3. Activity Coefficients of Aqueous Species 3.1. Introduction

Total Page:16

File Type:pdf, Size:1020Kb

3. Activity Coefficients of Aqueous Species 3.1. Introduction 3. Activity Coefficients of Aqueous Species 3.1. Introduction The thermodynamic activities (ai) of aqueous solute species are usually defined on the basis of molalities. Thus, they can be described by the product of their molal concentrations (mi) and their γ molal activity coefficients ( i): γ ai = mi i (77) The thermodynamic activity of the water (aw) is always defined on a mole fraction basis. Thus, it can be described analogously by product of the mole fraction of water (xw) and its mole fraction λ activity coefficient ( w): λ aw = xw w (78) It is also possible to describe the thermodynamic activities of aqueous solutes on a mole fraction (x) basis. However, such mole fraction-based activities (ai ) are not the same as the more familiar (m) molality-based activities (ai ), as they are defined with respect to different choices of standard λ states. Mole fraction based activities and activity coefficients ( i), are occasionally applied to aqueous nonelectrolyte species, such as ethanol in water. In geochemistry, the aqueous solutions of interest almost always contain electrolytes, so mole-fraction based activities and activity co- efficients of solute species are little more than theoretical curiosities. In EQ3/6, only molality- (m) based activities and activity coefficients are used for such species, so ai always implies ai . Be- cause of the nature of molality, it is not possible to define the activity and activity coefficient of (x) water on a molal basis; thus, aw always means aw . Solution thermodynamics is a construct designed to approximate reality in terms of deviations from some defined ideal behavior. The complex dependency of the activities on solution compo- sition is thus dealt with by shifting the problem to one of describing the activity coefficients. The usual treatment of aqueous solutions is one which simultaneously employs quantities derived from, and therefore belonging to, two distinct models of ideality (Wolery, 1990). All solute ac- tivity coefficients are based on molality and have unit value in the corresponding model of ide- ality, called molality-based ideality. The activity and activity coefficient of water are not constant in an ideal solution of this type, though they do approach unit value at infinite dilution. These solvent properties are derived from mole fraction-based ideality, in which the mole fraction ac- tivity coefficients of all species components in solution have unit value. In an ideal solution of this type, the molal activity coefficients of the solutes are not unity, though they approach it at infinite dilution (see Wolery, 1990). Any geochemical modeling code which treats aqueous solutions must provide one or more mod- els by which to compute the activity coefficients of the solute species and the solvent. In many γ codes, what is computed is the set of i plus aw. As many of the older such codes were constructed to deal only with dilute solutions in which the activity of water is no less than about 0.98, some of these just take the activity of water to be unity. With the advent of activity coefficient models - 36 - of practical usage in concentrated solutions (mostly based on Pitzer’s 1973, 1975 equations), there has been a movement away from this particular and severe approximation. Nevertheless, it is generally the activity of water, rather than the activity coefficient of water, which is evaluated from the model equations. This is what was previously done in EQ3/6. However, EQ3/6 now γ λ evaluates the set of i plus w. This is done to avoid possible computational singularities that may arise, for example if heterogeneous equilibria happen to fix the activity of water (e.g., when a solution is saturated with both gypsum and anhydrite). Good models for activity coefficients must be accurate. A prerequisite for general accuracy is thermodynamic consistency. The activity coefficient of each aqueous species is not independent of that of any of the others. Each is related to a corresponding partial derivative of the excess Gibbs energy of the solution (GEX). The excess Gibbs energy is the difference between the com- plete Gibbs energy and the ideal Gibbs energy. Because there are two models of ideality, hence two models for the ideal Gibbs energy, there are two forms of the excess Gibbs energy, GEXm (molality-based) and GEXx (mole fraction-based). The consequences of this are discussed by Wolery (1990). In version 7.0 of EQ3/6, all activity coefficient models are based on ideality de- fined in terms of molality. Thus, the excess Gibbs energy of concern is GEXm. The activity of wa- ter, which is based on mole-fraction ideality, is imported into this structure as discussed by Wolery (1990). The relevant differential equations are: EXm 1 ∂ γ ------------------------G ln i = ∂ (79) RT ni EXm Σ 1 ∂ -------m- ------------------------G ln aw = – Ω + ∂ (80) RT nw where R is the gas