 1 ber of the mass spectrometer. The leading experimental methods for cm tall with an orifice of well-defined Figure 1 shows a portion of a typical measuring activities are the Galvanic geometry. The orifice is small (typically Knudsen cell mass spectrometer. The cell or electro-motive force (EMF) tech- 0.5-2 mm diameter) to ensure molecu- basic components—ionizer, accelerator, 28 The Electrochemical Society Interface • Summer 2001 should be at least one hundred times greater than the orifice area). This is readily done with a powder, but may require a larger cell area with a liquid. Temperature control and measure- ment are major sources of error in this technique. The following require- ments must be met: (1) a constant temperature must be maintained; (2) temperature gradients in the cell must be eliminated; and (3) the absolute temperature must be accurately mea- sured. Temperatures can be measured by either a pyrometer or thermocou- ple. These measurements must be taken at the cell, either with a black body hole drilled into the cell or a thermocouple tightly coupled to the cell. A typical calibration involves slowly varying the temperature through the melting point of a pure 2 FIG. 2. Second law heat of vaporization for copper. The tabulated value is 331.8 kJ/mol. metal (e.g., Ag, Au, Cu, etc.) and observing both the corresponding ion sorter, and detector—remain similar cross section, and k is the machine con- plateau in vapor pressure and thermal to the designs of the 1960s. However stant. The machine constant is a com- arrest. Temperature calibration must improved vacuum systems, electronics, bination of numerous factors involved be done frequently for thermocouples and data acquisition systems have led in the formation of the molecular as the vacuum and reactive vapor envi- to more reliable instruments. The major beam, the ionization process, ion col- ronment can result in rapid changes in features of a mass spectrometer for lection efficiency, transmission efficien- wire composition. analysis of high temperature vapor are cy of the analyzer, and collection effi- It is also important that the neutral summarized as follows. A small, repre- ciency of the detector. To calculate precursors for the observed ions be sentative fraction of the molecular absolute vapor pressures the values of identified. For metallic vapors this beam is ionized via impact with a σ both k and i must be known. In order identification is generally simple, e.g., focused beam of mono-energetic elec- to determine the machine constant, a the Ti vapor above Ti alloys forms Ti+ trons. An adjustable electron energy number of experimental issues must be ions. For ceramics this can be more permits precise determination of the addressed. involved as they generally form a more particular energy at which an ion complex ionization pattern, e.g., NiO appears. This measurement is very use- Critical Experimental Issues forms Ni+, NiO+, O +, and O+. ful in understanding the origin of the 2 Typically low energy ionizing elec- observed ions in the mass spectra. Once A number of requirements must be trons are used to minimize fragmenta- formed, the ions are directed into a satisfied for precise measurements. The tion and simplify the mass spectrum, high voltage accelerating region and first requirement is an inert cell. A wide but this reduces sensitivity. then into a magnetic field for selection range of refractory-metal and ceramic according to mass-to-charge ratio. Another issue related to the ion Other common techniques for ion materials have been used for Knudsen intensity measurement is the separa- selection such as quadruple filters and cells. Generally metallic alloys are stud- tion of background peaks from the peak time-of-flight instruments have been ied in refractory ceramic cells (Al2O3, of molecules emerging from the used. However the magnetic field ion ZrO2, Y2O3, etc.) and ceramics are stud- Knudsen cell. There are several selector is most desirable due to its sta- ied in refractory metal cells (W, Mo, Ir, approaches to solving this problem. bility and lack of mass discrimination. etc.). The ionizing electron energy can be Finally, the ions are directed into an Provided a suitable cell material can chosen to limit fragmentation of back- electron multiplier. Ion currents can be be identified, cell design is the next ground hydrocarbons and limit the measured by measuring the voltage issue. The size of the orifice is generally number of background peaks. A mag- drop across a precision resistor or ions determined by the maximum vapor netic sector instrument typically has a may be counted directly. The ion count- pressure over the sample in the temper- resolution of 1000 or greater, which ing technique is preferred, again, due to ature range of interest. The continuous allows separation of inorganic peaks its lack of mass discrimination and easy effusion of the vapor from the cell from any hydrocarbons. Finally a shut- adaptation to data acquisition systems. means that a pressure gradient is pre- ter, as shown in Fig. 1, can be used to The output of the mass spectrometer sent in the cell but cognizant design of interrupt the molecular beam emerging is in ion intensity, Ii. For many thermo- the cell for a given orifice can limit the from the cell so the background can be dynamic measurements this must be divergence of the measured pressure identified and subtracted. converted to partial pressure, Pi, via the from the equilibrium value to well The best test for proper operation of following equation: within the random error of the tech- a Knudsen cell instrument is a simple kI T nique. Numerous studies have consid- second law heat of vaporization of a i 5 Pi = σ (1) ered this issue. In general this is well-characterized vapor pressure stan- i achieved by a cell with a larger diameter dard. This is illustrated in Fig. 2 for Here T is the absolute temperature of than height and a sample with a large copper, where the slope of the line in a σ the vapor source, i is the ionization surface area (generally the sample area plot of ln (IiT) vs.
