Fugacity Nov 2 2011.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Fugacity Nov 2 2011.Pdf Fugacity - Wikipedia, the free encyclopedia 頁 1 / 5 Fugacity From Wikipedia, the free encyclopedia In chemical thermodynamics, the fugacity (f) of a real gas is an effective pressure which replaces the true mechanical pressure in accurate chemical equilibrium calculations. It is equal to the pressure of an ideal gas which has the same chemical potential as the real gas. For example, [1] nitrogen gas (N2) at 0°C and a pressure of 100 atm has a fugacity of 97.03 atm. This means that the chemical potential of real nitrogen at a pressure of 100 atm has the value which ideal nitrogen would have at a pressure of 97.03 atm. Fugacities are determined experimentally or estimated for various models such as a Van der Waals gas that are closer to reality than an ideal gas. The ideal gas pressure and fugacity are related through the dimensionless fugacity coefficient .[2] For nitrogen at 100 atm, the fugacity coefficient is 97.03 atm / 100 atm = 0.9703. For an ideal gas, fugacity and pressure are equal so is 1. The fugacity is closely related to the thermodynamic activity. For a gas, the activity is simply the fugacity divided by a reference pressure to give a dimensionless quantity. This reference pressure is called the standard state and normally chosen as 1 atmosphere or 1 bar, Again using nitrogen at 100 atm as an example, since the fugacity is 97.03 atm, the activity is just 97.03 with no units. Accurate calculations of chemical equilibrium for real gases should use the fugacity rather than the pressure. The thermodynamic condition for chemical equilibrium is that the total chemical potential of reactants is equal to that of products. If the chemical potential of each gas is expressed as a function of fugacity, the equilibrium condition may be transformed into the familiar reaction quotient form (or law of mass action) except that the pressures are replaced by fugacities. For a condensed phase (liquid or solid), the chemical potential is equal to that of the vapor in equilibrium with the condensed phase, and therefore the fugacity is equal to the fugacity of the vapor. This fugacity is approximately equal to the vapor pressure when the vapor pressure is not too high. The word "fugacity" is derived from the Latin for "fleetness", which is often interpreted as “the tendency to flee or escape”. The concept of fugacity was introduced by American chemist Gilbert N. Lewis.[3] Contents ■ 1 Definition in terms of chemical potential ■ 2 Evaluation of fugacity for a real gas ■ 3See also ■ 4 References Definition in terms of chemical potential http://en.wikipedia.org/wiki/Fugacity 2011/11/2 Fugacity - Wikipedia, the free encyclopedia 頁 2 / 5 The fugacity of a real gas is formally defined by an equation analogous to the relation between the chemical potential and the pressure of an ideal gas. For any pure substance, the chemical potential (μ) is equal to the molar Gibbs free energy, whose variation with temperature (T) and pressure (p) is given by dμ = dG = − SdT + VdP. At constant temperature, this expression can be integrated as a function of P. We must also set a reference state. For an ideal gas the reference state depends only on pressure, and we set P = 1 bar so that Now, for an ideal gas Reordering, we get This gives the chemical potential for an ideal gas in an isothermal process, with a reference state is P = 1 bar. For a real gas, we cannot calculate because we do not have a simple expression for a real gas’ molar volume. Even if using an approximate expression such as the van der Waals equation, the Redlich-Kwong or any other equation of state, it would depend on the substance being studied and would be therefore of very limited utility. We would like the expression for a real gas’ chemical potential to be similar to the one for an ideal gas. We