(12) United States Patent (10) Patent No.: US 8,993,295 B2 Seed Et Al

Total Page:16

File Type:pdf, Size:1020Kb

(12) United States Patent (10) Patent No.: US 8,993,295 B2 Seed Et Al US008993295 B2 (12) United States Patent (10) Patent No.: US 8,993,295 B2 Seed et al. (45) Date of Patent: *Mar. 31, 2015 (54) METHODS, COMPOSITIONS, AND KITS FOR (56) References Cited THE SELECTIVE ACTIVATION OF PROTOXINS THROUGH COMBINATORIAL U.S. PATENT DOCUMENTS TARGETING 4,975,278 A 12/1990 Senter 5,156,840 A 10, 1992 Goers (75) Inventors: Brian Seed, Boston, MA (US); Jia Liu 6,258,360 B1 7/2001 Von Borstel 2002/0142359 A1 10/2002 Copley Wolfe, Winchester, MA (US); Glen S. 2003, OO54000 A1 3/2003 Dowdy Cho, Brookline, MA (US); Chia-Iun 2004/0048784 A1 3/2004 Keener et al. Tsai, Winchester, MA (US) 2009/00 16988 A1* 1/2009 Buckley ....................... 424/85.2 2010/0256070 A1* 10/2010 Seed et al. ................... 514, 19.3 (73) Assignee: The General Hospital Corporation, Boston, MA (US) FOREIGN PATENT DOCUMENTS WO WO98, 20135 A2 5, 1998 (*) Notice: Subject to any disclaimer, the term of this WO WOO1/14570 A1 3, 2001 patent is extended or adjusted under 35 WO WO 2004/094478 A2 11/2004 U.S.C. 154(b) by 1188 days. This patent is Subject to a terminal dis OTHER PUBLICATIONS claimer. Chiron et al. (JBC 272(50):31707-31711 (1997)).* Nygren et al., “Overview of the clinical efficacy of investigational (21) Appl. No.: 12/374,616 anticancer drugs” Journal of Internal Medicine. 253:46-75 (2003). Stenter et al., “Activation of prodrugs by antibody-enzyme conju (22) PCT Fled: Jul. 20, 2007 gates: a new approach to cancer therapy.” The FASEBJournal 4:188 193 (1990). (86) PCT NO.: PCT/US2007/016475 Holliger et al., “Engineered antibody fragments and the rise of single domains.” Nature Biotechnology. 23: 1126-1136 (2005). S371 (c)(1), Hudson et al., “Engineered antibodies' Nature Medicine. 9(1): 129 (2), (4) Date: Nov. 9, 2009 134 (2003). Xu et al. "Strategies for Enzyme/Prodrug Cancer Therapy,” Clinical (87) PCT Pub. No.: WO2O08/O11157 Cancer Research. 7:3314-3324 (2001). Chang et al., “CD13 (aminopeptidase N) can associate with tumor PCT Pub. Date: Jan. 24, 2008 associated antigen L6 and enhance the motility of human lung cancer cells.” Int. J. Cancer. 116:234-252 (2005). (65) Prior Publication Data Melton et al., “The use of prodrugs in targeted anticancer therapies.” S.T.P Pharma Sciences. 9:13-33 (1999). US 201O/OO55761 A1 Mar. 4, 2010 Cortez-Retamozo et al., “Efficient Cancer Therapy with a Nanobody Based Conjugate.” Cancer Research. 64:2853-2857 (2004). Rita Mulherkar, "Gene Therapy for Cancer.” Current Science. Related U.S. Application Data 81(5):555-560 (2001). De Groot et al. "Anticancer Prodrugs for Application in (60) Provisional application No. 60/832,022, filed on Jul. Monotherapy: Targeting Hypoxia, Tumor-Associated Enzymes, and 20, 2006. Receptors.” Current Medicinal Chemistry. 