Recommended publications
  • The Acidity of Atmospheric Particles and Clouds Havala O
    The Acidity of Atmospheric Particles and Clouds Havala O. T. Pye1, Athanasios Nenes2,3, Becky Alexander4, Andrew P. Ault5, Mary C. Barth6, Simon L. Clegg7, Jeffrey L. Collett, Jr.8, Kathleen M. Fahey1, Christopher J. Hennigan9, Hartmut Herrmann10, Maria Kanakidou11, James T. Kelly12, I-Ting Ku8, V. Faye McNeill13, Nicole Riemer14, Thomas 5 Schaefer10, Guoliang Shi15, Andreas Tilgner10, John T. Walker1, Tao Wang16, Rodney Weber17, Jia Xing18, Rahul A. Zaveri19, Andreas Zuend20 1Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA 2School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, CH- 1015, Switzerland 10 3Institute for Chemical Engineering Sciences, Foundation for Research and Technology Hellas, Patras, GR-26504, Greece 4Department of Atmospheric Science, University of Washington, Seattle, WA, 98195, USA 5Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109-1055, USA 6National Center for Atmospheric Research, Boulder, CO, 80307, USA 7School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ, UK 15 8Department of Atmospheric Science, Colorado State University, Fort Collins, CO, 80523, USA 9Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD, 21250, USA 10Leibniz Institute for Tropospheric Research (TROPOS), Atmospheric Chemistry Department (ACD), Leipzig, 04318, Germany 20 11Department of Chemistry, University
    [Show full text]
  • Chaotic Temperatures Vs Coefficients of Thermodynamic Activity: the Advantage of the Method of Chemical Dynamics
    CHAOTIC TEMPERATURES VS COEFFICIENTS OF THERMODYNAMIC ACTIVITY: THE ADVANTAGE OF THE METHOD OF CHEMICAL DYNAMICS B. Zilbergleyt Bank One, IT Department, Chicago E-mail: [email protected] ABSTRACT. The article compares traditional coefficients of thermodynamic activity as a parameter related to individual chemical species to newly introduced reduced chaotic temperatures as system characteristics, both regarding their usage in thermodynamic simulation of open chemical systems. Logical and mathematical backgrounds of both approaches are discussed. It is shown that usage of reduced chaotic temperatures and the Method of Chemical Dynamics to calculate chemical and phase composition in open chemical systems is much less costly, easier to perform and potentially leads to better precision. PROBABILISTIC MODEL OF COMPLEX CHEMICAL EQUILIBRIUM. It is well known how easily the Guldberg-Waage’s equation can be derived from the probabilistic considerations. Being based on the particle collisions, typical for the reactions in gases, it states that chance of the reaction to happen is proportional to joint probability P(A) of reactant particles to occur simultaneously at the same point of the reaction space. This probability merely equals to product of concentrations of the colliding particles. If multiplied by the rate constant it defines the reaction rate. When the rates of the forward and the reverse reactions are equal then the state of equilibrium exists. Less known is the fact that the above derivation is valid only in the case when no one of reactants can be consumed in any other collision with different outcome than A. Chemical system with only one type of collision represents isolated by the reactants (more traditionally referred to as closed) is a simple chemical system: one type of collision – one outcome.