therefore define a magnitude, called fugacity, so that the chemical potential for a real gas becomes with a given reference state to be discussed later. This is the usual form of the definition, but it may be solved for f to obtain the equivalent explicit form Evaluation of fugacity for a real gas Fugacity is used to better approximate the chemical potential of real gases than estimations made using the ideal gas law. Yet fugacity allows the use of many of the relationships developed for an idealized system. http://en.wikipedia.org/wiki/Fugacity 2011/11/2 Fugacity - Wikipedia, the free encyclopedia 頁 3 / 5 In the real world, gases approach ideal gas behavior at low pressures and high temperatures; under such conditions the value of fugacity approaches the value of pressure. Yet no substance is truly ideal. At moderate pressures real gases have attractive interactions and at high pressures intermolecular repulsions become important. Both interactions result in a deviation from "ideal" behavior for which interactions between gas atoms or molecules are ignored. For a given temperature , the fugacity satisfies the following differential relation: where is the Gibbs free energy, is the gas constant, is the fluid's molar volume, and is a reference fugacity which is generally taken as 1 bar. For an ideal gas, when f = P, this equation reduces to the ideal gas law. Thus, for any two physical states at the same temperature, represented by subscripts 1 and 2, the ratio of the two fugacities is as follows: For an ideal gas, this becomes simply or f = P But for , every gas is an ideal gas. Therefore, fugacity must obey the limit equation We determine f by defining a function We can obtain values for Φ experimentally easily by measuring V, T and P. From the expression above we have We can then write Where http://en.wikipedia.org/wiki/Fugacity 2011/11/2 Fugacity - Wikipedia, the free encyclopedia 頁 4 / 5 Since the expression for an ideal gas was chosen to be ,we must have Suppose we choose . Since , we obtain The fugacity coefficient is defined as ϕ = f/P (note that for an ideal gas, ϕ = 1.0), and it will then verify The integral can be evaluated via graphical integration if we measure experimentally values for Φ while varying P. We can then find the fugacity coefficient of a gas at a given pressure P and calculate The reference state for the expression of a real gas’ chemical potential is taken to be “ideal gas, at P = 1 bar and temperature T”. Since in the reference state the gas is considered to be ideal (it is an hypothetical reference state), we can write that for the real gas See also ■ Activity (chemistry), the measure of the “effective concentration” of a species in a mixture ■ Chemical equilibrium ■ Electrochemical potential ■ Excess chemical potential ■ Partial molar property ■ Thermodynamic equilibrium ■ Fugacity capacity http://en.wikipedia.org/wiki/Fugacity 2011/11/2 Fugacity - Wikipedia, the free encyclopedia 頁 5 / 5 References 1. ^ Peter Atkins and Julio de Paula, Atkins' Physical Chemistry (8th edn, W.H. Freeman 2006), p.112 2. ^ Atkins, Peter; John W. Locke (2002-01). Atkins' Physical Chemistry (7th ed.). Oxford University Press. ISBN 0198792859. 3. ^ Lewis, Gilbert Newton (1908-05-01). "The Osmotic Pressure of Concentrated Solutions, and the Laws of Perfect Solution.". Journal of the American Chemical Society 30 (5): 668–683. doi:10.1021/ja01947a002 (http://dx.doi.org/10.1021%2Fja01947a002) . Retrieved from "http://en.wikipedia.org/w/index.php?title=Fugacity&oldid=456680369" Categories: Physical chemistry Chemical thermodynamics Thermodynamic properties State functions ■ This page was last modified on 21 October 2011 at 14:06. ■ Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply. See Terms of use for details. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization. http://en.wikipedia.org/wiki/Fugacity 2011/11/2.