constant, T the absolute temperature, Ω the number of moles of solvent water comprising a mass of 1 kg (Ω ≈ 55.51),and: Σ mm= ∑ i (81) i the sum of molalities of all solute species. Given an expression for the excess Gibbs energy, such equations give a guaranteed route to thermodynamically consistent results (Pitzer, 1984; Wolery, 1990). Equations that are derived by other routes may be tested for consistency using other rela- tions, such as the following forms of the cross-differentiation rule (Wolery, 1990): ∂ ln γ ∂ lnγ --------------j -------------i ∂ = ∂ (82) mi mj ∂ ln a ∂ ln γ ----------------w --------------i ------1 ∂ = ∂ – (83) ni nw nw - 37 - In general, such equations are most easily used to prove that a set of model equations is not ther- modynamically consistent. The issue of sufficiency in proving consistency using these and relat- ed equations (Gibbs-Duhem equations and sum rules) is addressed by Wolery (1990). The activity coefficients in reality are complex functions of the composition of the aqueous so- lution. In electrolyte solutions, the activity coefficients are influenced mainly by electrical inter- actions. Much of their behavior can be correlated in terms of the ionic strength, defined by: 1 2 I = ---∑m z (84) 2 i i i where the summation is over all aqueous solute species and zi is the electrical charge. However, the use of the ionic strength as a means of correlating and predicting activity coefficients has been taken to unrealistic extremes (e.g., in the mean salt method of Garrels and Christ, 1965, p. 58- 60). In general, model equations which express the dependence of activity coefficients on solu- tion composition only in terms of the ionic strength are restricted in applicability to dilute solu- tions. The three basic options for computing the activity coefficients of aqueous species in EQ3/6 are models based respectively on the Davies (1962) equation, the “B-dot” equation of Helgeson (1969), and Pitzer’s (1973, 1975, 1979, 1987) equations. The first two models, owing to limita- tions on accuracy, are only useful in dilute solutions (up to ionic strengths of 1 molal at most). The third basic model is useful in highly concentrated as well as dilute solutions, but is limited in terms of the components that can be treated. With regard to temperature and pressure dependence, all of the following models are parameter- ized along the 1 atm/steam saturation curve. This corresponds to the way in which the tempera- ture and pressure dependence of standard state thermodynamic data are also presently treated in the software. The pressure is thus a function of the temperature rather than an independent vari- able, being fixed at 1.013 bar from 0-100°C and the pressure for steam/liquid water equilibrium from 100-300°C. However, some of the data files have more limited temperature ranges. 3.2. The Davies Equation The first activity coefficient model in EQ3/6 is based on the Davies (1962) equation: γ 2I log= – Aγ, z --------------- + 0.2I (85) i 10 i 1 + I (the constant 0.2 is sometimes also taken as 0.3). This is a simple extended Debye-Hückel model (it reduces to a simple Debye-Hückel model if the “0.2I” part is removed). The Davies equation is frequently used in geochemical modeling (e.g., Parkhurst, Plummer, and Thorstenson, 1980; Stumm and Morgan, 1981). Note that it expresses all dependence on the solution composition through the ionic strength. Also, the activity coefficient is given in terms of the base ten loga- rithm, instead of the natural logarithm. The Debye-Hückel Aγ parameter bears the additional label “10” to ensure consistency with this. The Davies equation is normally only used for temperatures close to 25°C. It is only accurate up to ionic strengths of a few tenths molal in most solutions. In - 38 - some solutions, inaccuracy, defined as the condition of model results differing from experimental measurements by more than the experimental error, is apparent at even lower concentrations. In EQ3/6, the Davies equation option is selected by setting the option flag iopg1 = -1. A support- ing data file consistent with the use of a simple extended Debye-Hückel model must also be sup- plied (e.g., data1 = data1.com, data1.sup, or data1.nea). If iopg1 = -1 and the supporting data file is not of the appropriate type, the software terminates with an error message. The Davies equation has one great strength: the only species-specific parameter required is the electrical charge. This equation may therefore readily be applied to a wide spectrum of species, both those whose existence is well-established and those whose existence is only hypothetical. The Davies equation predicts a unit activity coefficient for all neutral solute species. This is known to be inaccurate. In general, the activity coefficients of neutral species that are non-polar (such as O2(aq), H2(aq), and N2(aq)) increase with increasing ionic strength (the “salting out ef- fect,” so named in reference to the corresponding decreasing solubilities of such species as the salt concentration is increased; cf.
