Improved Television Systems: NTSC and Beyond

Total Page:16

File Type:pdf, Size:1020Kb

Improved Television Systems: NTSC and Beyond • Improved Television Systems: NTSC and Beyond By William F. Schreiber After a discussion ofthe limits to received image quality in NTSC and a excellent results. Demonstrations review of various proposals for improvement, it is concluded that the have been made showing good motion current system is capable ofsignificant increase in spatial and temporal rendition with very few frames per resolution. and that most of these improvements can be made in a second,2 elimination of interline flick­ er by up-conversion, 3 and improved compatible manner. Newly designed systems,for the sake ofmaximum separation of luminance and chromi­ utilization of channel capacity. should use many of the techniques nance by means of comb tilters. ~ proposedfor improving NTSC. such as high-rate cameras and displays, No doubt the most important ele­ but should use the component. rather than composite, technique for ment in creating interest in this sub­ color multiplexing. A preference is expressed for noncompatible new ject was the demonstration of the Jap­ systems, both for increased design flexibility and on the basis oflikely anese high-definition television consumer behaL'ior. Some sample systems are described that achieve system in 1981, a development that very high quality in the present 6-MHz channels, full "HDTV" at the took more than ten years.5 Orches­ CCIR rate of 216 Mbits/sec, or "better-than-35mm" at about 500 trated by NHK, with contributions Mbits/sec. Possibilities for even higher efficiency using motion compen­ from many Japanese companies, im­ sation are described. ages have been produced that are comparable to 35mm theater quality. The noncompatibility of that system, he existing television broadcast­ ing much of the following discussion and the very large required band­ T ing systems - NTSC, PAL, and were dealt with in an earlier paper and width, have sparked developments in SECAM - have spawned large and will only be summarized here. I a number of other countries, mostly profitable industries; indeed they may directed,·to improvements that would fairly be said to have had a profound Why Now? be easier to implement.6 influence on modern society. Never­ As equipment has improved and Limits to Quality in Present-Day theless, they are far from perfect. professional viewers have become Most of the knowledge exists to im­ more critical, the shortcomings of Television prove picture and sound quality so as NTSCa have become more obvious, at The image quality actually ob­ to equal or exceed that of 35mm mo­ least to TV practitioners. What they served on home receivers is affected tion pictures. If we want it enough. we accepted 30 years ago. in the full flush by every physical element of the sys­ can have higher resolution. better mo­ of the successful design ofa color sys­ tem, as well as by the system design. tion rendition, a wider field of view. tem that did not obsolete existing re­ Since it is spectrum space that is the worldwide compatibility, and free­ ceivers, is no longer acceptable. There limited resource, an argument can be dom from most defects. certainly is no grass-roots demand for made to ensure that only the band­ Many, if not most, of the issues improvements, and there is little evi­ width limit the quality. As a practical involved in improving existing sys­ dence that these perceived shortcom­ matter. this is not entirely possible. tems or introducing entirely new ones, ings are significant to the commercial However, the extent to which other, are primarily political or economic health of TV. Nevertheless. there correctable. factors degrade the qual­ and not technological. The main so­ may well be commercial opportuni­ ity at present is much larger than cial value of a television system. eco­ ties in the provision of significantly seems reasonable. nomics aside, certainly resides in the improved television services. programming and not the image qual­ Rapid progress in semiconductor Interlace and Line Structure ity. Interesting as these issues are. development, driven primarily by the The choice of lines/frame and they lie outside the subjcct of this pa­ demands of the computer industry, frames/sec for a given bandwidth per. We are concerned here exclusive­ has led to more powerful chips and trades offspatial and temporal resolu­ ly with means by which sound and lower prices. This presents the possi­ tion. All modern TV systems use 2: 1 picture quality can be improved. and. bility of much more "intelligent" re­ interlace in order to raise the large­ to a lesser extent, with the'means by ceivers and more efficient use ofchan­ area flicker rate that results from this which such improvements can be nel capacity. The existence of such trade-off. Alternatively, the use of in­ brought to the marketplace. capability. and its utilization in relat­ terlace can be considered an attempt The psychophysical phenomena ed areas. creates a pressure to make to raise the vertical resolution for a and signal-processing ideas underly- applications to TV, as exemplified by given field rate and number of lines/ digital receivers. field. The effectiveness of this strata­ ~resenled althe 21st Annual S\1PTE TeleviSIOn Con­ Another factor creating a favorable gem is. at best, limited. 