Recommended publications
  • The Practice of Chemistry Education (Paper)
    CHEMISTRY EDUCATION: THE PRACTICE OF CHEMISTRY EDUCATION RESEARCH AND PRACTICE (PAPER) 2004, Vol. 5, No. 1, pp. 69-87 Concept teaching and learning/ History and philosophy of science (HPS) Juan QUÍLEZ IES José Ballester, Departamento de Física y Química, Valencia (Spain) A HISTORICAL APPROACH TO THE DEVELOPMENT OF CHEMICAL EQUILIBRIUM THROUGH THE EVOLUTION OF THE AFFINITY CONCEPT: SOME EDUCATIONAL SUGGESTIONS Received 20 September 2003; revised 11 February 2004; in final form/accepted 20 February 2004 ABSTRACT: Three basic ideas should be considered when teaching and learning chemical equilibrium: incomplete reaction, reversibility and dynamics. In this study, we concentrate on how these three ideas have eventually defined the chemical equilibrium concept. To this end, we analyse the contexts of scientific inquiry that have allowed the growth of chemical equilibrium from the first ideas of chemical affinity. At the beginning of the 18th century, chemists began the construction of different affinity tables, based on the concept of elective affinities. Berthollet reworked this idea, considering that the amount of the substances involved in a reaction was a key factor accounting for the chemical forces. Guldberg and Waage attempted to measure those forces, formulating the first affinity mathematical equations. Finally, the first ideas providing a molecular interpretation of the macroscopic properties of equilibrium reactions were presented. The historical approach of the first key ideas may serve as a basis for an appropriate sequencing of
    [Show full text]
  • The Acidity of Atmospheric Particles and Clouds Havala O
    The Acidity of Atmospheric Particles and Clouds Havala O. T. Pye1, Athanasios Nenes2,3, Becky Alexander4, Andrew P. Ault5, Mary C. Barth6, Simon L. Clegg7, Jeffrey L. Collett, Jr.8, Kathleen M. Fahey1, Christopher J. Hennigan9, Hartmut Herrmann10, Maria Kanakidou11, James T. Kelly12, I-Ting Ku8, V. Faye McNeill13, Nicole Riemer14, Thomas 5 Schaefer10, Guoliang Shi15, Andreas Tilgner10, John T. Walker1, Tao Wang16, Rodney Weber17, Jia Xing18, Rahul A. Zaveri19, Andreas Zuend20 1Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA 2School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, CH- 1015, Switzerland 10 3Institute for Chemical Engineering Sciences, Foundation for Research and Technology Hellas, Patras, GR-26504, Greece 4Department of Atmospheric Science, University of Washington, Seattle, WA, 98195, USA 5Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109-1055, USA 6National Center for Atmospheric Research, Boulder, CO, 80307, USA 7School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ, UK 15 8Department of Atmospheric Science, Colorado State University, Fort Collins, CO, 80523, USA 9Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD, 21250, USA 10Leibniz Institute for Tropospheric Research (TROPOS), Atmospheric Chemistry Department (ACD), Leipzig, 04318, Germany 20 11Department of Chemistry, University
    [Show full text]
  • Chaotic Temperatures Vs Coefficients of Thermodynamic Activity: the Advantage of the Method of Chemical Dynamics
    CHAOTIC TEMPERATURES VS COEFFICIENTS OF THERMODYNAMIC ACTIVITY: THE ADVANTAGE OF THE METHOD OF CHEMICAL DYNAMICS B. Zilbergleyt Bank One, IT Department, Chicago E-mail: [email protected] ABSTRACT. The article compares traditional coefficients of thermodynamic activity as a parameter related to individual chemical species to newly introduced reduced chaotic temperatures as system characteristics, both regarding their usage in thermodynamic simulation of open chemical systems. Logical and mathematical backgrounds of both approaches are discussed. It is shown that usage of reduced chaotic temperatures and the Method of Chemical Dynamics to calculate chemical and phase composition in open chemical systems is much less costly, easier to perform and potentially leads to better precision. PROBABILISTIC MODEL OF COMPLEX CHEMICAL EQUILIBRIUM. It is well known how easily the Guldberg-Waage’s equation can be derived from the probabilistic considerations. Being based on the particle collisions, typical for the reactions in gases, it states that chance of the reaction to happen is proportional to joint probability P(A) of reactant particles to occur simultaneously at the same point of the reaction space. This probability merely equals to product of concentrations of the colliding particles. If multiplied by the rate constant it defines the reaction rate. When the rates of the forward and the reverse reactions are equal then the state of equilibrium exists. Less known is the fact that the above derivation is valid only in the case when no one of reactants can be consumed in any other collision with different outcome than A. Chemical system with only one type of collision represents isolated by the reactants (more traditionally referred to as closed) is a simple chemical system: one type of collision – one outcome.