8:1093-1122 (2001). Frankel et al. “Peptide Toxins Directed at the Matrix Dissolution (51) Int. C. Systems of Cancer Cells.” Protein and Peptide Letters(Bentham CI2N 9/96 (2006.01) Science Publishers Ltd.) 9 (1):1-14 (2002). C07K 6/28 (2006.01) (Continued) A6 IK 47/48 (2006.01) B825/00 (2011.01) C07K I4/95 (2006.01) Primary Examiner — Lynn Bristol C07K (4/28 (2006.01) (74) Attorney, Agent, or Firm — Clark & Elbing LLP C07K (4/34 (2006.01) CI2N 9/16 (2006.01) (57) ABSTRACT A61 K38/00 (2006.01) U.S. C. The present invention provides methods and compositions for (52) treating various diseases through selective killing of targeted CPC ....... C07K 16/2803 (2013.01); A61K 47/48561 cells using a combinatorial targeting approach. The invention (2013.01); A61 K47/48715 (2013.01); A61 K features protoxin fusion proteins containing a cell targeting 47/48761 (2013.01); B82Y5/00 (2013.01); moiety and, a modifiable activation moiety which is activated C07K 14/195 (2013.01); C07K 14/28 by an activation moiety not naturally operably found in, on, or (2013.01); C07K 14/34 (2013.01); C12N 9/16 in the vicinity of a target cell. These methods also include the (2013.01); A61 K38/00 (2013.01); C07K combinatorial use of two or more therapeutic agents, at mini 2319/55 (2013.01) mum comprising a protoxin and a protoxin activator, to target USPC .......................................................... 435/188 and destroy a specific cell population. (58) Field of Classification Search USPC .......................................................... 435/188 See application file for complete search history. 17 Claims, 28 Drawing Sheets US 8,993,295 B2 Page 2 (56) References Cited Wels et al., “Construction, bacterial expression and characterization of a bifunctional single-chain antibody-phosphatase fusion protein targeted to the human erbB-2 receptor.” Biotechnology (N.Y.) OTHER PUBLICATIONS 10:1128-1132, 1992. Supplementary European Search Report for European Application Tait et al., “Prourokinase-annexin V Chimeras: Construction, expres No. EP07810652, issued May 7, 2012. sion, and characterization of recombinant proteins. J Biol. Chem. 270:21594-21599, 1995. * cited by examiner U.S. Patent Mar. 31, 2015 Sheet 2 of 28 US 8,993,295 B2 Jaquinu leo empee, Jequinuteo an Ree Jequinu leo ensee equunu Jeo GNgee U.S. Patent US 8,993,295 B2 c s eyedneNee) ©?Infil U.S. Patent US 8,993,295 B2 U.S. Patent US 8,993,295 B2 expedin Hempere U.S. Patent US 8,993,295 B2 9?un61– U.S. Patent Mar. 31, 2015 Sheet 7 of 28 US 8,993,295 B2 £10uu 3d goo-guy . Oue /?Jnfil U.S. Patent Mar. 31, 2015 Sheet 8 of 28 US 8,993,295 B2 s s N ls N t s e s s 8?Jnfil exedin Helengee) U.S. Patent Mar. 31, 2015 Sheet 9 of 28 US 8,993,295 B2 U.S. Patent Mar. 31, 2015 Sheet 10 of 28 US 8,993,295 B2 OL?un61 U.S. Patent US 8,993,295 B2 WGOA-GOO-Que]6oT exedn (Henqee. U.S. Patent US 8,993,295 B2 U.S. Patent US 8,993,295 B2 eyedneApeej €).?un61 U.S. Patent US 8,993,295 B2 eyedn Hempsee U.S. Patent Mar. 31, 2015 Sheet 15 of 28 US 8,993,295 B2 2 S g 9HWSJS) S C 9. OSD 5 S n 9LO-30 CN& CP 9HW-gue C GO-95) ZOO-QUe-LOWu '8 2CO-Qle-O Wul exedn Hewlee. U.S. Patent US 8,993,295 B2 9]©Infil U.S. Patent Mar. 31, 2015 Sheet 17 of 28 US 8,993,295 B2 U.S. Patent US 8,993,295 B2 v upwolf Feo orguooyo 6 U.S. Patent Mar. 31, 2015 Sheet 19 Of 28 US 8,993,295 B2 6]©Infil go so so so 0 wonve 06 08 02 09 09 07 0€. 