TSG95 PAL/NTSC Signal Generator
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
NTE15039 Integrated Circuit VHS/VCR Chroma Signal Proessor for NTSC/PAL/SECAM Systems
NTE15039 Integrated Circuit VHS/VCR Chroma Signal Proessor for NTSC/PAL/SECAM Systems Description: The NTE15039 is a multifunctional IC in a 24–Lead DIP type package that contains VHS VCT chroma signal processing circuitry. Since the package is small and a minimum number of external compo- nents are required, the NTE15039 occupies much less space on the PC board thus facilitating VCR design. The chroma section is made adjustment–free (except REC chroma level) thus streamlining the manufacture of VCRs Features: D Designed for NTSC/PAL/MESECAM Systems D Adjustment–Free Chroma Section (Except REC Chroma Level) D Few External Components Required D LPF Usable for REC/PB D Multifunctional: 2fSC Generator for CCD Drive Function to Select APC Loop Input Signal Passed/Not Passed Through Comb Filter 3rd Lock Protector of VXO Absolute Maximum Ratings: (TA = +25°C unless otherwise specified) Maximum Supply Voltage, VCCmax. 7V Allowable Power Dissipation (TA ≤ +65°C), PDmax. 850mW Operating Temperature Range, Topg . –10° to +65°C Storage Temperature Range, Tstg . –40° to +125°C Recommended Operating Conditions: (TA = +25°C unless otherwise specified) Recommended Supply Voltage, VCC . 5V Operating Voltage Range, VCCop. 4.8 to 5.5V Electrical Characteristics: (TA = +25°C, VCC = 5V unless otherwise specified) Parameter Symbol Test Conditions Min Typ Max Unit REC Current Dissipation ICC(R) 49 62 75 mA REC Output Level VO(R) 75 110 145 mVP–P REC ACC Characteristics ∆VO(R) Input ± 6dB –0.5 ±0.1 +0.5 dB Electrical Characteristics (Cont’d): (TA = +25°C, VCC -
Amateur Extra License Class
Amateur Extra License Class 1 Amateur Extra Class Chapter 8 Radio Modes and Equipment 2 1 Modulation Systems FCC Emission Designations and Terms • Specified by ITU. • Either 3 or 7 characters long. • If 3 characters: • 1st Character = The type of modulation of the main carrier. • 2nd Character = The nature of the signal(s) modulating the main carrier. • 3rd Character = The type of information to be transmitted. • If 7 characters, add a 4-character bandwidth designator in front of the 3-character designator. 3 Modulation Systems FCC Emission Designations and Terms • Type of Modulation. N Unmodulated Carrier A Amplitude Modulation R Single Sideband Reduced Carrier J Single Sideband Suppressed Carrier C Vestigial Sideband F Frequency Modulation G Phase Modulation P, K, L, M, Q, V, W, X Various Types of Pulse Modulation 4 2 Modulation Systems FCC Emission Designations and Terms • Type of Modulating Signal. 0 No modulating signal 1 A single channel containing quantized or digital information without the use of a modulating sub-carrier 2 A single channel containing quantized or digital information with the use of a modulating sub-carrier 3 A single channel containing analog information 7 Two or more channels containing quantized or digital information 8 Two or more channels containing analog information X Cases not otherwise covered 5 Modulation Systems FCC Emission Designations and Terms • Type of Transmitted Information. N No information transmitted A Telegraphy - for aural reception B Telegraphy - for automatic reception C Facsimile D Data transmission, telemetry, telecommand E Telephony (including sound broadcasting) F Television (video) W Combination of the above X Cases not otherwise covered 6 3 Modulation Systems FCC Emission Designations and Terms • 3-character designator examples: • A1A = CW. -
DVB-T Transmissions – Interference with Adjacent-Channel PAL Services
DVB-T DVB-T transmissions – interference with adjacent-channel PAL services R. Poole BBC Research & Development In the UK, many of the new digital television (DVB-T) services are broadcast in adjacent channels to existing PAL services. There have been reports of PAL reception suffering as a result, possibly because the maximum DVB-T sideband levels have been incorrectly specified. This article describes how to calculate the PAL picture impairment arising from the presence of DVB-T sidebands. It also compares the calculated predictions with experimental data. The conclusion is that the sideband specification is correct: critical viewers would just notice worst-case interference. However, it is possible to misinterpret the specification. An allowance must be made for the difference in effective radiated powers between the DVB-T and PAL transmissions. An example is given of how a mistake could be made. Introduction There have been reports that some of the new digital television transmissions have been caus- ing interference to existing PAL services in adjacent channels. Such interference could result from three possible mechanisms: inadequate adjacent-channel selectivity of the PAL television receivers; overloading of the receivers caused by the additional signals; generation of spurious sidebands within the DVB-T transmitters themselves. Work has already been carried out on the adjacent-channel performance of domestic PAL receivers: BBC R&D, for example, has carried out practical tests on receivers which were reported in an internal technical note (these tests are referred to at several points in this arti- cle). If the interfering DVB-T signal is “clean” or “ideal”, interference only becomes visible when its level exceeds that of the PAL signal. -