    [Show full text]
  • Chemical Equilibrium As Balance of the Thermodynamic Forces
    Chemical Equilibrium as Balance of the Thermodynamic Forces B. Zilbergleyt, System Dynamics Research Foundation, Chicago, USA, E-mail: [email protected] ABSTRACT. The article sets forth comprehensive basics of thermodynamics of chemical equilibrium as balance of the thermodynamic forces. Based on the linear equations of irreversible thermodynamics, De Donder definition of the thermodynamic force, and Le Chatelier’s principle, our new theory of chemical equilibrium offers an explicit account for multiple chemical interactions within the system. Basic relations between energetic characteristics of chemical transformations and reaction extents are based on the idea of chemical equilibrium as balance between internal and external thermodynamic forces, which is presented in the form of a logistic equation. This equation contains only one new parameter, reflecting the external impact on the chemical system and the system’s resistance to potential changes. Solutions to the basic equation at isothermic-isobaric conditions define the domain of states of the chemical system, including four distinctive areas from true equilibrium to true chaos. The new theory is derived exclusively from the currently recognized ideas of chemical thermodynamics and covers both thermodynamics, equilibrium and non-equilibrium in a unique concept, bringing new opportunities for understanding and practical treatment of complex chemical systems. Among new features one should mention analysis of the system domain of states and the area limits, and a more accurate calculation of the equilibrium compositions. INTRODUCTION. Contemporary chemical thermodynamics is torn apart applying different concepts to traditional isolated systems with true thermodynamic equilibriumi and to open systems with self-organization, loosely described as “far-from-equilibrium” area.
    [Show full text]
  • Thermodynamic Studies of the Fe-Pt System and “Feo”-Containing Slags for Application Towards Ladle Refining
    Thermodynamic Studies of the Fe-Pt System and “FeO”-Containing Slags for Application Towards Ladle Refining Patrik Fredriksson Doctoral Dissertation Stockholm 2003 Royal Institute of Technology Department of Material Science and Engineering Division of Metallurgy Akademisk avhandling som med tillstånd av Kungliga Tekniska Högskolan i Stockholm, framlägges för offentlig granskning för avläggande av Teknologie doktorsexamen, fredagen den 7 November 2003, kl. 10.00 i Kollegiesalen, Administrationsbyggnaden, Kungliga Tekniska Högskolan, Valhallavägen 79 Stockholm ISRN KTH/MSE--03/36--SE+THMETU/AVH ISBN 91-7283-592-3 To Anna ii Abstract In the present work, the thermodynamic activites of iron oxide, denoted as “FeO” in the slag systems Al2O3-“FeO”, CaO-“FeO”, “FeO”-SiO2, Al2O3-“FeO”-SiO2, CaO- “FeO”-SiO2 and “FeO”-MgO-SiO2 were investigated by employing the gas equilibration technique at steelmaking temperatures. The strategy was to expose the molten slag mixtures kept in platinum crucibles for an oxygen potential, determined by a CO/CO2-ratio. A part of the iron reduced from the “FeO” in the slag phase was dissolved into the Pt crucible. In order to obtain the activites of “FeO”, chemical analysis of the quenched slag samples together with thermodynamic information of the binary metallic system Fe-Pt is required. Careful experimental work was carried out by employing a solid-state galvanic cell technique as well as calorimetric measurements in the temperature ranges of 1073-1273 K and 300-1988 K respectively. The outcome of these experiments was incorporated along with previous studies into a CALPHAD-type of thermodynamic assessment performed with the Thermo-Calc™ software. The proposed equilibrium diagram enabled extrapolation to higher temperatures.