02 0?. v wra V V ve 0!-- up Wolf eo Ouoo go 9, U.S. Patent Mar. 31, 2015 Sheet 20 of 28 US 8,993,295 B2 OZ?unôl U.S. Patent Mar. 31, 2015 Sheet 21 of 28 US 8,993,295 B2 ********** LZ?un61-3 U.S. Patent US 8,993,295 B2 -AASTAJAJAH-:LQd ZZ?unôl U.S. Patent US 8,993,295 B2 £Z?un61– U.S. Patent Mar. 31, 2015 Sheet 24 of 28 US 8,993,295 B2 U.S. Patent US 8,993,295 B2 U.S. Patent Mar. 31, 2015 Sheet 26 of 28 US 8,993,295 B2 neuneºs 3sequos (GC-ONO'IOES) E 999x19 U.S. Patent US 8,993,295 B2 ZZ?un61 U.S. Patent US 8,993,295 B2 US 8,993,295 B2 1. 2 METHODS, COMPOSITIONS, AND KITS FOR or contributing to the formation of metastases. In those THE SELECTIVE ACTIVATION OF tumors which harbor CSCs it is highly attractive to be able to PROTOXINS THROUGH COMBINATORIAL eliminate these cells. CSCs have been thought to possess TARGETING many properties similar to that of normal stems cells, e.g., long life span, relative mitotic quiescence, and active DNA CROSS-REFERENCE TO RELATED repair capacity, as well as resistance to apoptosis and to drug/ APPLICATIONS toxins through high level expression of ATP-binding cassette drug transporters such as P-glycoprotein. Consequently, This application is the U.S. National Stage of International CSCs are thought to be difficult to target and destroy by Application No. PCT/US2007/16475, filed Jul. 20, 2007, 10 conventional cancer therapies (Dean et al., Nat. Rev. Cancer which in turn, claims the benefit of U.S. Provisional Appli 5:275 (2005)). Conversely, it is critically important to distin cation No. 60/832,022, filed Jul. 20, 2006, each of which is guish CSCs from normal stem cells because of the essential incorporated by reference. roles that normal stem cells play in the renewal of normal tissues. FIELD OF THE INVENTION 15 To increase the selectivity of highly toxic anti-tumor In general, the present invention relates to a therapeutic agents, various attempts have been made to take advantage of strategy for targeting cyotoxic or cytostatic agents to particu specific features of the tumor microenvironment, such as the lar cell types while reducing systemic adverse effects. More low pH, low oxygen tension, or increased density of tumor specifically, the present invention involves the use of a thera specific enzymes, that are not found in the vicinity of normal peutic modality comprising two or more individually inactive cells in well-perfused tissues. Environmentally sensitive anti components with independent targeting principles, which are tumor agents have been developed that are hypothesized to activated through their specific interaction at the targeted exhibit increased toxicity in the solid tumor. For example cells. The invention also provides related methods and com “bioreductive prodrugs are agents that can be activated to positions.
