Are You Ready for Digital TV? 20 January 2009
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Glenn Reitmeier Component Digital Video Interface Now by the Time Testing Was Completed, All Used Worldwide
IGNITING CHANGE of a job that would allow Reitmeier to ing would determine the winner. Sarnoff “y I can’t sa enough apply advanced signal processing to TV. couldn’t pass up the challenge. Sarnoff also would send him to the Uni- An early prophet of digital TV, about the personal versity of Pennsylvania for his master’s. Reitmeier was tapped to lead the devel- attention of the Villanovans contributing to the community Reitmeier hit the ground digitizing. He opment of the Advanced Digital HDTV helped develop the architecture and soft- system for Sarnoff and its consortium faculty and their ware for one of the first computer systems partners: Philips, Thomson and NBC. dedication to for digitizing video; picked up his first pat- Competing against the calendar and new ent for picture resizing for digital video digital approaches from such titans as teaching.” effects; and contributed to experiments AT&T and MIT, Reitmeier’s team worked that led to the adoption of a standard for feverishly to build their prototype. — Glenn Reitmeier component digital video interface now By the time testing was completed, all used worldwide. This pace never slack- analog proposals had been eliminated, ened in Reitmeier’s 25 years at Sarnoff. since they couldn’t send HDTV in a single His collaboration and leadership in digi- over-the-air TV channel. But surprisingly, Their achievement earned the Grand tal video research, consumer electronics none of the four digital entries was victori- Alliance companies an Emmy Award. and other technologies earned Reitmeier ous. Each had strengths and weaknesses. Since 2002, Reitmeier has guided NBC the industry’s respect—and his children’s. -
Digital Television and the Allure of Auctions: the Birth and Stillbirth of DTV Legislation
Federal Communications Law Journal Volume 49 Issue 3 Article 2 4-1997 Digital Television and the Allure of Auctions: The Birth and Stillbirth of DTV Legislation Ellen P. Goodman Covington & Burling Follow this and additional works at: https://www.repository.law.indiana.edu/fclj Part of the Communications Law Commons, and the Legislation Commons Recommended Citation Goodman, Ellen P. (1997) "Digital Television and the Allure of Auctions: The Birth and Stillbirth of DTV Legislation," Federal Communications Law Journal: Vol. 49 : Iss. 3 , Article 2. Available at: https://www.repository.law.indiana.edu/fclj/vol49/iss3/2 This Article is brought to you for free and open access by the Law School Journals at Digital Repository @ Maurer Law. It has been accepted for inclusion in Federal Communications Law Journal by an authorized editor of Digital Repository @ Maurer Law. For more information, please contact [email protected]. Digital Television and the Allure of Auctions: The Birth and Stillbirth of DTV Legislation Ellen P. Goodman* I. INTRODUCTION ................................... 517 II. ORIGINS OF THE DTV PRovIsIoNs OF THE 1996 ACT .... 519 A. The Regulatory Process ..................... 519 B. The FirstBills ............................ 525 1. The Commerce Committee Bills ............. 526 2. Budget Actions ......................... 533 C. The Passage of the 1996Act .................. 537 Ill. THE AFTERMATH OF THE 1996 ACT ................ 538 A. Setting the Stage .......................... 538 B. The CongressionalHearings .................. 542 IV. CONCLUSION ................................ 546 I. INTRODUCTION President Clinton signed into law the Telecommunications Act of 1996 (1996 Act or the Act) on February 8, 1996.1 The pen he used to sign the Act was also used by President Eisenhower to create the federal highway system in 1957 and was later given to Senator Albert Gore, Sr., the father of the highway legislation. -
Digital Television Systems
This page intentionally left blank Digital Television Systems Digital television is a multibillion-dollar industry with commercial systems now being deployed worldwide. In this concise yet detailed guide, you will learn about the standards that apply to fixed-line and mobile digital television, as well as the underlying principles involved, such as signal analysis, modulation techniques, and source and channel coding. The digital television standards, including the MPEG family, ATSC, DVB, ISDTV, DTMB, and ISDB, are presented toaid understanding ofnew systems in the market and reveal the variations between different systems used throughout the world. Discussions of source and channel coding then provide the essential knowledge needed for designing reliable new systems.Throughout the book the theory is supported by over 200 figures and tables, whilst an extensive glossary defines practical terminology.Additional background features, including Fourier analysis, probability and stochastic processes, tables of Fourier and Hilbert transforms, and radiofrequency tables, are presented in the book’s useful appendices. This is an ideal reference for practitioners in the field of digital television. It will alsoappeal tograduate students and researchers in electrical engineering and computer science, and can be used as a textbook for graduate courses on digital television systems. Marcelo S. Alencar is Chair Professor in the Department of Electrical Engineering, Federal University of Campina Grande, Brazil. With over 29 years of teaching and research experience, he has published eight technical books and more than 200 scientific papers. He is Founder and President of the Institute for Advanced Studies in Communications (Iecom) and has consulted for several companies and R&D agencies. -