    [Show full text]
  • Chemical Equilibrium As Balance of the Thermodynamic Forces
    Chemical Equilibrium as Balance of the Thermodynamic Forces B. Zilbergleyt, System Dynamics Research Foundation, Chicago, USA, E-mail: [email protected] ABSTRACT. The article sets forth comprehensive basics of thermodynamics of chemical equilibrium as balance of the thermodynamic forces. Based on the linear equations of irreversible thermodynamics, De Donder definition of the thermodynamic force, and Le Chatelier’s principle, our new theory of chemical equilibrium offers an explicit account for multiple chemical interactions within the system. Basic relations between energetic characteristics of chemical transformations and reaction extents are based on the idea of chemical equilibrium as balance between internal and external thermodynamic forces, which is presented in the form of a logistic equation. This equation contains only one new parameter, reflecting the external impact on the chemical system and the system’s resistance to potential changes. Solutions to the basic equation at isothermic-isobaric conditions define the domain of states of the chemical system, including four distinctive areas from true equilibrium to true chaos. The new theory is derived exclusively from the currently recognized ideas of chemical thermodynamics and covers both thermodynamics, equilibrium and non-equilibrium in a unique concept, bringing new opportunities for understanding and practical treatment of complex chemical systems. Among new features one should mention analysis of the system domain of states and the area limits, and a more accurate calculation of the equilibrium compositions. INTRODUCTION. Contemporary chemical thermodynamics is torn apart applying different concepts to traditional isolated systems with true thermodynamic equilibriumi and to open systems with self-organization, loosely described as “far-from-equilibrium” area.
    [Show full text]
  • Thermodynamic Studies of the Fe-Pt System and “Feo”-Containing Slags for Application Towards Ladle Refining
    Thermodynamic Studies of the Fe-Pt System and “FeO”-Containing Slags for Application Towards Ladle Refining Patrik Fredriksson Doctoral Dissertation Stockholm 2003 Royal Institute of Technology Department of Material Science and Engineering Division of Metallurgy Akademisk avhandling som med tillstånd av Kungliga Tekniska Högskolan i Stockholm, framlägges för offentlig granskning för avläggande av Teknologie doktorsexamen, fredagen den 7 November 2003, kl. 10.00 i Kollegiesalen, Administrationsbyggnaden, Kungliga Tekniska Högskolan, Valhallavägen 79 Stockholm ISRN KTH/MSE--03/36--SE+THMETU/AVH ISBN 91-7283-592-3 To Anna ii Abstract In the present work, the thermodynamic activites of iron oxide, denoted as “FeO” in the slag systems Al2O3-“FeO”, CaO-“FeO”, “FeO”-SiO2, Al2O3-“FeO”-SiO2, CaO- “FeO”-SiO2 and “FeO”-MgO-SiO2 were investigated by employing the gas equilibration technique at steelmaking temperatures. The strategy was to expose the molten slag mixtures kept in platinum crucibles for an oxygen potential, determined by a CO/CO2-ratio. A part of the iron reduced from the “FeO” in the slag phase was dissolved into the Pt crucible. In order to obtain the activites of “FeO”, chemical analysis of the quenched slag samples together with thermodynamic information of the binary metallic system Fe-Pt is required. Careful experimental work was carried out by employing a solid-state galvanic cell technique as well as calorimetric measurements in the temperature ranges of 1073-1273 K and 300-1988 K respectively. The outcome of these experiments was incorporated along with previous studies into a CALPHAD-type of thermodynamic assessment performed with the Thermo-Calc™ software. The proposed equilibrium diagram enabled extrapolation to higher temperatures.
    [Show full text]
  • Measurement of Carbon Thermodynamic Activity In
    J - carbon flow through sensor membrane 83 MEASUREMENT OF CARBON THERMODYNAMIC 2 ACTIVITY IN SODIUM g , cm" , min" ; t - time, s; GJT - sodium flow rate irr/hour, L/hour; F.A, KOZLOV, Yu.I. ZAGORULKO, Yu.P. KOVALEV, H_ - sensor signal, vol. % CH ; V.V. ALEKSEEV g 4 Institute of Physics and Power Engineering, Gr - decarburizing gas flow rate through sensor ; Obninsk, o Union of Soviet Socialist Republics T,t - t emperature. C; t - sensor t emperature; Gg - sodium flow rate through sensor. INTRODUCTION ABSTRACT Continuous detection of carbon thermodynaraic activity in The report presents the brief outline on system of carbon sodium coolant of energy installations with fast neutron reac- activity detecting system in sodium(SCD), operating on the tors presupposes conducting the following main functions; : carbon - permeable membrane, of the methods and the results of - Control of carburization sodium potential with reference to testing it under the experimental circulating loop conditions. construction materials; The results of carbon activity sensor calibration with the u,s,e - Control of sodium coolant accidental contamination by carbon- of equilibrium samples of XI8H9, Fe -8Ni, Pe ~12Mn materials bearing impurities, for example, as a result of oil leakage from are listed. The behawiour of carbon activity sensor signals in a centrifuginal pump cooling system. sogium under various transitional conditions and hydrodynamic Performing these functions under the monisothermal loop condi- perturbation in the circulating loop, containing carbon bearing tions has specific features which on the one hand depend on impurities in the sodium flow and their deposits on the surfa- construction and operating parameters of detectors and on the ces flushed by sodium, are described.