A Review and Comparison on Different Video Deinterlacing
International Journal of Research ISSN NO:2236-6124 A Review and Comparison on Different Video Deinterlacing Methodologies 1Boyapati Bharathidevi,2Kurangi Mary Sujana,3Ashok kumar Balijepalli 1,2,3 Asst.Professor,Universal College of Engg & Technology,Perecherla,Guntur,AP,India-522438 [email protected],[email protected],[email protected] Abstract— Video deinterlacing is a key technique in Interlaced videos are generally preferred in video broadcast digital video processing, particularly with the widespread and transmission systems as they reduce the amount of data to usage of LCD and plasma TVs. Interlacing is a widely used be broadcast. Transmission of interlaced videos was widely technique, for television broadcast and video recording, to popular in various television broadcasting systems such as double the perceived frame rate without increasing the NTSC [2], PAL [3], SECAM. Many broadcasting agencies bandwidth. But it presents annoying visual artifacts, such as made huge profits with interlaced videos. Video acquiring flickering and silhouette "serration," during the playback. systems on many occasions naturally acquire interlaced video Existing state-of-the-art deinterlacing methods either ignore and since this also proved be an efficient way, the popularity the temporal information to provide real-time performance of interlaced videos escalated. but lower visual quality, or estimate the motion for better deinterlacing but with a trade-off of higher computational cost. The question `to interlace or not to interlace' divides the TV and the PC communities. A proper answer requires a common understanding of what is possible nowadays in deinterlacing video signals. This paper outlines the most relevant methods, and provides a relative comparison. -
Hauppauge Introduces New Multi-Standard Tv Receiver
HAUPPAUGE INTRODUCES NEW MULTISTANDARD TV RECEIVER FOR WINDOWS AND LINUX WinTV‐HVR‐1975 supports seven different TV formats for over‐the‐air and digital cable TV in North America and Europe Hauppauge, New York February 26, 2014 – Hauppauge Computer Works Inc. has announced the WinTV-HVR-1975, a USB based TV receiver for Windows and Linux systems with multi-format TV support for both North American and Europe. The WinTV-HVR-1975 has built-in support for North America NTSC and European PAL TV, plus ATSC HD and clear QAM digital cable TV support in North America and DVB-T, DVB-T2 and DVB-C support in Europe. The WinTV-HVR-1975 is part of the WinTV-HVR-19XX family of high performance TV receivers. All models in the family have hardware video encoders which convert NTSC and PAL TV programs into MPEG-2, thereby reducing the CPU requirements of the host systems. “Our professional TV receiver customers have been looking for a universal TV tuner for Europe and North America, and the WinTV-HVR-1975 supports the most popular TV formats used in both regions. For example, the DVB-C TV format is used in many European countries for digital cable TV, and DVB-T2, the new high definition over-the-air broadcast format which started in the UK, is now spreading throughout Europe including Russia. Coupled with the support of NTSC, PAL, ATSC and DVB-T, the WinTV-HVR-1975 delivers a TV receiver which is as close to universal as possible” said Ken Plotkin, President of Hauppauge. -
Improved Television Systems: NTSC and Beyond
• Improved Television Systems: NTSC and Beyond By William F. Schreiber After a discussion ofthe limits to received image quality in NTSC and a excellent results. Demonstrations review of various proposals for improvement, it is concluded that the have been made showing good motion current system is capable ofsignificant increase in spatial and temporal rendition with very few frames per resolution. and that most of these improvements can be made in a second,2 elimination of interline flick er by up-conversion, 3 and improved compatible manner. Newly designed systems,for the sake ofmaximum separation of luminance and chromi utilization of channel capacity. should use many of the techniques nance by means of comb tilters. ~ proposedfor improving NTSC. such as high-rate cameras and displays, No doubt the most important ele but should use the component. rather than composite, technique for ment in creating interest in this sub color multiplexing. A preference is expressed for noncompatible new ject was the demonstration of the Jap systems, both for increased design flexibility and on the basis oflikely anese high-definition television consumer behaL'ior. Some sample systems are described that achieve system in 1981, a development that very high quality in the present 6-MHz channels, full "HDTV" at the took more than ten years.5 Orches CCIR rate of 216 Mbits/sec, or "better-than-35mm" at about 500 trated by NHK, with contributions Mbits/sec. Possibilities for even higher efficiency using motion compen from many Japanese companies, im sation are described. ages have been produced that are comparable to 35mm theater quality. -