    [Show full text]
  • Analyzing Binding Data UNIT 7.5 Harvey J
    Analyzing Binding Data UNIT 7.5 Harvey J. Motulsky1 and Richard R. Neubig2 1GraphPad Software, La Jolla, California 2University of Michigan, Ann Arbor, Michigan ABSTRACT Measuring the rate and extent of radioligand binding provides information on the number of binding sites, and their afÞnity and accessibility of these binding sites for various drugs. This unit explains how to design and analyze such experiments. Curr. Protoc. Neurosci. 52:7.5.1-7.5.65. C 2010 by John Wiley & Sons, Inc. Keywords: binding r radioligand r radioligand binding r Scatchard plot r r r r r r receptor binding competitive binding curve IC50 Kd Bmax nonlinear regression r curve Þtting r ßuorescence INTRODUCTION A radioligand is a radioactively labeled drug that can associate with a receptor, trans- porter, enzyme, or any protein of interest. The term ligand derives from the Latin word ligo, which means to bind or tie. Measuring the rate and extent of binding provides information on the number, afÞnity, and accessibility of these binding sites for various drugs. While physiological or biochemical measurements of tissue responses to drugs can prove the existence of receptors, only ligand binding studies (or possibly quantitative immunochemical studies) can determine the actual receptor concentration. Radioligand binding experiments are easy to perform, and provide useful data in many Þelds. For example, radioligand binding studies are used to: 1. Study receptor regulation, for example during development, in diseases, or in response to a drug treatment. 2. Discover new drugs by screening for compounds that compete with high afÞnity for radioligand binding to a particular receptor.
    [Show full text]
  • Measurement of Carbon Thermodynamic Activity In
    J - carbon flow through sensor membrane 83 MEASUREMENT OF CARBON THERMODYNAMIC 2 ACTIVITY IN SODIUM g , cm" , min" ; t - time, s; GJT - sodium flow rate irr/hour, L/hour; F.A, KOZLOV, Yu.I. ZAGORULKO, Yu.P. KOVALEV, H_ - sensor signal, vol. % CH ; V.V. ALEKSEEV g 4 Institute of Physics and Power Engineering, Gr - decarburizing gas flow rate through sensor ; Obninsk, o Union of Soviet Socialist Republics T,t - t emperature. C; t - sensor t emperature; Gg - sodium flow rate through sensor. INTRODUCTION ABSTRACT Continuous detection of carbon thermodynaraic activity in The report presents the brief outline on system of carbon sodium coolant of energy installations with fast neutron reac- activity detecting system in sodium(SCD), operating on the tors presupposes conducting the following main functions; : carbon - permeable membrane, of the methods and the results of - Control of carburization sodium potential with reference to testing it under the experimental circulating loop conditions. construction materials; The results of carbon activity sensor calibration with the u,s,e - Control of sodium coolant accidental contamination by carbon- of equilibrium samples of XI8H9, Fe -8Ni, Pe ~12Mn materials bearing impurities, for example, as a result of oil leakage from are listed. The behawiour of carbon activity sensor signals in a centrifuginal pump cooling system. sogium under various transitional conditions and hydrodynamic Performing these functions under the monisothermal loop condi- perturbation in the circulating loop, containing carbon bearing tions has specific features which on the one hand depend on impurities in the sodium flow and their deposits on the surfa- construction and operating parameters of detectors and on the ces flushed by sodium, are described.
    [Show full text]
  • THE CONCEPT of ELECTRON ACTIVITY and ITS RELATION to REDOX POTENTIALS in AQUEOUS GEOCHEMICAL SYSTEMS by Donald C
    THE CONCEPT OF ELECTRON ACTIVITY AND ITS RELATION TO REDOX POTENTIALS IN AQUEOUS GEOCHEMICAL SYSTEMS by Donald C. Thorstenson U.S. GEOLOGICAL SURVEY Open-File Report 84 072 1984 UNITED STATES DEPARTMENT OF THE INTERIOR WILLIAM T. CLARK, Secretary GEOLOGICAL SURVEY Dallas L. Peck, Director For additional information Copies of this report may be write to: purchased from: Regional Research Hydrologist U.S. Geological Survey U.S. Geological Survey Western Distribution Branch Water Resources Division Open-File Services Section 432 National Center Box 25425, Federal Center Reston, Virginia 22092 Denver, Colorado 80225 ERRATA: (p. 1) 1. Equation (2), p. 3, should read: n 2.30RT 1 n 2.30RT , x = Ej? + _____ log__= E° + _____pH . (2) 2. Table 1, p. 6, entry 5, should read: In pure water, p e - 6.9; 3. Line 3, paragraph 3, p. 10 should read: As Fe^+ / aa \ is converted to Fe ( aa ) via equation (15) to 4. Equation (22), p. 13, should read: a n p - anya n+ e (aq) UA (aq) K = . (22) 5. Equation (38), p. 18, should read: F -log ae - = _______ Eh + . (38) ( acl) 2.303RT 2.303RT 6. Equation (52), p. 23, should read: ae- (aq) 7. Equation (53), p. 23, should read: pe s +6.9 and Eh s + 0.41 volt. (53) 8. Equation (54c), p. 23, should read: nu-'e ~ 10 -55.5 (aq) ERRATA: (p. 2) 9. The second line from the bottom, p. 28, should read: ....... (a state that has been maintained for * 105 years based on .... 10. The heading of Table 2, p.