7 Interline ference in San Francisco (paper NO.2 1- 21) on Febru­ ary 7. 1987. Dr Schreiber IS affiliated With \1IT. climate for change in TV is the im­ flicker at the frame rate is produced Cambridge. \1A 02 139. This article was received Jan­ proved understanding of TV signal along with artifacts due to vertical uary D. 1987. and also appears In Tflft'won Tfrh­ processing. Such processing has al­ motion. The former becomes disturb­ nology: A Look Toward the 21s1 eentun'. pubhshed 1987. SMPTE. Copyrighl 'i:! 1987 by the Sociely of ready been applied to graphic arts, ing according to the vertical resolu- \101ion Picture and Television Engineers. Inc. generally at low data rates, but with . tion of the camera, which, typically, is 734 SMPTE Journal, August 1987 4.5.1 barely half what it might be with 525 Performance ofCameras and transmission. Especially in analog lines/frame.8 Ironically, if the cam­ Displays systems, there is no simple remedy to era resolution were raised to the alias­ Ideally, the response of cameras this problem, except to advocate a free Nyquist rate of 262.5 cycles/pic­ and display should be 100% through­ much higher standard of operation ture height (cph), the interline flicker out the Nyquist baseband. Because of and maintenance of every part of the would be unbearable.b While the arti­ some peculiarities of camera opera­ TV plant, from studio to the home. facts could be avoided by using pro­ tion, the vertical response is much Should digital transmission ever real­ gressive scanning, that would also poorer than that. The temporal reo ly become the norm in delivery ofsig­ permanently enshrine the lower verti­ sponse is determined by camera inte­ nals to the home, the job would be cal resolution. As discussed below, a gration. This blurs moving objects, immeasurably simplified. Perhaps solution lies in separating camera and but does not limit the bandwidth that is one good reason to go digital. display scan patterns from that of the enough to avoid temporal aliasing. Important as this problem is, it is not channel. Use of a shutter to keep moving ob­ the subject of this article. jects in focus makes the aliasing Interference Between Luminance and worse. What is needed is a camera ImprOl'ed NTSC Cbrominance: Resolution with high and fully controllable reso­ We firmly believe that the full ca­ Compromises lution in all three dimensions. a result pabilities of the NTSC system have The ingenious band-sharing princi­ that can only be obtained by operat­ not yet been exploited. While it might ple9 that made NTSC backward com­ ing a camera of inherently high reso­ not be capable of "theater quality," if patible does not, in fact, work perfect­ lution at a line and frame rate well the defects are removed and certain ly with the kind of processing above that of the channel. other changes made in the studio and envisaged by the advocates of that Displays have somewhat different in the receiver, then pictures much system in the 1950s.< This is some­ problems from those of cameras. The better than we have ever seen with this what puzzling. since comb filters were line structure, which tends to mask system should be produced. well known for other purposes at that fine detail. cannot readily be removed There are many advantages to im­ time,lO and, in fact, had been dis­ without reducing sharpness. The fact proving TVeon the basis of the present cussed by Gray in his 1929 patent. the that this seems not to be a serious systems. This evolutionary approach, earliest mention of frequency inter­ problem in contemporary HDTV sys­ in which existing receivers may con­ leaving. 11 The pioneers seemed much tems is further evidence that the cam­ tinue to be used, albeit without all of more concerned with making the sub­ era and the display, and not primarily the benefits of whatever improve­ carrier less visible on the existing the system parameters. limit the verti­ ments are made at the transmitter, monochrome receivers (that had the cal response. A corresponding effect ensures the presence of the audience, fulI4.2-MHz bandwidth called for by is present along the time axis. Phos­ an element necessary for manufactur­ the existing standard) than on making phor persistence short enough to ers, producers, and broadcasters alike color receivers work properly. 12 avoid temporal blurring produces a to be willing to make the required Whatever the history.