Recommended publications
  • Prediction of Osmotic Coefficients by Pair Correlation Function Method" (1991)
    New Jersey Institute of Technology Digital Commons @ NJIT Dissertations Electronic Theses and Dissertations Spring 1-31-1991 Thermodynamics of strong electrolyte solutions : prediction of osmotic coefficientsy b pair correlation function method One Kwon Rim New Jersey Institute of Technology Follow this and additional works at: https://digitalcommons.njit.edu/dissertations Part of the Chemical Engineering Commons Recommended Citation Rim, One Kwon, "Thermodynamics of strong electrolyte solutions : prediction of osmotic coefficients by pair correlation function method" (1991). Dissertations. 1145. https://digitalcommons.njit.edu/dissertations/1145 This Dissertation is brought to you for free and open access by the Electronic Theses and Dissertations at Digital Commons @ NJIT. It has been accepted for inclusion in Dissertations by an authorized administrator of Digital Commons @ NJIT. For more information, please contact [email protected]. Copyright Warning & Restrictions The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material. Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be “used for any purpose other than private study, scholarship, or research.” If a, user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of “fair use” that user may be
    [Show full text]
  • The Acidity of Atmospheric Particles and Clouds Havala O
    The Acidity of Atmospheric Particles and Clouds Havala O. T. Pye1, Athanasios Nenes2,3, Becky Alexander4, Andrew P. Ault5, Mary C. Barth6, Simon L. Clegg7, Jeffrey L. Collett, Jr.8, Kathleen M. Fahey1, Christopher J. Hennigan9, Hartmut Herrmann10, Maria Kanakidou11, James T. Kelly12, I-Ting Ku8, V. Faye McNeill13, Nicole Riemer14, Thomas 5 Schaefer10, Guoliang Shi15, Andreas Tilgner10, John T. Walker1, Tao Wang16, Rodney Weber17, Jia Xing18, Rahul A. Zaveri19, Andreas Zuend20 1Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA 2School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, CH- 1015, Switzerland 10 3Institute for Chemical Engineering Sciences, Foundation for Research and Technology Hellas, Patras, GR-26504, Greece 4Department of Atmospheric Science, University of Washington, Seattle, WA, 98195, USA 5Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109-1055, USA 6National Center for Atmospheric Research, Boulder, CO, 80307, USA 7School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ, UK 15 8Department of Atmospheric Science, Colorado State University, Fort Collins, CO, 80523, USA 9Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD, 21250, USA 10Leibniz Institute for Tropospheric Research (TROPOS), Atmospheric Chemistry Department (ACD), Leipzig, 04318, Germany 20 11Department of Chemistry, University
    [Show full text]
  • Thermodynamic Properties of 1:1 Salt Aqueous Solutions with the Electrolattice M
    D o s s i e r This paper is a part of the hereunder thematic dossier published in OGST Journal, Vol. 68, No. 2, pp. 187-396 and available online here Cet article fait partie du dossier thématique ci-dessous publié dans la revue OGST, Vol. 68, n°2, pp. 187-396 et téléchargeable ici © Photos: IFPEN, Fotolia, X. DOI: 10.2516/ogst/2012094 DOSSIER Edited by/Sous la direction de : Jean-Charles de Hemptinne InMoTher 2012: Industrial Use of Molecular Thermodynamics InMoTher 2012 : Application industrielle de la thermodynamique moléculaire Oil & Gas Science and Technology – Rev. IFP Energies nouvelles, Vol. 68 (2013), No. 2, pp. 187-396 Copyright © 2013, IFP Energies nouvelles 187 > Editorial électrostatique ab initio X. Rozanska, P. Ungerer, B. Leblanc and M. Yiannourakou 217 > Improving the Modeling of Hydrogen Solubility in Heavy Oil Cuts Using an Augmented Grayson Streed (AGS) Approach 309 > Improving Molecular Simulation Models of Adsorption in Porous Materials: Modélisation améliorée de la solubilité de l’hydrogène dans des Interdependence between Domains coupes lourdes par l’approche de Grayson Streed Augmenté (GSA) Amélioration des modèles d’adsorption dans les milieux poreux R. Torres, J.-C. de Hemptinne and I. Machin par simulation moléculaire : interdépendance entre les domaines J. Puibasset 235 > Improving Group Contribution Methods by Distance Weighting Amélioration de la méthode de contribution du groupe en pondérant 319 > Performance Analysis of Compositional and Modified Black-Oil Models la distance du groupe For a Gas Lift Process A. Zaitseva and V. Alopaeus Analyse des performances de modèles black-oil pour le procédé d’extraction par injection de gaz 249 > Numerical Investigation of an Absorption-Diffusion Cooling Machine Using M.