Recommended publications
  • Peking University-Juntendo University Joint Symposium on Cancer Research and Treatment ADAM28 (A Disintegrin and Metalloproteinase 28) in Cancer Cell Proliferation and Progression
    Whatʼs New from Juntendo University, Tokyo Juntendo Medical Journal 2017. 63(5), 322-325 Peking University - Juntendo University Joint Symposium on Cancer Research and Treatment ADAM28 (a Disintegrin and Metalloproteinase 28) in Cancer Cell Proliferation and Progression YASUNORI OKADA* *Department of Pathophysiology for Locomotive and Neoplastic Diseases, Juntendo University Graduate School of Medicine, Tokyo, Japan A disintegrinandmetalloproteinase 28 (ADAM28) is overexpressedpredominantlyby carcinoma cells in more than 70% of the non-small cell lung carcinomas, showing positive correlations with carcinoma cell proliferation and metastasis. ADAM28 cleaves insulin-like growth factor binding protein-3 (IGFBP-3) in the IGF-I/IGFBP-3 complex, leading to stimulation of cell proliferation by intact IGF-I released from the complex. ADAM28 also degrades von Willebrand factor (VWF), which induces apoptosis in human carcinoma cell lines with negligible ADAM28 expression, andthe VWF digestionby ADAM28-expressing carcinoma cells facilitates them to escape from VWF-induced apoptosis, resulting in promotion of metastasis. We have developed human antibodies against ADAM28 andshown that one of them significantly inhibits tumor growth andmetastasis using lung adenocarcinoma cells. Our data suggest that ADAM28 may be a new molecular target for therapy of the patients with ADAM28-expressing non-small cell lung carcinoma. Key words: a disintegrin and metalloproteinase 28 (ADAM28), cell proliferation, invasion, metastasis, human antibody inhibitor Introduction human cancers 2). However, development of the synthetic inhibitors of MMPs andtheir application Cancer cell proliferation andprogression are for treatment of the cancer patients failed 3). modulated by proteolytic cleavage of tissue micro- On the other hand, members of the ADAM (a environmental factors such as extracellular matrix disintegrin and metalloproteinase) gene family, (ECM), growth factors andcytokines, receptors another family belonging to the metzincin gene andcell adhesionmolecules.
    [Show full text]
  • Molecular Mechanisms Involved Involved in the Interaction Effects of HCV and Ethanol on Liver Cirrhosis
    Virginia Commonwealth University VCU Scholars Compass Theses and Dissertations Graduate School 2010 Molecular Mechanisms Involved Involved in the Interaction Effects of HCV and Ethanol on Liver Cirrhosis Ryan Fassnacht Virginia Commonwealth University Follow this and additional works at: https://scholarscompass.vcu.edu/etd Part of the Physiology Commons © The Author Downloaded from https://scholarscompass.vcu.edu/etd/2246 This Thesis is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars Compass. For more information, please contact [email protected]. Ryan C. Fassnacht 2010 All Rights Reserved Molecular Mechanisms Involved in the Interaction Effects of HCV and Ethanol on Liver Cirrhosis A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science at Virginia Commonwealth University. by Ryan Christopher Fassnacht, B.S. Hampden Sydney University, 2005 M.S. Virginia Commonwealth University, 2010 Director: Valeria Mas, Ph.D., Associate Professor of Surgery and Pathology Division of Transplant Department of Surgery Virginia Commonwealth University Richmond, Virginia July 9, 2010 Acknowledgement The Author wishes to thank his family and close friends for their support. He would also like to thank the members of the molecular transplant team for their help and advice. This project would not have been possible with out the help of Dr. Valeria Mas and her endearing
    [Show full text]
  • The International Journal of Biochemistry & Cell Biology