Recommended publications
  • Color Models
    Color Models Jian Huang CS456 Main Color Spaces • CIE XYZ, xyY • RGB, CMYK • HSV (Munsell, HSL, IHS) • Lab, UVW, YUV, YCrCb, Luv, Differences in Color Spaces • What is the use? For display, editing, computation, compression, …? • Several key (very often conflicting) features may be sought after: – Additive (RGB) or subtractive (CMYK) – Separation of luminance and chromaticity – Equal distance between colors are equally perceivable CIE Standard • CIE: International Commission on Illumination (Comission Internationale de l’Eclairage). • Human perception based standard (1931), established with color matching experiment • Standard observer: a composite of a group of 15 to 20 people CIE Experiment CIE Experiment Result • Three pure light source: R = 700 nm, G = 546 nm, B = 436 nm. CIE Color Space • 3 hypothetical light sources, X, Y, and Z, which yield positive matching curves • Y: roughly corresponds to luminous efficiency characteristic of human eye CIE Color Space CIE xyY Space • Irregular 3D volume shape is difficult to understand • Chromaticity diagram (the same color of the varying intensity, Y, should all end up at the same point) Color Gamut • The range of color representation of a display device RGB (monitors) • The de facto standard The RGB Cube • RGB color space is perceptually non-linear • RGB space is a subset of the colors human can perceive • Con: what is ‘bloody red’ in RGB? CMY(K): printing • Cyan, Magenta, Yellow (Black) – CMY(K) • A subtractive color model dye color absorbs reflects cyan red blue and green magenta green blue and red yellow blue red and green black all none RGB and CMY • Converting between RGB and CMY RGB and CMY HSV • This color model is based on polar coordinates, not Cartesian coordinates.
    [Show full text]
  • Application of Noise Mapping in an Indian Opencast Mine for Effective Noise Management
    12th ICBEN Congress on Noise as a Public Health Problem Application of noise mapping in an Indian opencast mine for effective noise management Veena Manwar1, Bibhuti Bhusan Mandal2, Asim Kumar Pal3 1 National Institute of Miners’ Health, Department of Occupational Hygiene, Nagpur, India (corresponding author) 2 National Institute of Miners’ Health, Department of Occupational Hygiene, Nagpur, India 3 Indian Institute of Technology-Indian School of Mines (IIT-ISM), Department of Environmental Science and Engineering, Dhanbad, India Corresponding author's e-mail address: [email protected] ABSTRACT So far as mining industry is concerned, noise pollution is not new. It is generated from operation of equipment and plants for excavation and transport of minerals which affects mine employees as well as population residing in nearby areas. Although in the Recommendations of Tenth Conference on Safety in Mines, noise mapping has been made mandatory in Indian mines still mining industry are not giving proper importance on producing noise maps of mines. Noise mapping is preferred for visualization and its propagation in the form of noise contours so that preventive measures are planned and implemented. The study was conducted in an opencast mine in Central India. Sound sources were identified and noise measurements were carried out according to national and international standards. Considering source locations along with noise levels and other meteorological, geographical factors as inputs, noise maps were generated by Predictor LimA software. Results were evaluated in the light of Central Pollution Control Board norms as to whether noise exposure in the residential and industrial area were within prescribed limits or not.