    [Show full text]
  • Chaotic Temperatures Vs Coefficients of Thermodynamic Activity: the Advantage of the Method of Chemical Dynamics
    CHAOTIC TEMPERATURES VS COEFFICIENTS OF THERMODYNAMIC ACTIVITY: THE ADVANTAGE OF THE METHOD OF CHEMICAL DYNAMICS B. Zilbergleyt Bank One, IT Department, Chicago E-mail: [email protected] ABSTRACT. The article compares traditional coefficients of thermodynamic activity as a parameter related to individual chemical species to newly introduced reduced chaotic temperatures as system characteristics, both regarding their usage in thermodynamic simulation of open chemical systems. Logical and mathematical backgrounds of both approaches are discussed. It is shown that usage of reduced chaotic temperatures and the Method of Chemical Dynamics to calculate chemical and phase composition in open chemical systems is much less costly, easier to perform and potentially leads to better precision. PROBABILISTIC MODEL OF COMPLEX CHEMICAL EQUILIBRIUM. It is well known how easily the Guldberg-Waage’s equation can be derived from the probabilistic considerations. Being based on the particle collisions, typical for the reactions in gases, it states that chance of the reaction to happen is proportional to joint probability P(A) of reactant particles to occur simultaneously at the same point of the reaction space. This probability merely equals to product of concentrations of the colliding particles. If multiplied by the rate constant it defines the reaction rate. When the rates of the forward and the reverse reactions are equal then the state of equilibrium exists. Less known is the fact that the above derivation is valid only in the case when no one of reactants can be consumed in any other collision with different outcome than A. Chemical system with only one type of collision represents isolated by the reactants (more traditionally referred to as closed) is a simple chemical system: one type of collision – one outcome.
    [Show full text]
  • Dissociation Constants and Ph-Titration Curves at Constant Ionic Strength from Electrometric Titrations in Cells Without Liquid
    U. S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS RESEARCH PAPER RP1537 Part of Journal of Research of the N.ational Bureau of Standards, Volume 30, May 1943 DISSOCIATION CONSTANTS AND pH-TITRATION CURVES AT CONSTANT IONIC STRENGTH FROM ELECTRO­ METRIC TITRATIONS IN CELLS WITHOUT LIQUID JUNCTION : TITRATIONS OF FORMIC ACID AND ACETIC ACID By Roger G. Bates, Gerda L. Siegel, and S. F. Acree ABSTRACT An improved method for obtaining the titration curves of monobasic acids is outlined. The sample, 0.005 mole of the sodium salt of the weak acid, is dissolver! in 100 ml of a 0.05-m solution of sodium chloride and titrated electrometrically with an acid-salt mixture in a hydrogen-silver-chloride cell without liquid junction. The acid-salt mixture has the composition: nitric acid, 0.1 m; pot assium nitrate, 0.05 m; sodium chloride, 0.05 m. The titration therefore is performed in a. medium of constant chloride concentration and of practically unchanging ionic­ strength (1'=0.1) . The calculations of pH values and of dissociation constants from the emf values are outlined. The tit ration curves and dissociation constants of formic acid and of acetic acid at 25 0 C were obtained by this method. The pK values (negative logarithms of the dissociation constants) were found to be 3.742 and 4. 754, respectively. CONTENTS Page I . Tntroduction __ _____ ~ __ _______ . ______ __ ______ ____ ________________ 347 II. Discussion of the titrat ion metbod __ __ ___ ______ _______ ______ ______ _ 348 1. Ti t;at~on. clU,:es at constant ionic strength from cells without ltqUld JunctlOlL - - - _ - __ _ - __ __ ____ ____ _____ __ _____ ____ __ _ 349 2.