Operation Manual
Operation Manual 1T-PAL-NTSC and 1T-PAL-NTSC-GL Standards Converters Table of Contents 1.0 Introduction 2 2.0 Specifications 3 3.0 Checking Package Contents 4 4.0 Connecting The Hardware 4 5.0 Operating The Unit 5 6.0 Troubleshooting 7 7.0 Limited Warranty 8 8.0 Regulatory Compliance 8 9.0 Contact Information 9 1.0 INTRODUCTION Thanks for purchasing this One-Task 1T-PAL-NTSC or 1T-PAL-NTSC-GL Standards Converter from TV One. The 1T-PAL-NTSC series of Standards Converters are designed to convert any of the widely used world television standard signals to any other widely used television standard plus perform frame synchronization and time base corrections to these signals as required. Our professional video conversion products have been serving the industry for over twenty years. TV One offers a full line of high quality Seamless Switchers, Video Scalers, Up/Down/Cross Converters, Analog-Digital Converters (SD/HD-SDI, HDMI, DVI), Format Converters, Standards Converters, TBC/Frame Synchronizers, Matrix Routing Switchers, Signal Distribution Amplifiers and Cat.5 Transmission Systems. 1.1 Liability Statement Every effort has been made to ensure that this product is free of errors. TV One cannot be held liable for the use of this hardware or any direct or indirect consequential damages arising from its use. It is the responsibility of the user of the hardware to check that it is suitable for his/her requirements and that it is installed correctly. All rights reserved. No parts of this manual may be reproduced or transmitted by any form or means electronic or mechanical, including photocopying, recording or by any information storage or retrieval system without the written consent of the publisher. -
High Frame-Rate Television
Research White Paper WHP 169 September 2008 High Frame-Rate Television M Armstrong, D Flynn, M Hammond, S Jolly, R Salmon BRITISH BROADCASTING CORPORATION BBC Research White Paper WHP 169 High Frame-Rate Television M Armstrong, D Flynn, M Hammond, S Jolly, R Salmon Abstract The frame and field rates that have been used for television since the 1930s cause problems for motion portrayal, which are increasingly evident on the large, high-resolution television displays that are now common. In this paper we report on a programme of experimental work that successfully demonstrated the advantages of higher frame rate capture and display as a means of improving the quality of television systems of all spatial resolutions. We identify additional benefits from the use of high frame-rate capture for the production of programmes to be viewed using conventional televisions. We suggest ways to mitigate some of the production and distribution issues that high frame-rate television implies. This document was originally published in the proceedings of the IBC2008 conference. Additional key words: static, dynamic, compression, shuttering, temporal White Papers are distributed freely on request. Authorisation of the Head of Broadcast/FM Research is required for publication. © BBC 2008. All rights reserved. Except as provided below, no part of this document may be reproduced in any material form (including photocopying or storing it in any medium by electronic means) without the prior written permission of BBC Future Media & Technology except in accordance with the provisions of the (UK) Copyright, Designs and Patents Act 1988. The BBC grants permission to individuals and organisations to make copies of the entire document (including this copyright notice) for their own internal use. -
DVB-T / DVB-H Transmitter Measurements for Acceptance, Commission- Ing and Monitoring Application Note
DVB-T / DVB-H Transmitter Measurements for Acceptance, Commission- ing and Monitoring Application Note Product: | R&SETL Broadcasting transmitters are subject to particularly stringent standards with re- spect to broadcast signal quality, because even small faults can lead to service dis- ruptions for many viewers. A single instrument, the R&S®ETL TV analyzer, performs all required DVB-T / DVB-H transmitter measurements, from the initial acceptance testing for the transmitter, to measurements performed during commissioning and preventive maintenance. 7BM101_2E - Christiane Klaus Application Application Note 12.2013 Table of Contents Table of Contents 1 Overview ................................................................................. 3 2 Preparatory Steps .................................................................. 4 2.1 Required Equipment .................................................................................... 4 2.2 Test Setup ..................................................................................................... 5 2.3 Protection against Destructive Input Power .............................................. 6 ® 2.4 R&S ETL Default Configuration ................................................................. 6 3 Measurements ........................................................................ 8 3.1 Power ............................................................................................................. 8 3.1.1 Transmitter Output Level ............................................................................... -