    [Show full text]
  • Console Comparison
    CONSOLE COMPARISON CURRENT INTEGRITY Cybex 50L Console C Console X Console Discover ST Cybex 70T Discover SE3 Discover SE3HD SCREEN 21" 1080p Touch Screen (Tread) 19" 720p Touch Screen (Tread) 21" 1080p Touch Screen (Tread) Display LED LED LED 7" Touch LCD 16" 1080p Touch Screen (Tread, Bikes and Arcs) 16" 1080p Touch Screen (Non-Tread) 16" 720p Touch Screen (Non-Tread) 16" 1080p Touch Screen (Non-Tread) Navigation Membrane buttons Membrane Buttons Membrane Buttons Touch, Tactile Buttons Touch Screen Touch Screen Touch Screen Touch Screen Languages 9 Universal Universal 19 24 24 24 24 Speed, Distance, Distance Climbed, Average Pace, Average Speed, Speed, Incline, Heart Rate (current, average, max), Pace, Elapsed Speed, Incline, Heart Rate (current, average, max), Pace, Elapsed Speed, Incline, Heart Rate (current, average, max), Pace, Elapsed Speed, Incline, Heart Rate (current, average, max), Pace, Elapsed Speed, Incline, Heart Rate, Elapsed Time, Pace, Distance, Distance Display Readouts - Treadmills Speed, Time, Distance, HR, Calories, Incline, Pace Speed, Time, Distance, HR, Calories, Incline Total Cal Burned, Average METs, Average Watts, Average HR, Max Time, Time Remaining, Time in Zone, Time of Day, Distance, Distance Time, Time Remaining, Time in Zone, Time of Day, Distance, Distance Time, Time Remaining, Time in Zone, Time of Day, Distance, Distance Time, Time Remaining, Time in Zone, Time of Day, Distance, Distance Climbed, Calories, Calories/HR HR Climbed, Distance Remaining, Calories, Calories/HR Climbed, Distance Remaining,
    [Show full text]
  • An Improved SPSIM Index for Image Quality Assessment
    S S symmetry Article An Improved SPSIM Index for Image Quality Assessment Mariusz Frackiewicz * , Grzegorz Szolc and Henryk Palus Department of Data Science and Engineering, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland; [email protected] (G.S.); [email protected] (H.P.) * Correspondence: [email protected]; Tel.: +48-32-2371066 Abstract: Objective image quality assessment (IQA) measures are playing an increasingly important role in the evaluation of digital image quality. New IQA indices are expected to be strongly correlated with subjective observer evaluations expressed by Mean Opinion Score (MOS) or Difference Mean Opinion Score (DMOS). One such recently proposed index is the SuperPixel-based SIMilarity (SPSIM) index, which uses superpixel patches instead of a rectangular pixel grid. The authors of this paper have proposed three modifications to the SPSIM index. For this purpose, the color space used by SPSIM was changed and the way SPSIM determines similarity maps was modified using methods derived from an algorithm for computing the Mean Deviation Similarity Index (MDSI). The third modification was a combination of the first two. These three new quality indices were used in the assessment process. The experimental results obtained for many color images from five image databases demonstrated the advantages of the proposed SPSIM modifications. Keywords: image quality assessment; image databases; superpixels; color image; color space; image quality measures Citation: Frackiewicz, M.; Szolc, G.; Palus, H. An Improved SPSIM Index 1. Introduction for Image Quality Assessment. Quantitative domination of acquired color images over gray level images results in Symmetry 2021, 13, 518. https:// the development not only of color image processing methods but also of Image Quality doi.org/10.3390/sym13030518 Assessment (IQA) methods.