    [Show full text]
  • Chemical Equilibrium As Balance of the Thermodynamic Forces
    Chemical Equilibrium as Balance of the Thermodynamic Forces B. Zilbergleyt, System Dynamics Research Foundation, Chicago, USA, E-mail: [email protected] ABSTRACT. The article sets forth comprehensive basics of thermodynamics of chemical equilibrium as balance of the thermodynamic forces. Based on the linear equations of irreversible thermodynamics, De Donder definition of the thermodynamic force, and Le Chatelier’s principle, our new theory of chemical equilibrium offers an explicit account for multiple chemical interactions within the system. Basic relations between energetic characteristics of chemical transformations and reaction extents are based on the idea of chemical equilibrium as balance between internal and external thermodynamic forces, which is presented in the form of a logistic equation. This equation contains only one new parameter, reflecting the external impact on the chemical system and the system’s resistance to potential changes. Solutions to the basic equation at isothermic-isobaric conditions define the domain of states of the chemical system, including four distinctive areas from true equilibrium to true chaos. The new theory is derived exclusively from the currently recognized ideas of chemical thermodynamics and covers both thermodynamics, equilibrium and non-equilibrium in a unique concept, bringing new opportunities for understanding and practical treatment of complex chemical systems. Among new features one should mention analysis of the system domain of states and the area limits, and a more accurate calculation of the equilibrium compositions. INTRODUCTION. Contemporary chemical thermodynamics is torn apart applying different concepts to traditional isolated systems with true thermodynamic equilibriumi and to open systems with self-organization, loosely described as “far-from-equilibrium” area.
    [Show full text]
  • Thermodynamic Studies of the Fe-Pt System and “Feo”-Containing Slags for Application Towards Ladle Refining
    Thermodynamic Studies of the Fe-Pt System and “FeO”-Containing Slags for Application Towards Ladle Refining Patrik Fredriksson Doctoral Dissertation Stockholm 2003 Royal Institute of Technology Department of Material Science and Engineering Division of Metallurgy Akademisk avhandling som med tillstånd av Kungliga Tekniska Högskolan i Stockholm, framlägges för offentlig granskning för avläggande av Teknologie doktorsexamen, fredagen den 7 November 2003, kl. 10.00 i Kollegiesalen, Administrationsbyggnaden, Kungliga Tekniska Högskolan, Valhallavägen 79 Stockholm ISRN KTH/MSE--03/36--SE+THMETU/AVH ISBN 91-7283-592-3 To Anna ii Abstract In the present work, the thermodynamic activites of iron oxide, denoted as “FeO” in the slag systems Al2O3-“FeO”, CaO-“FeO”, “FeO”-SiO2, Al2O3-“FeO”-SiO2, CaO- “FeO”-SiO2 and “FeO”-MgO-SiO2 were investigated by employing the gas equilibration technique at steelmaking temperatures. The strategy was to expose the molten slag mixtures kept in platinum crucibles for an oxygen potential, determined by a CO/CO2-ratio. A part of the iron reduced from the “FeO” in the slag phase was dissolved into the Pt crucible. In order to obtain the activites of “FeO”, chemical analysis of the quenched slag samples together with thermodynamic information of the binary metallic system Fe-Pt is required. Careful experimental work was carried out by employing a solid-state galvanic cell technique as well as calorimetric measurements in the temperature ranges of 1073-1273 K and 300-1988 K respectively. The outcome of these experiments was incorporated along with previous studies into a CALPHAD-type of thermodynamic assessment performed with the Thermo-Calc™ software. The proposed equilibrium diagram enabled extrapolation to higher temperatures.