Alchemist File - Understanding Cadence
GV File Understanding Cadence Alchemist File - Understanding Cadence Version History Date Version Release by Reason for changes 27/08/2015 1.0 J Metcalf Document originated (1st proposal) 09/09/2015 1.1 J Metcalf Rebranding to Alchemist File 19/01/2016 1.2 G Emerson Completion of rebrand 07/10/2016 1.3 J Metcalf Updated for additional cadence controls added in V2.2.3.2 12/10/2016 1.4 J Metcalf Added Table of Terminology 11/12/2018 1.5 J Metcalf Rebrand for GV and update for V4.*** 16/07/2019 1.6 J Metcalf Minor additions & corrections 05/03/2021 1.7 J Metcalf Rebrand 06/09/2021 1.8 J Metcalf Add User Case (case 9) Version Number: 1.8 © 2021 GV Page 2 of 53 Alchemist File - Understanding Cadence Table of Contents 1. Introduction ............................................................................................................................................... 6 2. Alchemist File Input Cadence controls ................................................................................................... 7 2.1 Input / Source Scan - Scan Type: ............................................................................................................ 7 2.1.1 Incorrect Metadata ............................................................................................................................ 8 2.1.2 Psf Video sources ............................................................................................................................. 9 2.2 Input / Source Scan - Field order .......................................................................................................... -
R&S CLDG-K2 Basic Waveform Library
R &S®CLGD-K2 Basic Waveform Library Manual 2118.7475.02 – 02 /CI/1/EN Manual 01.00 / 2 3574.3259.0 M: - Broadcast and Media T - PAD The Manual describes the content of the basic waveform library: R&S®CLGD-K2 2118.7469.02 © 2017 Rohde & Schwarz GmbH & Co. KG Muehldorfstr. 15, 81671 Munich, Germany Phone: +49 89 41 29 - 0 Fax: +49 89 41 29 12 164 E-mail: [email protected] Internet: http://www.rohde-schwarz.com Subject to change – Data without tolerance limits is not binding. R&S® is a registered trademark of Rohde & Schwarz GmbH & Co. KG. Trade names are trademarks of the owners. The following abbreviations are used throughout this manual: R&S®CLGD-K2 is abbreviated as R&S CLGD-K2 R&S CLGD-K2 Getting Started Contents 1 Getting Started .................................................................................... 4 1.1 Contents of the Package ............................................................................................. 4 1.2 Version History ............................................................................................................ 4 1.3 System Requirements ................................................................................................. 4 1.4 Installation Instructions .............................................................................................. 5 2 Available Waveform Files ................................................................... 7 2.1 FM Signal ..................................................................................................................... -
Be) (Bexncbe) \(Be
US 20090067508A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2009/0067508 A1 Wals (43) Pub. Date: Mar. 12, 2009 (54) SYSTEMAND METHOD FOR BLOCK-BASED Related U.S. Application Data PER-PXEL CORRECTION FOR FILMI-BASED SOURCES (60) Provisional application No. 60/971,662, filed on Sep. 12, 2007. (75) Inventor: Edrichters als Publication Classification (51) Int. Cl. Correspondence Address: H04N II/02 (2006.01) LAW OFFICE OF OUANES. KOBAYASH P.O. Box 4160 (52) U.S. Cl. ............................ 375/240.24; 375/E07.076 Leesburg, VA 20177 (US) (57) ABSTRACT (73) Assignee: Broadcom Corporation, Irvine, A system and method for block-based per-pixel correction for CA (US) film-based sources. The appearance of mixed film/video can be improved through an adaptive selection of normal deinter (21) Appl. No.: 12/105,664 laced video relative to inverse telecine video. This adaptive selection process is based on pixel difference measures of (22)22) Filed: Apr.pr. 18,18, 2008 sub-blocks within defined blocks of ppixels. SOURCE FILM FRAMES Frame 1 Frame 2 Fram Frame 4 Frame 5 Frame 6 INTERLACED 3:2 VIDEO (BE) 9.(BE) (BEXNCBE)( \(BE). FIELD PHASE DEINTERLACED FRAMES USING REVERSE 3:2 SOURCE OF f BWD WD AWG B WD B FWD AWG B) FWD BD MISSING FIELD Patent Application Publication Mar. 12, 2009 Sheet 1 of 4 US 2009/0067508 A1 I'61) CIE?OV/THE_LNIEC] €)NISTSEIN\/H-] Z.8ESHE/\EH Patent Application Publication Mar. 12, 2009 Sheet 2 of 4 US 2009/0067508 A1 W9. s W9. US 2009/0067508 A1 Mar.