    The International Journal of Biochemistry & Cell Biology 41 (2009) 1685–1696 Contents lists available at ScienceDirect The International Journal of Biochemistry & Cell Biology journal homepage: www.elsevier.com/locate/biocel Cathepsin X cleaves the C-terminal dipeptide of alpha- and gamma-enolase and impairs survival and neuritogenesis of neuronal cells Natasaˇ Obermajer a,b,∗, Bojan Doljak a, Polona Jamnik c,Ursaˇ Pecarˇ Fonovic´ a, Janko Kos a,b a University of Ljubljana, Faculty of Pharmacy, Askerceva 7, 1000 Ljubljana, Slovenia b Jozef Stefan Institute, Department of Biotechnology, Jamova 39, 1000 Ljubljana, Slovenia c University of Ljubljana, Biotechnical Faculty, Jamnikarjeva 101, 1000 Ljubljana, Slovenia article info abstract Article history: The cysteine carboxypeptidase cathepsin X has been recognized as an important player in degenerative Received 22 January 2009 processes during normal aging and in pathological conditions. In this study we identify isozymes alpha- Received in revised form 17 February 2009 and gamma-enolases as targets for cathepsin X. Cathepsin X sequentially cleaves C-terminal amino acids Accepted 18 February 2009 of both isozymes, abolishing their neurotrophic activity. Neuronal cell survival and neuritogenesis are, Available online 6 March 2009 in this way, regulated, as shown on pheochromocytoma cell line PC12. Inhibition of cathepsin X activity increases generation of plasmin, essential for neuronal differentiation and changes the length distribution Keywords: of neurites, especially in the early phase of neurite outgrowth. Moreover, cathepsin X inhibition increases Cathepsin X Enolase neuronal survival and reduces serum deprivation induced apoptosis, particularly in the absence of nerve Neuritogenesis growth factor. On the other hand, the proliferation of cells is decreased, indicating induction of differ- Neuronal cell survival entiation.
    [Show full text]
  • Human ADAM12 Quantikine ELISA
    Quantikine® ELISA Human ADAM12 Immunoassay Catalog Number DAD120 For the quantitative determination of A Disintegrin And Metalloproteinase domain- containing protein 12 (ADAM12) concentrations in cell culture supernates, serum, plasma, and urine. This package insert must be read in its entirety before using this product. For research use only. Not for use in diagnostic procedures. TABLE OF CONTENTS SECTION PAGE INTRODUCTION .....................................................................................................................................................................1 PRINCIPLE OF THE ASSAY ...................................................................................................................................................2 LIMITATIONS OF THE PROCEDURE .................................................................................................................................2 TECHNICAL HINTS .................................................................................................................................................................2 MATERIALS PROVIDED & STORAGE CONDITIONS ...................................................................................................3 OTHER SUPPLIES REQUIRED .............................................................................................................................................3 PRECAUTIONS .........................................................................................................................................................................4
    [Show full text]
  • 1 ICR-Geneset Gene List
    ICR-geneset Gene List. IMAGE ID UniGene Locus Name Cluster 20115 Hs.62185 SLC9A6 solute carrier family 9 (sodium/hydrogen exchanger), isoform 6 21738 21899 Hs.78353 SRPK2 SFRS protein kinase 2 21908 Hs.79133 CDH8 cadherin 8, type 2 22040 Hs.151738 MMP9 matrix metalloproteinase 9 (gelatinase B, 92kD gelatinase, 92kD type IV collagenase) 22411 Hs.183 FY Duffy blood group 22731 Hs.1787 PHRET1 PH domain containing protein in retina 1 22859 Hs.356487 ESTs 22883 Hs.150926 FPGT fucose-1-phosphate guanylyltransferase 22918 Hs.346868 EBNA1BP2 EBNA1 binding protein 2 23012 Hs.158205 BLZF1 basic leucine zipper nuclear factor 1 (JEM-1) 23073 Hs.284244 FGF2 fibroblast growth factor 2 (basic) 23173 Hs.151051 MAPK10 mitogen-activated protein kinase 10 23185 Hs.289114 TNC tenascin C (hexabrachion) 23282 Hs.8024 IK IK cytokine, down-regulator of HLA II 23353 23431 Hs.50421 RB1CC1 RB1-inducible coiled-coil 1 23514 23548 Hs.71848 Human clone 23548 mRNA sequence 23629 Hs.135587 Human clone 23629 mRNA sequence 23658 Hs.265855 SETMAR SET domain and mariner transposase fusion gene 23676 Hs.100841 Homo sapiens clone 23676 mRNA sequence 23772 Hs.78788 LZTR1 leucine-zipper-like transcriptional regulator, 1 23776 Hs.75438 QDPR quinoid dihydropteridine reductase 23804 Hs.343586 ZFP36 zinc finger protein 36, C3H type, homolog (mouse) 23831 Hs.155247 ALDOC aldolase C, fructose-bisphosphate 23878 Hs.99902 OPCML opioid binding protein/cell adhesion molecule-like 23903 Hs.12526 Homo sapiens clone 23903 mRNA sequence 23932 Hs.368063 Human clone 23932 mRNA sequence 24004