    [Show full text]
  • Simple Mixtures
    Simple mixtures Before dealing with chemical reactions, here we consider mixtures of substances that do not react together. At this stage we deal mainly with binary mixtures (mixtures of two components, A and B). We therefore often be able to simplify equations using the relation xA + xB = 1. A restriction in this chapter – we consider mainly non-electrolyte solutions – the solute is not present as ions. The thermodynamic description of mixtures We already considered the partial pressure – the contribution of one component to the total pressure, when we were dealing with the properties of gas mixtures. Here we introduce other analogous partial properties. Partial molar quantities: describe the contribution (per mole) that a substance makes to an overall property of mixture. The partial molar volume, VJ – the contribution J makes to the total volume of a mixture. Although 1 mol of a substance has a characteristic volume when it is pure, 1 mol of a substance can make different contributions to the total volume of a mixture because molecules pack together in different ways in the pure substances and in mixtures. Imagine a huge volume of pure water. When a further 1 3 mol H2O is added, the volume increases by 18 cm . When we add 1 mol H2O to a huge volume of pure ethanol, the volume increases by only 14 cm3. 18 cm3 – the volume occupied per mole of water molecules in pure water. 14 cm3 – the volume occupied per mole of water molecules in virtually pure ethanol. The partial molar volume of water in pure water is 18 cm3 and the partial molar volume of water in pure ethanol is 14 cm3 – there is so much ethanol present that each H2O molecule is surrounded by ethanol molecules and the packing of the molecules results in the water molecules occupying only 14 cm3.
    [Show full text]
  • Measurement of Carbon Thermodynamic Activity In
    J - carbon flow through sensor membrane 83 MEASUREMENT OF CARBON THERMODYNAMIC 2 ACTIVITY IN SODIUM g , cm" , min" ; t - time, s; GJT - sodium flow rate irr/hour, L/hour; F.A, KOZLOV, Yu.I. ZAGORULKO, Yu.P. KOVALEV, H_ - sensor signal, vol. % CH ; V.V. ALEKSEEV g 4 Institute of Physics and Power Engineering, Gr - decarburizing gas flow rate through sensor ; Obninsk, o Union of Soviet Socialist Republics T,t - t emperature. C; t - sensor t emperature; Gg - sodium flow rate through sensor. INTRODUCTION ABSTRACT Continuous detection of carbon thermodynaraic activity in The report presents the brief outline on system of carbon sodium coolant of energy installations with fast neutron reac- activity detecting system in sodium(SCD), operating on the tors presupposes conducting the following main functions; : carbon - permeable membrane, of the methods and the results of - Control of carburization sodium potential with reference to testing it under the experimental circulating loop conditions. construction materials; The results of carbon activity sensor calibration with the u,s,e - Control of sodium coolant accidental contamination by carbon- of equilibrium samples of XI8H9, Fe -8Ni, Pe ~12Mn materials bearing impurities, for example, as a result of oil leakage from are listed. The behawiour of carbon activity sensor signals in a centrifuginal pump cooling system. sogium under various transitional conditions and hydrodynamic Performing these functions under the monisothermal loop condi- perturbation in the circulating loop, containing carbon bearing tions has specific features which on the one hand depend on impurities in the sodium flow and their deposits on the surfa- construction and operating parameters of detectors and on the ces flushed by sodium, are described.
    [Show full text]
  • Chapter 9 Ideal and Real Solutions
    2/26/2016 CHAPTER 9 IDEAL AND REAL SOLUTIONS • Raoult’s law: ideal solution • Henry’s law: real solution • Activity: correlation with chemical potential and chemical equilibrium Ideal Solution • Raoult’s law: The partial pressure (Pi) of each component in a solution is directly proportional to the vapor pressure of the corresponding pure substance (Pi*) and that the proportionality constant is the mole fraction (xi) of the component in the liquid • Ideal solution • any liquid that obeys Raoult’s law • In a binary liquid, A-A, A-B, and B-B interactions are equally strong 1 2/26/2016 Chemical Potential of a Component in the Gas and Solution Phases • If the liquid and vapor phases of a solution are in equilibrium • For a pure liquid, Ideal Solution • ∆ ∑ Similar to ideal gas mixing • ∆ ∑ 2 2/26/2016 Example 9.2 • An ideal solution is made from 5 mole of benzene and 3.25 mole of toluene. (a) Calculate Gmixing and Smixing at 298 K and 1 bar. (b) Is mixing a spontaneous process? ∆ ∆ Ideal Solution Model for Binary Solutions • Both components obey Rault’s law • Mole fractions in the vapor phase (yi) Benzene + DCE 3 2/26/2016 Ideal Solution Mole fraction in the vapor phase Variation of Total Pressure with x and y 4 2/26/2016 Average Composition (z) • , , , , ,, • In the liquid phase, • In the vapor phase, za x b yb x c yc Phase Rule • In a binary solution, F = C – p + 2 = 4 – p, as C = 2 5 2/26/2016 Example 9.3 • An ideal solution of 5 mole of benzene and 3.25 mole of toluene is placed in a piston and cylinder assembly.