2020 March Channel Line up with Pricing Color
B is Mid-Hudson Cable Channel Line UP MARCH 2020 BASIC CABLE DIGITAL BASIC CHANNELS 2 *WMHT HD (17 PBS) 64 Food Network HD 100 Discovery Family 3 *FOX News HD 65 TV Land HD 101 Science HD 4 *NASA Channel HD 66 TruTV HD 102 Destination America HD 5 *QVC HD 67 FX Movie Channe l HD 105 American Heroes 6 *WRGB HD (6-CBS) 68 TCM HD 106 BTN HD 7 *WCWN HD CW Network 69 AMC HD 107 ESPN News 8 *WXXA HD (FOX23) 70 Animal Planet HD 108 Babytv 9 *My4AlbanyHD (WNYA) 71 Travel Channel HD 118 BBC America 10 *WTEN HD (10-ABC) 72 Golf Channel HD 119 Universal Kids 11 *Local Access 73 FOX SPORTS 1 HD 12 *FX HD 120 Nick Jr. 74 fuse HD 121 CMT Music 13 *WNYT HD (13-NBC) 75 Tennis Channel HD 122 MTV Classic 17 *EWTN 76 *LIGHTtv (WNYA) 123 IFC HD 19 *C-Span 1 77 *Comet TV (WCWN) 124 ESPNU 20 *WRNN HD 78 *Heroes & Icons (WNYT) 126 Disney XD 23 Lifetime HD 79 *Decades (WNYA) 127 Viceland 24 CNBC HD 80 *LAFF TV (WXXA) 128 Lifetime Movie Network HD 25 Disney HD 81 *Justice Network (WTEN) 130 MTV2 26 Paramount Network HD 82 *Stadium (WRGB) 131 TEENick 27 The Weather Channel HD 83 *ESCAPE TV (WTEN) 132 LIFE 28 ESPN Classic 84 *BOUNCE TV (WXXA) 133 Lifetime Real Women 29 ESPN HD 86 *START TV 135 Bloomberg 30 ESPN 2 HD 95 *HSN HD 138 Trinity Broadcasting 31 Nickelodeon HD 99 *PBS Kids(WMHT) 139 Outdoor Channel HD 32 MSG HD 103 ID HD 148 Military History 33 MSG PLUS HD 104 OWN HD 149 Crime Investigation 34 WE! HD 109 POP TV HD 172 BET her 35 TNT HD 110 *GET TV (WTEN) 174 BET Soul 36 Freeform HD 111 National Geo Wild HD 175 Nick Music 37 Discovery HD 112 *METV (WNYT) -
Research on the Safe Broadcasting of Television Program
MATEC Web of Conferences 63, 04002 (2016) DOI: 10.1051/matecconf/20166304002 MMME 2016 Research on the Safe Broadcasting of Television Program Jin Bao SONG1,a, Jin Hong SONG2 and Jian Ping CHAI1 1Information Engineering School, Communication University of China, Beijing, China 2Shandong Gold Mining Jiaojia Gold Mine (Laizhou) co.,LTD Abstract. The existing way of broadcasting and television monitoring has a lot of problems in China. On the basis of the signal technical indicators monitoring in the present broadcasting and television monitoring system, this paper further extends the function of the monitoring network in order to broaden the services of monitoring business and improve the effect and efficiency of monitoring work. The problem of identifying video content and channel in television and related electronic media is conquered at a low cost implementation way and the flexible technology mechanism. The coverage for video content and identification of the channel is expanded. The informative broadcast entries are generated after a series of video processing. The value of the numerous broadcast data is deeply excavated by using big data processing in order to realize a comprehensive, objective and accurate information monitoring for the safe broadcasting of television program. 1 Introduction paper is the development of cheap monitoring hardware devices which can be widely deployed to the village, so The existing way of broadcasting and television the actual situation of the user terminal broadcasting can monitoring has a lot of problems in China. Firstly, the be monitored by the administration of radio, film and existing way of monitoring is the front-end monitoring television. -
Comparing Digital Television in Transition Between Japan and the U.S
A Service of Leibniz-Informationszentrum econstor Wirtschaft Leibniz Information Centre Make Your Publications Visible. zbw for Economics Kanayama, Tsutomu Conference Paper Broadcasting Policy and Regulation in transition before dawn of a New Paradigm: Comparing Digital Television in Transition between Japan and the U.S. 14th Asia-Pacific Regional Conference of the International Telecommunications Society (ITS): "Mapping ICT into Transformation for the Next Information Society", Kyoto, Japan, 24th-27th June, 2017 Provided in Cooperation with: International Telecommunications Society (ITS) Suggested Citation: Kanayama, Tsutomu (2017) : Broadcasting Policy and Regulation in transition before dawn of a New Paradigm: Comparing Digital Television in Transition between Japan and the U.S., 14th Asia-Pacific Regional Conference of the International Telecommunications Society (ITS): "Mapping ICT into Transformation for the Next Information Society", Kyoto, Japan, 24th-27th June, 2017, International Telecommunications Society (ITS), Calgary This Version is available at: http://hdl.handle.net/10419/168497 Standard-Nutzungsbedingungen: Terms of use: Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Documents in EconStor may be saved and copied for your Zwecken und zum Privatgebrauch gespeichert und kopiert werden. personal and scholarly purposes. Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle You are not to copy documents for public or commercial Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich -
Improved Television Systems: NTSC and Beyond
• Improved Television Systems: NTSC and Beyond By William F. Schreiber After a discussion ofthe limits to received image quality in NTSC and a excellent results. Demonstrations review of various proposals for improvement, it is concluded that the have been made showing good motion current system is capable ofsignificant increase in spatial and temporal rendition with very few frames per resolution. and that most of these improvements can be made in a second,2 elimination of interline flick er by up-conversion, 3 and improved compatible manner. Newly designed systems,for the sake ofmaximum separation of luminance and chromi utilization of channel capacity. should use many of the techniques nance by means of comb tilters. ~ proposedfor improving NTSC. such as high-rate cameras and displays, No doubt the most important ele but should use the component. rather than composite, technique for ment in creating interest in this sub color multiplexing. A preference is expressed for noncompatible new ject was the demonstration of the Jap systems, both for increased design flexibility and on the basis oflikely anese high-definition television consumer behaL'ior. Some sample systems are described that achieve system in 1981, a development that very high quality in the present 6-MHz channels, full "HDTV" at the took more than ten years.5 Orches CCIR rate of 216 Mbits/sec, or "better-than-35mm" at about 500 trated by NHK, with contributions Mbits/sec. Possibilities for even higher efficiency using motion compen from many Japanese companies, im sation are described. ages have been produced that are comparable to 35mm theater quality. -
ATSC Standard: Program and System Information Protocol for Terrestrial Broadcast and Cable (Revision C) with Amendment No
A/65C 2 January 2006 Amendment No. 1 dated 9 May 2006 ATSC Standard: Program and System Information Protocol for Terrestrial Broadcast and Cable (Revision C) With Amendment No. 1 Advanced Television Systems Committee 1750 K Street, N.W. Suite 1200 Washington, D.C. 20006 http://www.atsc.org ATSC A/65C Program and System Information Protocol 2 January 2006 The Advanced Television Systems Committee, Inc., is an international, non-profit organization developing voluntary standards for digital television. The ATSC member organizations represent the broadcast, broadcast equipment, motion picture, consumer electronics, computer, cable, satellite, and semiconductor industries. Specifically, ATSC is working to coordinate television standards among different communications media focusing on digital television, interactive systems, and broadband multimedia communications. ATSC is also developing digital television implementation strategies and presenting educational seminars on the ATSC standards. ATSC was formed in 1982 by the member organizations of the Joint Committee on InterSociety Coordination (JCIC): the Electronic Industries Association (EIA), the Institute of Electrical and Electronic Engineers (IEEE), the National Association of Broadcasters (NAB), the National Cable Television Association (NCTA), and the Society of Motion Picture and Television Engineers (SMPTE). Currently, there are approximately 140 members representing the broadcast, broadcast equipment, motion picture, consumer electronics, computer, cable, satellite, and semiconductor industries. ATSC Digital TV Standards include digital high definition television (HDTV), standard definition television (SDTV), data broadcasting, multichannel surround-sound audio, and satellite direct-to-home broadcasting. NOTE: The user's attention is called to the possibility that compliance with this standard may require use of an invention covered by patent rights. By publication of this standard, no position is taken with respect to the validity of this claim or of any patent rights in connection therewith. -
Program and System Information Protocol Implementation Guidelines for Broadcasters
ATSC Recommended Practice: Program and System Information Protocol Implementation Guidelines for Broadcasters Document A/69:2009, 25 December 2009 Advanced Television Systems Committee, Inc. 1776 K Street, N.W., Suite 200 Washington, D.C. 20006 Advanced Television Systems Committee Document A/69:2009 The Advanced Television Systems Committee, Inc., is an international, non-profit organization developing voluntary standards for digital television. The ATSC member organizations represent the broadcast, broadcast equipment, motion picture, consumer electronics, computer, cable, satellite, and semiconductor industries. Specifically, ATSC is working to coordinate television standards among different communications media focusing on digital television, interactive systems, and broadband multimedia communications. ATSC is also developing digital television implementation strategies and presenting educational seminars on the ATSC standards. ATSC was formed in 1982 by the member organizations of the Joint Committee on InterSociety Coordination (JCIC): the Electronic Industries Association (EIA), the Institute of Electrical and Electronic Engineers (IEEE), the National Association of Broadcasters (NAB), the National Cable Telecommunications Association (NCTA), and the Society of Motion Picture and Television Engineers (SMPTE). Currently, there are approximately 140 members representing the broadcast, broadcast equipment, motion picture, consumer electronics, computer, cable, satellite, and semiconductor industries. ATSC Digital TV Standards include -