    [Show full text]
  • PCI 3-In-1 TV Tuner Card Model 176149 Transform Your Desktop Computer Into a Digital Multimedia Center
    PCI 3-in-1 TV Tuner Card Model 176149 Transform your desktop computer into a digital multimedia center. Receive digital television and radio broadcasts almost anywhere! DVB-T (Digital Video Broadcasting — Terrestrial) delivers practical digital television broadcasting to consumers worldwide. Many countries have already implemented DVB-T or have decided to use it for future digital terrestrial television deployment. The MANHATTAN® PCI 3-in-1 TV Tuner Card brings free-to-air digital terrestrial and analog television and FM radio to desktop computers. Advanced Features and Controls Enhance Viewing Options Digital Personal Video Recording captures and directly saves television programs to the hard drive for replay or transfer to CD and other portable media devices. Electronic Program Guide (EPG) allows the viewer to browse program summaries, conduct channel and program searches, schedule reminders and other functions. Using the time-shifting capability, viewers can replay favorite scenes, skip annoying advertising and apply pause/rewind/ fast forward control to live video and recorded programs. Easy to Install and Ready to Use Simple connection and Plug and Play capability allow the MANHATTAN PCI 3-in-1 TV Tuner Card to easily install in seconds on a Windows-compatible desktop computer. Lifetime Warranty Strict manufacturing standards ensure the highest quality in all MANHATTAN products. All items carry a full Lifetime Warranty — the strongest quality commitment anyone can make. Model 176149 Features Specifications • Receive free-to-air DVB-T,
    [Show full text]
  • Shadow Telecinetelecine
    ShadowShadow TelecineTelecine HighHigh performanceperformance SolidSolid StateState DigitalDigital FilmFilm ImagingImaging TechnologyTechnology Table of contents • Introduction • Simplicity • New Scanner Design • All Digital Platform • The Film Look • Graphical Control Panel • Film Handling • Main Features • Six Sector Color Processor • Cost of ownership • Summary SHADOWSHADOTelecine W Telecine Introduction The Film Transfer market is changing const- lantly. There are a host of new DTV formats required for the North American Market and a growing trend towards data scanning as opposed to video transfer for high end compositing work. Most content today will see some form of downstream compression, so quiet, stable images are still of paramount importance. With the demand growing there is a requirement for a reliable, cost effective solution to address these applications. The Shadow Telecine uses the signal proce- sing concept of the Spirit DataCine and leve- rages technology and feature of this flagship product. This is combined with a CCD scan- ner witch fulfils the requirements for both economical as well as picture fidelity. The The Film Transfer market is evolving rapidly. There are a result is a very high performance producthost allof new DTV formats required for the North American the features required for today’s digital Marketappli- and a growing trend towards data scanning as cation but at a greatly reduced cost. opposed to video transfer for high end compositing work. Most content today will see some form of downstream Unlike other Telecine solutions availablecompression, in so quiet, stable images are still of paramount importance. With the demand growing there is a this class, the Shadow Telecine is requirementnot a for a reliable, cost effective solution to re-manufactured older analog Telecine,address nor these applications.
    [Show full text]
  • Designline PROFILE 42
    High Performance Displays FLAT TV SOLUTIONS DesignLine PROFILE 42 Plasma FlatTV 106cm / 42" WWW.CONRAC.DE HIGH PERFORMANCE DISPLAYS FLAT TV SOLUTIONS DesignLine PROFILE 42 (106cm / 42 Zoll Diagonale) Neu: Verarbeitet HD-Signale ! New: HD-Compliant ! Einerseits eine bestechend klare Linienführung. Andererseits Akzente durch die farblich gestalteten Profilleisten in edler Metallic-Lackierung. Das Heimkino-Erlebnis par Excellence. Impressively clear lines teamed with decorative aluminium strips in metallic finish provide coloured highlights. The ultimate home cinema experience. Für höchste Ansprüche: Die FlatTVs der DesignLine kombinieren Hightech mit einzigartiger Optik. Die komplette Elektronik sowie die hochwertigen Breitband-Stereolautsprecher wurden komplett ins Gehäuse integriert. Der im Lieferumfang enthaltene Design-Standfuß aus Glas lässt sich für die Wandmontage einfach und problemlos entfernen, so dass das Display noch platzsparender wie ein Bild an der Wand angebracht werden kann. Die extrem flachen Bildschirme bieten eine unübertroffene Bildbrillanz und -schärfe. Das lüfterlose Konzept basiert auf dem neuesten Stand der Technik: Ohne störende Nebengeräusche hören Sie nur das, was Sie hören möchten. Einfaches Handling per Fernbedienung und mit übersichtlichem On-Screen-Menü. Die Kombination aus Flachdisplay-Technologie, einer High Performance Scaling Engine und einem zukunftsweisenden De-Interlacer* mit speziellen digitalen Algorithmen zur optimalen Darstellung bewegter Bilder bietet Ihnen ein unvergleichliches Fernseherlebnis. Zusätzlich vermittelt die Noise Reduction eine angenehme Bildruhe. For the most decerning tastes: DesignLine flat panel TVs combine advanced technology with outstanding appearance. All the electronics and the high-quality broadband stereo speakers have been fully integrated in the casing. The design glass stand included in the scope of supply can easily be removed for wall assembly, allowing the display to be mounted to the wall like a picture to save even more space.