    [Show full text]
  • A Thermodynamic Model of Aqueous Electrolyte Solution Behavior And
    A thermodynamic model of aqueous electrolyte solution behavior and solid-liquid equilibrium in the Li-H-Na-K-Cl-OH-H2O system to very high concentrations (40 molal) and from 0 to 250 C Arnault Lassin, Christomir Christov, Laurent André, Mohamed Azaroual To cite this version: Arnault Lassin, Christomir Christov, Laurent André, Mohamed Azaroual. A thermodynamic model of aqueous electrolyte solution behavior and solid-liquid equilibrium in the Li-H-Na-K-Cl-OH-H2O system to very high concentrations (40 molal) and from 0 to 250 C. American journal of science, American Journal of Science, 2015, 815 (8), pp.204-256. 10.2475/03.2015.02. hal-01331967 HAL Id: hal-01331967 https://hal-brgm.archives-ouvertes.fr/hal-01331967 Submitted on 15 Jun 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A thermodynamic model of aqueous electrolyte solution behavior and solid- liquid equilibrium in the Li-H-Na-K-Cl-OH-H2O system to very high concentrations (40 molal) and from 0 to 250 °C Arnault Lassin1*, Christomir Christov2,3, Laurent André1, Mohamed Azaroual1 1 BRGM – 3 avenue C. Guillemin – Orléans, France ([email protected], [email protected], [email protected]) 2 GeoEco Consulting 2010, 13735 Paseo Cevera, San Diego, CA 92129, USA ([email protected]) 3 Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria ([email protected] ) * Corresponding author.
    [Show full text]
  • THE CONCEPT of ELECTRON ACTIVITY and ITS RELATION to REDOX POTENTIALS in AQUEOUS GEOCHEMICAL SYSTEMS by Donald C
    THE CONCEPT OF ELECTRON ACTIVITY AND ITS RELATION TO REDOX POTENTIALS IN AQUEOUS GEOCHEMICAL SYSTEMS by Donald C. Thorstenson U.S. GEOLOGICAL SURVEY Open-File Report 84 072 1984 UNITED STATES DEPARTMENT OF THE INTERIOR WILLIAM T. CLARK, Secretary GEOLOGICAL SURVEY Dallas L. Peck, Director For additional information Copies of this report may be write to: purchased from: Regional Research Hydrologist U.S. Geological Survey U.S. Geological Survey Western Distribution Branch Water Resources Division Open-File Services Section 432 National Center Box 25425, Federal Center Reston, Virginia 22092 Denver, Colorado 80225 ERRATA: (p. 1) 1. Equation (2), p. 3, should read: n 2.30RT 1 n 2.30RT , x = Ej? + _____ log__= E° + _____pH . (2) 2. Table 1, p. 6, entry 5, should read: In pure water, p e - 6.9; 3. Line 3, paragraph 3, p. 10 should read: As Fe^+ / aa \ is converted to Fe ( aa ) via equation (15) to 4. Equation (22), p. 13, should read: a n p - anya n+ e (aq) UA (aq) K = . (22) 5. Equation (38), p. 18, should read: F -log ae - = _______ Eh + . (38) ( acl) 2.303RT 2.303RT 6. Equation (52), p. 23, should read: ae- (aq) 7. Equation (53), p. 23, should read: pe s +6.9 and Eh s + 0.41 volt. (53) 8. Equation (54c), p. 23, should read: nu-'e ~ 10 -55.5 (aq) ERRATA: (p. 2) 9. The second line from the bottom, p. 28, should read: ....... (a state that has been maintained for * 105 years based on .... 10. The heading of Table 2, p.
    [Show full text]