    [Show full text]
  • THE CONCEPT of ELECTRON ACTIVITY and ITS RELATION to REDOX POTENTIALS in AQUEOUS GEOCHEMICAL SYSTEMS by Donald C
    THE CONCEPT OF ELECTRON ACTIVITY AND ITS RELATION TO REDOX POTENTIALS IN AQUEOUS GEOCHEMICAL SYSTEMS by Donald C. Thorstenson U.S. GEOLOGICAL SURVEY Open-File Report 84 072 1984 UNITED STATES DEPARTMENT OF THE INTERIOR WILLIAM T. CLARK, Secretary GEOLOGICAL SURVEY Dallas L. Peck, Director For additional information Copies of this report may be write to: purchased from: Regional Research Hydrologist U.S. Geological Survey U.S. Geological Survey Western Distribution Branch Water Resources Division Open-File Services Section 432 National Center Box 25425, Federal Center Reston, Virginia 22092 Denver, Colorado 80225 ERRATA: (p. 1) 1. Equation (2), p. 3, should read: n 2.30RT 1 n 2.30RT , x = Ej? + _____ log__= E° + _____pH . (2) 2. Table 1, p. 6, entry 5, should read: In pure water, p e - 6.9; 3. Line 3, paragraph 3, p. 10 should read: As Fe^+ / aa \ is converted to Fe ( aa ) via equation (15) to 4. Equation (22), p. 13, should read: a n p - anya n+ e (aq) UA (aq) K = . (22) 5. Equation (38), p. 18, should read: F -log ae - = _______ Eh + . (38) ( acl) 2.303RT 2.303RT 6. Equation (52), p. 23, should read: ae- (aq) 7. Equation (53), p. 23, should read: pe s +6.9 and Eh s + 0.41 volt. (53) 8. Equation (54c), p. 23, should read: nu-'e ~ 10 -55.5 (aq) ERRATA: (p. 2) 9. The second line from the bottom, p. 28, should read: ....... (a state that has been maintained for * 105 years based on .... 10. The heading of Table 2, p.
    [Show full text]
  • 9.2 Raoult's Law and Henry's
    Chapter 9 The Behavior of Solutions 1 9.2 Raoult’s Law and Henry’s Law (1) Initially evacuated vessel at T liq. A (2) spontaneously evaporate until P in the vessel ° reaches the saturated vapor pressure of liq. A, p A, at T (3) a dynamic equilibrium established between the rate of evaporation of liq. A & the rate of condensation of vapor A. 2 9.2 Raoult’s Law and Henry’s Law • re(A) α the # of A atoms in the vapor phase, ° thus, rc(A) = kp A , and at equilibrium (9.1) • Similarly, pure liquid B (9.2) re(A) rc(A) liq. A 3 9.2 Raoult’s Law and Henry’s Law (A) the effect of the small addition of liquid B to liquid A Assume (1) the composition of the surface of the liquid = that of the bulk liquid, XA, (2) the sizes of A & B atoms comparable (9.3) (9.4) 4 9.2 Raoult’s Law and Henry’s Law • From (9.1) and (9.3) gives (9.5) and from (9.2) and (9.4) gives (9.6) • Raoult’s law: the vapor pressure exerted by a component i in a solution = (the mole fraction of i in the solution) X (the saturated vapor pressure of pure liquid i ) at T of the solution. 5 9.2 Raoult’s Law and Henry’s Law • Requirements: the intrinsic rates of evaporation of A and B ≠ f(comp. of the solution) i.e., the magnitudes of the A-A, B-B, and A-B bond energies in the solution are identical 6 9.2 Raoult’s Law and Henry’s Law (B) If A-B >> A-A and B-B and a solution of A in B is sufficiently dilute: A atom at the surface surrounded only by B, A in a deeper potential E well than are the A atoms at the surface of pure liq… difficult to be lifted to vapor, evaporation rate is decreased to re(A) to re’(A) 7 9.2 Raoult’s Law and Henry’s Law (9.7) re(A) > re’(A) (9.8) ’ (9.9) • A similar consideration of dilute solutions of B in A gives ’ (9.10) • (9.9),(9.10) : Henry’ law 8 9.2 Raoult’s Law and Henry’s Law Beyond a critical value of XA, re’(A) becomes composition- dependent.