    [Show full text]
  • BA(Prog)III Yr 11/04/2020
    BA(prog)III yr 11/04/2020 Analog Video • In an analog system, the output of the charge-coupled device (CCD) is processed by the camera into three channels of color information and synchronization pulses (sync) and the signals are recorded onto magnetic tape. • There are several video standards for managing analog CCD output, each dealing with the amount of separation between the components—the more separation of the color information, the higher the quality of the image (and the more expensive the equipment). • If each channel of color information is transmitted as aseparate signal on its own conductor, the signal output is called component (separate red, green, and blue channels), which is the preferred method for higher-quality and professional video work. • Lower in quality is the signal that makes up Separate Video (S-Video), using two channels that carry luminance and chrominance information. The least separation (and thus the lowest quality for a video signal) is composite, when all the signalsare mixed together and carried on a single cable as a composite of the three color channels and the sync signal. • The composite signal yields less-precise color definition, which cannot be manipulated or color-corrected as much as S-Video or component signals. • The analog video and audio signals are written to tape by a spinning recording head that changes the local magnetic properties of the tape’s surface in a series of long diagonal stripes. • Because the head is canted or tilted at a slight angle compared with the path of the tape, it follows a helical (spiral) path, which is called helical scan recording.
    [Show full text]
  • COLOR SPACE MODELS for VIDEO and CHROMA SUBSAMPLING
    COLOR SPACE MODELS for VIDEO and CHROMA SUBSAMPLING Color space A color model is an abstract mathematical model describing the way colors can be represented as tuples of numbers, typically as three or four values or color components (e.g. RGB and CMYK are color models). However, a color model with no associated mapping function to an absolute color space is a more or less arbitrary color system with little connection to the requirements of any given application. Adding a certain mapping function between the color model and a certain reference color space results in a definite "footprint" within the reference color space. This "footprint" is known as a gamut, and, in combination with the color model, defines a new color space. For example, Adobe RGB and sRGB are two different absolute color spaces, both based on the RGB model. In the most generic sense of the definition above, color spaces can be defined without the use of a color model. These spaces, such as Pantone, are in effect a given set of names or numbers which are defined by the existence of a corresponding set of physical color swatches. This article focuses on the mathematical model concept. Understanding the concept Most people have heard that a wide range of colors can be created by the primary colors red, blue, and yellow, if working with paints. Those colors then define a color space. We can specify the amount of red color as the X axis, the amount of blue as the Y axis, and the amount of yellow as the Z axis, giving us a three-dimensional space, wherein every possible color has a unique position.
    [Show full text]
  • NTE15039 Integrated Circuit VHS/VCR Chroma Signal Proessor for NTSC/PAL/SECAM Systems
    NTE15039 Integrated Circuit VHS/VCR Chroma Signal Proessor for NTSC/PAL/SECAM Systems Description: The NTE15039 is a multifunctional IC in a 24–Lead DIP type package that contains VHS VCT chroma signal processing circuitry. Since the package is small and a minimum number of external compo- nents are required, the NTE15039 occupies much less space on the PC board thus facilitating VCR design. The chroma section is made adjustment–free (except REC chroma level) thus streamlining the manufacture of VCRs Features: D Designed for NTSC/PAL/MESECAM Systems D Adjustment–Free Chroma Section (Except REC Chroma Level) D Few External Components Required D LPF Usable for REC/PB D Multifunctional: 2fSC Generator for CCD Drive Function to Select APC Loop Input Signal Passed/Not Passed Through Comb Filter 3rd Lock Protector of VXO Absolute Maximum Ratings: (TA = +25°C unless otherwise specified) Maximum Supply Voltage, VCCmax. 7V Allowable Power Dissipation (TA ≤ +65°C), PDmax. 850mW Operating Temperature Range, Topg . –10° to +65°C Storage Temperature Range, Tstg . –40° to +125°C Recommended Operating Conditions: (TA = +25°C unless otherwise specified) Recommended Supply Voltage, VCC . 5V Operating Voltage Range, VCCop. 4.8 to 5.5V Electrical Characteristics: (TA = +25°C, VCC = 5V unless otherwise specified) Parameter Symbol Test Conditions Min Typ Max Unit REC Current Dissipation ICC(R) 49 62 75 mA REC Output Level VO(R) 75 110 145 mVP–P REC ACC Characteristics ∆VO(R) Input ± 6dB –0.5 ±0.1 +0.5 dB Electrical Characteristics (Cont’d): (TA = +25°C, VCC