    [Show full text]
  • 9.2 Raoult's Law and Henry's
    Chapter 9 The Behavior of Solutions 1 9.2 Raoult’s Law and Henry’s Law (1) Initially evacuated vessel at T liq. A (2) spontaneously evaporate until P in the vessel ° reaches the saturated vapor pressure of liq. A, p A, at T (3) a dynamic equilibrium established between the rate of evaporation of liq. A & the rate of condensation of vapor A. 2 9.2 Raoult’s Law and Henry’s Law • re(A) α the # of A atoms in the vapor phase, ° thus, rc(A) = kp A , and at equilibrium (9.1) • Similarly, pure liquid B (9.2) re(A) rc(A) liq. A 3 9.2 Raoult’s Law and Henry’s Law (A) the effect of the small addition of liquid B to liquid A Assume (1) the composition of the surface of the liquid = that of the bulk liquid, XA, (2) the sizes of A & B atoms comparable (9.3) (9.4) 4 9.2 Raoult’s Law and Henry’s Law • From (9.1) and (9.3) gives (9.5) and from (9.2) and (9.4) gives (9.6) • Raoult’s law: the vapor pressure exerted by a component i in a solution = (the mole fraction of i in the solution) X (the saturated vapor pressure of pure liquid i ) at T of the solution. 5 9.2 Raoult’s Law and Henry’s Law • Requirements: the intrinsic rates of evaporation of A and B ≠ f(comp. of the solution) i.e., the magnitudes of the A-A, B-B, and A-B bond energies in the solution are identical 6 9.2 Raoult’s Law and Henry’s Law (B) If A-B >> A-A and B-B and a solution of A in B is sufficiently dilute: A atom at the surface surrounded only by B, A in a deeper potential E well than are the A atoms at the surface of pure liq… difficult to be lifted to vapor, evaporation rate is decreased to re(A) to re’(A) 7 9.2 Raoult’s Law and Henry’s Law (9.7) re(A) > re’(A) (9.8) ’ (9.9) • A similar consideration of dilute solutions of B in A gives ’ (9.10) • (9.9),(9.10) : Henry’ law 8 9.2 Raoult’s Law and Henry’s Law Beyond a critical value of XA, re’(A) becomes composition- dependent.