    [Show full text]
  • Fugacity Nov 2 2011.Pdf
    Fugacity - Wikipedia, the free encyclopedia 頁 1 / 5 Fugacity From Wikipedia, the free encyclopedia In chemical thermodynamics, the fugacity (f) of a real gas is an effective pressure which replaces the true mechanical pressure in accurate chemical equilibrium calculations. It is equal to the pressure of an ideal gas which has the same chemical potential as the real gas. For example, [1] nitrogen gas (N2) at 0°C and a pressure of 100 atm has a fugacity of 97.03 atm. This means that the chemical potential of real nitrogen at a pressure of 100 atm has the value which ideal nitrogen would have at a pressure of 97.03 atm. Fugacities are determined experimentally or estimated for various models such as a Van der Waals gas that are closer to reality than an ideal gas. The ideal gas pressure and fugacity are related through the dimensionless fugacity coefficient .[2] For nitrogen at 100 atm, the fugacity coefficient is 97.03 atm / 100 atm = 0.9703. For an ideal gas, fugacity and pressure are equal so is 1. The fugacity is closely related to the thermodynamic activity. For a gas, the activity is simply the fugacity divided by a reference pressure to give a dimensionless quantity. This reference pressure is called the standard state and normally chosen as 1 atmosphere or 1 bar, Again using nitrogen at 100 atm as an example, since the fugacity is 97.03 atm, the activity is just 97.03 with no units. Accurate calculations of chemical equilibrium for real gases should use the fugacity rather than the pressure.
    [Show full text]
  • New Thermodynamic Activity-Based Approach Allows Predicting The
    www.nature.com/scientificreports OPEN New thermodynamic activity‑based approach allows predicting the feasibility of glycolysis Thorsten Greinert1, Kristina Vogel2, Thomas Maskow2 & Christoph Held1* Thermodynamic feasibility analyses help evaluating the feasibility of metabolic pathways. This is an important information used to develop new biotechnological processes and to understand metabolic processes in cells. However, literature standard data are uncertain for most biochemical reactions yielding wrong statements concerning their feasibility. In this article we present activity‑based equilibrium constants for all the ten glycolytic reactions, accompanied by the standard reaction data (standard Gibbs energy of reaction and standard enthalpy of reaction). We further developed a thermodynamic activity‑based approach that allows to correctly determine the feasibility of glycolysis under diferent chosen conditions. The results show for the frst time that the feasibility of glycolysis can be explained by thermodynamics only if (1) correct standard data are used and if (2) the conditions in the cell at non‑equilibrium states are accounted for in the analyses. The results here will help to determine the feasibility of other metabolisms and to understand metabolic processes in cells in the future. Biotechnological routes ofer several advantages over classical chemical routes to produce chemicals, such as higher reaction selectivity and milder reaction conditions, yielding an overall more sustainable processes 1. Fur- thermore, such routes access a world full of new syntheses protocols using reactions that require the use of an enzyme or multiple enzymes in a complete metabolic pathway. However, fnding such new syntheses routes is generally expensive due to high experimental efort. So-called thermodynamic feasibility analyses (TFA) help to determine whether a metabolic pathway is generally feasible or not from thermodynamic point-of-view.