    [Show full text]
  • To Study Mutant P53 Gain of Function, Various Tumor-Derived P53 Mutants
    Differential effects of mutant TAp63γ on transactivation of p53 and/or p63 responsive genes and their effects on global gene expression. A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science By Shama K Khokhar M.Sc., Bilaspur University, 2004 B.Sc., Bhopal University, 2002 2007 1 COPYRIGHT SHAMA K KHOKHAR 2007 2 WRIGHT STATE UNIVERSITY SCHOOL OF GRADUATE STUDIES Date of Defense: 12-03-07 I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPERVISION BY SHAMA KHAN KHOKHAR ENTITLED Differential effects of mutant TAp63γ on transactivation of p53 and/or p63 responsive genes and their effects on global gene expression BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Master of Science Madhavi P. Kadakia, Ph.D. Thesis Director Daniel Organisciak , Ph.D. Department Chair Committee on Final Examination Madhavi P. Kadakia, Ph.D. Steven J. Berberich, Ph.D. Michael Leffak, Ph.D. Joseph F. Thomas, Jr., Ph.D. Dean, School of Graduate Studies 3 Abstract Khokhar, Shama K. M.S., Department of Biochemistry and Molecular Biology, Wright State University, 2007 Differential effect of TAp63γ mutants on transactivation of p53 and/or p63 responsive genes and their effects on global gene expression. p63, a member of the p53 gene family, known to play a role in development, has more recently also been implicated in cancer progression. Mice lacking p63 exhibit severe developmental defects such as limb truncations, abnormal skin, and absence of hair follicles, teeth, and mammary glands. Germline missense mutations of p63 have been shown to be responsible for several human developmental syndromes including SHFM, EEC and ADULT syndromes and are associated with anomalies in the development of organs of epithelial origin.
    [Show full text]
  • ADAM10 Site-Dependent Biology: Keeping Control of a Pervasive Protease
    International Journal of Molecular Sciences Review ADAM10 Site-Dependent Biology: Keeping Control of a Pervasive Protease Francesca Tosetti 1,* , Massimo Alessio 2, Alessandro Poggi 1,† and Maria Raffaella Zocchi 3,† 1 Molecular Oncology and Angiogenesis Unit, IRCCS Ospedale Policlinico S. Martino Largo R. Benzi 10, 16132 Genoa, Italy; [email protected] 2 Proteome Biochemistry, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; [email protected] 3 Division of Immunology, Transplants and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; [email protected] * Correspondence: [email protected] † These authors contributed equally to this work as last author. Abstract: Enzymes, once considered static molecular machines acting in defined spatial patterns and sites of action, move to different intra- and extracellular locations, changing their function. This topological regulation revealed a close cross-talk between proteases and signaling events involving post-translational modifications, membrane tyrosine kinase receptors and G-protein coupled recep- tors, motor proteins shuttling cargos in intracellular vesicles, and small-molecule messengers. Here, we highlight recent advances in our knowledge of regulation and function of A Disintegrin And Metalloproteinase (ADAM) endopeptidases at specific subcellular sites, or in multimolecular com- plexes, with a special focus on ADAM10, and tumor necrosis factor-α convertase (TACE/ADAM17), since these two enzymes belong to the same family, share selected substrates and bioactivity. We will discuss some examples of ADAM10 activity modulated by changing partners and subcellular compartmentalization, with the underlying hypothesis that restraining protease activity by spatial Citation: Tosetti, F.; Alessio, M.; segregation is a complex and powerful regulatory tool.