    [Show full text]
  • Digital Television and the Allure of Auctions: the Birth and Stillbirth of DTV Legislation
    Federal Communications Law Journal Volume 49 Issue 3 Article 2 4-1997 Digital Television and the Allure of Auctions: The Birth and Stillbirth of DTV Legislation Ellen P. Goodman Covington & Burling Follow this and additional works at: https://www.repository.law.indiana.edu/fclj Part of the Communications Law Commons, and the Legislation Commons Recommended Citation Goodman, Ellen P. (1997) "Digital Television and the Allure of Auctions: The Birth and Stillbirth of DTV Legislation," Federal Communications Law Journal: Vol. 49 : Iss. 3 , Article 2. Available at: https://www.repository.law.indiana.edu/fclj/vol49/iss3/2 This Article is brought to you for free and open access by the Law School Journals at Digital Repository @ Maurer Law. It has been accepted for inclusion in Federal Communications Law Journal by an authorized editor of Digital Repository @ Maurer Law. For more information, please contact [email protected]. Digital Television and the Allure of Auctions: The Birth and Stillbirth of DTV Legislation Ellen P. Goodman* I. INTRODUCTION ................................... 517 II. ORIGINS OF THE DTV PRovIsIoNs OF THE 1996 ACT .... 519 A. The Regulatory Process ..................... 519 B. The FirstBills ............................ 525 1. The Commerce Committee Bills ............. 526 2. Budget Actions ......................... 533 C. The Passage of the 1996Act .................. 537 Ill. THE AFTERMATH OF THE 1996 ACT ................ 538 A. Setting the Stage .......................... 538 B. The CongressionalHearings .................. 542 IV. CONCLUSION ................................ 546 I. INTRODUCTION President Clinton signed into law the Telecommunications Act of 1996 (1996 Act or the Act) on February 8, 1996.1 The pen he used to sign the Act was also used by President Eisenhower to create the federal highway system in 1957 and was later given to Senator Albert Gore, Sr., the father of the highway legislation.
    [Show full text]
  • Flexibility for Alternative Content
    ALTERNATIVE CONTENT DMS SCALERS More flexibility for Alternative Content Kinoton’s Markus Näther explains the technology behind the company’s DMS Scalers -Cinema projectors using Series analog component, composite, S-Video and why high-quality cinema scalers employ very II 2K DLP Cinema® technology VGA inputs for connecting PCs or laptops, DVD complex mathematical algorithms to achieve support not only true 2K content, players, satellite receivers, digital encoders, smooth transitions. Pixels to be added are but also different video formats. cable receivers and many other sources, up to interpolated from the interim values of their If it comes to alternative content, HDMI inputs for Blu-Ray players etc. Premium neighbouring pixels, and if pixels have to be D scalers even offer SDI and HD-SDI inputs for though, they quickly reach their limits – the deleted, the same principle is used to smooth range of different picture resolutions, video professional sources. the transitions between the residual pixels. rendering techniques, frame rates and refresh Perfect Image Adjustment How well a scaler accomplishes this demanding rates used on the video market is simply too The different video sources – like classic TV, task basically depends on its processing power. large. Professional media scalers can convert HDTV, DVD or Blu-Ray, just to name the most Kinoton’s premium scaler model DMS DC2 incompatible video signals into the ideal input common ones – work with different image PRO realises image format changes without signal for D-Cinema projectors, and in addition resolutions. The ideal screen resolution for any loss of sharpness, the base model HD DMS enhance the projector’s capabilities of connect- the projection of alternative content with 2K still provides an acceptable image quality for ing alternate content sources.
    [Show full text]