    [Show full text]
  • New Thermodynamic Activity-Based Approach Allows Predicting The
    www.nature.com/scientificreports OPEN New thermodynamic activity‑based approach allows predicting the feasibility of glycolysis Thorsten Greinert1, Kristina Vogel2, Thomas Maskow2 & Christoph Held1* Thermodynamic feasibility analyses help evaluating the feasibility of metabolic pathways. This is an important information used to develop new biotechnological processes and to understand metabolic processes in cells. However, literature standard data are uncertain for most biochemical reactions yielding wrong statements concerning their feasibility. In this article we present activity‑based equilibrium constants for all the ten glycolytic reactions, accompanied by the standard reaction data (standard Gibbs energy of reaction and standard enthalpy of reaction). We further developed a thermodynamic activity‑based approach that allows to correctly determine the feasibility of glycolysis under diferent chosen conditions. The results show for the frst time that the feasibility of glycolysis can be explained by thermodynamics only if (1) correct standard data are used and if (2) the conditions in the cell at non‑equilibrium states are accounted for in the analyses. The results here will help to determine the feasibility of other metabolisms and to understand metabolic processes in cells in the future. Biotechnological routes ofer several advantages over classical chemical routes to produce chemicals, such as higher reaction selectivity and milder reaction conditions, yielding an overall more sustainable processes 1. Fur- thermore, such routes access a world full of new syntheses protocols using reactions that require the use of an enzyme or multiple enzymes in a complete metabolic pathway. However, fnding such new syntheses routes is generally expensive due to high experimental efort. So-called thermodynamic feasibility analyses (TFA) help to determine whether a metabolic pathway is generally feasible or not from thermodynamic point-of-view.
    [Show full text]
  • Chemical Kinetics I: Basics
    2 CHEMICAL KINETICS I: BASICS c1 In the previous chapter, we c2discussed some the fundamental biological pro- cesses c3undertaken by cells such as transcription and translation. The purpose of this chapter is to introduce the basic concepts needed to model the dynamics of such processes. c4These next two chapters explain how to describe chemical re- actions mathematically, both at a deterministic level where stochastic effects are ignored, as well as probabilistically where stochasticity is explicitly incorporated. 2.1 Law of mass action Consider a reaction where two kinds of molecules, c5 A and B, irreversibly re- act to produce a third kind c6of molecule, C. Schematically, such a reaction is represented as k A+B C. (2.1) ! The parameter k is the rate of the reaction. c7In general, kinetic parameters such as k depend on the environment through thermodynamic quantities such as the pressure and temperature. However, since cells often operate in environments where these quantities do not vary much, for simplicity, we will neglect these dependencies in what follows. According to the law of mass action,the rate of increase of the concentration of the product is given by d[C] = k[A][B] (2.2) dt where we follow the standard convention in chemistry texts: the concentration of the chemical X is represented by [X]. Note that the accompanied decrease of the concentrations of A and B is given by the same expression: k[A][B]. Namely, d[A] d[B] = = k[A][B] (2.3) dt dt − c1Pankaj: This is a test c2Pankaj: have introduced some of the basic c3Pankaj: Text added.
    [Show full text]
  • 1301 Dynamic Equilibrium, Keq, and the Mass Action Expression
    1301 Dynamic Equilibrium, Keq, and the Mass Action Expression The Equilibrium Process Dr. Fred Omega Garces Chemistry 111 Miramar College 1 Equilibrium 05.2015 Concept of Equilibrium & Mass Action Expression Extent of a Chemical Reaction Many reactions do not convert 100% of reactants to products. There is often a point in a reaction when the products will back react to form reactants. The extent of the reaction i.e., 20% or 80%, can be determined by measuring the concentration of each component in solution. In general the extent of the reaction is a function of: Temperature, Concentration and degree of organization which is monitored by some constant value called the - The equilibrium constant (Keq). 2 Equilibrium 05.2015 (Dynamic) Equilibrium Chemical Equilibrium is a dynamic state in which the rates of the forward and the reverse reaction are equal. A teeter-totter is an analogy of a system in balance. The left is balanced with the right. In a chemical reaction this means that the Left (reactant) is changing at the same rate as the right (products). Reactant Product 3 Equilibrium 05.2015 How Equilibrium is achieved Consider the reaction A → B Forward A → B rate = kf[A] Reverse B → A rate = kr[B] Overall A D B rate forward (kf[A]) = rate reverse (kr[B]) Example: N2O4 + E D 2 NO2 Effect of temperature on the N2O4/NO2 equilibrium. The tubes contain a mixture of NO2 and N2O4 . As predicted by Le Chatelier’s principle, the equilibrium favors colorless N2O4 at lower temperatures, but shifts to the darker brown NO2 at higher temperature.
    [Show full text]