    [Show full text]
  • Introduction and Application of the Activity Concept in the Chemistry of Fused Salts and Slags*
    774 CHEMICKÉ ZVESTI 21, 774—782 (1967) Introduction and Application of the Activity Concept in the Chemistry of Fused Salts and Slags* K. GRJOTHEIM, C. KROHN Institute of Inorganic Chemistry, The Technical University of Norway, Trondheim Using the Temkin definition of activities in molten salts, a method for the calculation of the thermodynamic activity in molten reciprocal salt mix­ tures is discussed. The method is based on classical thermodynamics, viz: the metathetical reactions in the system, the measured ionic exchange equilibria and the Gibbs—Duhem equation. I. Introduction The activities of the respective components in a mixture of fused salts or slags is of primary interest in theoretical metallurgy. Equilibrium calcula­ tions in metallurgy involve the application of the mass action law, but this presupposes knowledge of how the activities of the reacting components vary with the composition of the mixture. The present paper will briefly review how the activity concept is intro­ duced in thermodynamics, and give some examples of its application in fused salts. Thus, a method for calculating the activities in reciprocal salt systems from experimental data is briefly sketched. II. The activity concept Although activity originally was defined as relative fugacity (Lewis, 1908), the transition from chemical potential to activity is now best done in connection with the following equation: i"MA — /"MA = RT m «MA — R? ш «MA' (1) where /гМА and //^A are the chemical potentials of the two different states and aMA and a^ are the corresponding activities of MA. It is customary to attribute a specific value to Дд , namely, the chemical potential in an arbitra­ rily selected standard system where we set the activity of MA equal to unity by definition.
    [Show full text]
  • 3. Activity Coefficients of Aqueous Species 3.1. Introduction
    3. Activity Coefficients of Aqueous Species 3.1. Introduction The thermodynamic activities (ai) of aqueous solute species are usually defined on the basis of molalities. Thus, they can be described by the product of their molal concentrations (mi) and their γ molal activity coefficients ( i): γ ai = mi i (77) The thermodynamic activity of the water (aw) is always defined on a mole fraction basis. Thus, it can be described analogously by product of the mole fraction of water (xw) and its mole fraction λ activity coefficient ( w): λ aw = xw w (78) It is also possible to describe the thermodynamic activities of aqueous solutes on a mole fraction (x) basis. However, such mole fraction-based activities (ai ) are not the same as the more familiar (m) molality-based activities (ai ), as they are defined with respect to different choices of standard λ states. Mole fraction based activities and activity coefficients ( i), are occasionally applied to aqueous nonelectrolyte species, such as ethanol in water. In geochemistry, the aqueous solutions of interest almost always contain electrolytes, so mole-fraction based activities and activity co- efficients of solute species are little more than theoretical curiosities. In EQ3/6, only molality- (m) based activities and activity coefficients are used for such species, so ai always implies ai . Be- cause of the nature of molality, it is not possible to define the activity and activity coefficient of (x) water on a molal basis; thus, aw always means aw . Solution thermodynamics is a construct designed to approximate reality in terms of deviations from some defined ideal behavior.
    [Show full text]
  • Raoult's Law Po Po B B Henry's Law
    Solution Behavior • Goal: Understand the behavior of homogeneous systems containing more than one component. • Concepts Activity Partial molar properties Ideal solutions Non-ideal solutions Gibbs’-Duhem Equation Dilute solutions (Raoult’s law and Henry’s law) • Homework: WS2002 1 1 Raoult’s Law • Describes the behavior of solvents with containing a small volume fraction of solute • The vapor pressure of a component A in a solution at temperature T is equal to the product of the mole fraction of A in solution and the vapor pressure of pure A at temperature T. • Assumes: A, B evaporation rates are independent of composition A-B bond strength is the same as A-A and B-B or A-B bond strength is the mean of A-A and B-B • Example of liquid A in evacuated tank Initially, A evaporates at re(A) • At equilibrium Evaporation/condensation same rate WS2002 2 2 Raoult’s Law • Add a small amount of B (solute) to A (solvent) in tank • If the composition of the surface is the same as the bulk, then the fraction of surface sites occupied by A atoms is XA, the mole fraction • The evaporation rate will decrease accordingly along with the vapor pressure of A above the liquid. Condensation should be the same. Ideal Raoultian Solution = o pXp BBB po pp+ B AB o pA p B pA Vapor Pressure A B XB WS2002 3 3 Henry’s Law • Describes the behavior of a solute in a dilute solution • The solvent obeys Raoult’s law in the same region where the solute follows Henry’s law.
    [Show full text]