    [Show full text]
  • Role and Regulation of the Metalloproteinase ADAM8 in Liver Inflammation and Hepatocellular Carcinoma
    Role and Regulation of the Metalloproteinase ADAM8 in Liver Inflammation and Hepatocellular Carcinoma Von der Fakultät für Mathematik, Informatik und Naturwissenschaften der RWTH Aachen University zur Erlangung des akademischen Grades einer Doktorin der Naturwissenschaften genehmigte Dissertation vorgelegt von Tanzeela Awan M. Phil Pharmacology aus Layyah, Pakistan Berichter: Herr Universitätsprofessor Dr. rer. nat. Andreas Ludwig Frau Universitätsprofessorin Dr. phil. nat. Gabriele Pradel Herr Universitätsprofessor Dr. rer. nat. Martin Zenke Tag der mündlichen Prüfung: 11.01.2021 Diese Dissertation ist auf den Internetseiten der Universitätsbibliothek online verfügbar. Table of Contents Table of Contents 1 Introduction .......................................................................................... 1 1.1 The Liver .............................................................................................. 1 1.1.1 Cells of the liver ................................................................................... 1 1.1.2 Liver inflammation ............................................................................... 3 1.1.3 Liver carcinoma .................................................................................... 6 1.1.4 Integrin and focal adhesion kinase signalling ...................................... 7 1.2 Metalloproteinases ................................................................................ 9 1.2.1 ADAM proteases: structure and functions of different domains ....... 10 1.3 ADAM8 .............................................................................................
    [Show full text]
  • Differential Proteomic Analysis of the Pancreas of Diabetic Db/Db Mice Reveals the Proteins Involved in the Development of Complications of Diabetes Mellitus
    Int. J. Mol. Sci. 2014, 15, 9579-9593; doi:10.3390/ijms15069579 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Article Differential Proteomic Analysis of the Pancreas of Diabetic db/db Mice Reveals the Proteins Involved in the Development of Complications of Diabetes Mellitus Victoriano Pérez-Vázquez 1,*, Juan M. Guzmán-Flores 1, Daniela Mares-Álvarez 1, Magdalena Hernández-Ortiz 2, Maciste H. Macías-Cervantes 1, Joel Ramírez-Emiliano 1 and Sergio Encarnación-Guevara 2 1 Depto. de Ciencias Médicas, División de Ciencias de la Salud, Campus León, Universidad de Guanajuato, León, Guanajuato 37320, Mexico; E-Mails: [email protected] (J.M.G.-F.); [email protected] (D.M.-A.); [email protected] (M.H.M.-C.); [email protected] (J.R.-E.) 2 Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico; E-Mails: [email protected] (M.H.-O.); [email protected] (S.E.-G.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +52-477-7143-812; Fax: +52-477-7167-623. Received: 4 April 2014; in revised form: 14 May 2014 / Accepted: 19 May 2014 / Published: 30 May 2014 Abstract: Type 2 diabetes mellitus is characterized by hyperglycemia and insulin-resistance. Diabetes results from pancreatic inability to secrete the insulin needed to overcome this resistance. We analyzed the protein profile from the pancreas of ten-week old diabetic db/db and wild type mice through proteomics. Pancreatic proteins were separated in two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) and significant changes in db/db mice respect to wild type mice were observed in 27 proteins.
    [Show full text]
  • The Nutrition and Food Web Archive Medical Terminology Book
    The Nutrition and Food Web Archive Medical Terminology Book www.nafwa.
    [Show full text]
  • ONLINE SUPPLEMENTARY TABLE Table 2. Differentially Expressed
    ONLINE SUPPLEMENTARY TABLE Table 2. Differentially Expressed Probe Sets in Livers of GK Rats. A. Immune/Inflammatory (67 probe sets, 63 genes) Age Strain Probe ID Gene Name Symbol Accession Gene Function 5 WKY 1398390_at small inducible cytokine B13 precursor Cxcl13 AA892854 chemokine activity; lymph node development 5 WKY 1389581_at interleukin 33 Il33 BF390510 cytokine activity 5 WKY *1373970_at interleukin 33 Il33 AI716248 cytokine activity 5 WKY 1369171_at macrophage stimulating 1 (hepatocyte growth factor-like) Mst1; E2F2 NM_024352 serine-throenine kinase; tumor suppression 5 WKY 1388071_x_at major histocompatability antigen Mhc M24024 antigen processing and presentation 5 WKY 1385465_at sialic acid binding Ig-like lectin 5 Siglec5 BG379188 sialic acid-recognizing receptor 5 WKY 1393108_at major histocompatability antigen Mhc BM387813 antigen processing and presentation 5 WKY 1388202_at major histocompatability antigen Mhc BI395698 antigen processing and presentation 5 WKY 1371171_at major histocompatability antigen Mhc M10094 antigen processing and presentation 5 WKY 1370382_at major histocompatability antigen Mhc BI279526 antigen processing and presentation 5 WKY 1371033_at major histocompatability antigen Mhc AI715202 antigen processing and presentation 5 WKY 1383991_at leucine rich repeat containing 8 family, member E Lrrc8e BE096426 proliferation and activation of lymphocytes and monocytes. 5 WKY 1383046_at complement component factor H Cfh; Fh AA957258 regulation of complement cascade 4 WKY 1369522_a_at CD244 natural killer
    [Show full text]
  • Supplementary Table 1: Adhesion Genes Data Set
    Supplementary Table 1: Adhesion genes data set PROBE Entrez Gene ID Celera Gene ID Gene_Symbol Gene_Name 160832 1 hCG201364.3 A1BG alpha-1-B glycoprotein 223658 1 hCG201364.3 A1BG alpha-1-B glycoprotein 212988 102 hCG40040.3 ADAM10 ADAM metallopeptidase domain 10 133411 4185 hCG28232.2 ADAM11 ADAM metallopeptidase domain 11 110695 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 195222 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 165344 8751 hCG20021.3 ADAM15 ADAM metallopeptidase domain 15 (metargidin) 189065 6868 null ADAM17 ADAM metallopeptidase domain 17 (tumor necrosis factor, alpha, converting enzyme) 108119 8728 hCG15398.4 ADAM19 ADAM metallopeptidase domain 19 (meltrin beta) 117763 8748 hCG20675.3 ADAM20 ADAM metallopeptidase domain 20 126448 8747 hCG1785634.2 ADAM21 ADAM metallopeptidase domain 21 208981 8747 hCG1785634.2|hCG2042897 ADAM21 ADAM metallopeptidase domain 21 180903 53616 hCG17212.4 ADAM22 ADAM metallopeptidase domain 22 177272 8745 hCG1811623.1 ADAM23 ADAM metallopeptidase domain 23 102384 10863 hCG1818505.1 ADAM28 ADAM metallopeptidase domain 28 119968 11086 hCG1786734.2 ADAM29 ADAM metallopeptidase domain 29 205542 11085 hCG1997196.1 ADAM30 ADAM metallopeptidase domain 30 148417 80332 hCG39255.4 ADAM33 ADAM metallopeptidase domain 33 140492 8756 hCG1789002.2 ADAM7 ADAM metallopeptidase domain 7 122603 101 hCG1816947.1 ADAM8 ADAM metallopeptidase domain 8 183965 8754 hCG1996391 ADAM9 ADAM metallopeptidase domain 9 (meltrin gamma) 129974 27299 hCG15447.3 ADAMDEC1 ADAM-like,
    [Show full text]