Fcc Written Response to the Gao Report on Dtv Table of Contents
FCC WRITTEN RESPONSE TO THE GAO REPORT ON DTV TABLE OF CONTENTS I. TECHNICAL GOALS 1. Develop Technical Standard for Digital Broadcast Operations……………………… 1 2. Pre-Transition Channel Assignments/Allotments……………………………………. 5 3. Construction of Pre-Transition DTV Facilities……………………………………… 10 4. Transition Broadcast Stations to Final Digital Operations………………………….. 16 5. Facilitate the production of set top boxes and other devices that can receive digital broadcast signals in connection with subscription services………………….. 24 6. Facilitate the production of television sets and other devices that can receive digital broadcast signals……………………………………………………………… 29 II. POLICY GOALS 1. Protect MVPD Subscribers in their Ability to Continue Watching their Local Broadcast Stations After the Digital Transition……………………………….. 37 2. Maximize Consumer Benefits of the Digital Transition……………………………... 42 3. Educate consumers about the DTV transition……………………………………….. 48 4. Identify public interest opportunities afforded by digital transition…………………. 53 III. CONSUMER OUTREACH GOALS 1. Prepare and Distribute Publications to Consumers and News Media………………. 59 2. Participate in Events and Conferences……………………………………………… 60 3. Coordinate with Federal, State and local Entities and Community Stakeholders…… 62 4. Utilize the Commission’s Advisory Committees to Help Identify Effective Strategies for Promoting Consumer Awareness…………………………………….. 63 5. Maintain and Expand Information and Resources Available via the Internet………. 63 IV. OTHER CRITICAL ELEMENTS 1. Transition TV stations in the cross-border areas from analog to digital broadcasting by February 17, 2009………………………………………………………………… 70 2. Promote Consumer Awareness of NTIA’s Digital-to-Analog Converter Box Coupon Program………………………………………………………………………72 I. TECHNICAL GOALS General Overview of Technical Goals: One of the most important responsibilities of the Commission, with respect to the nation’s transition to digital television, has been to shepherd the transformation of television stations from analog broadcasting to digital broadcasting. -
Digital Television: Has the Revolution Stalled?
iBRIEF / Media & Communications Cite as 2001 Duke L. & Tech. Rev. 0014 3/26/2001 April 26, 2001 DIGITAL TELEVISION: HAS THE REVOLUTION STALLED? When digital television technology first hit the scene it garnered great excitement, with its promise of movie theater picture and sound on a fraction of the bandwidth of analog. A plan was implemented to transition from the current analog broadcasting system to a digital system effective December 23, 2006. As we reach the half point of this plan, the furor begins to die as the realities of the difficult change sink in. The History of Digital Television ¶1 The technological possibilities of digital television are immense.1 It could provide the broadcast of theater quality sound and picture via cable, antenna or satellite; multicasting which enables the transmission of multiple programs within one digital signal; and signals for data communications that could potentially bring to the TV the capabilities of web pages and interactive compact discs.2 ¶2 The motivation behind the development of digital television technologies can be traced back to the history of analog broadcasting. As television became a viable medium in the United States at the start of the Second World War, the establishment of technical standards in transmission and reception equipment was of vital importance. In 1940, the National Television Systems Committee (NTSC) met to determine guidelines for the transmission and reception of television signals. With the US leading the charge into early broadcasting in the late 1940s, the technology available at the time became entrenched and remains a part of our lives today, with the familiar 525-line low-resolution screens that bring us the evening news. -
Identifying and Locating Cable TV Interference Application Note
Application Note Identifying and Locating Cable TV Interference A Primer for Public Safety Engineers and Cellular Operators Introduction In the early days of cable TV systems, the signals being sent over the cables were the same signals that were transmitted over the air. This minimized the extent of interference problems. Problems in those days would often manifest as ghosting and would look like a multipath reflection. However as cable TV systems offered more and more TV channels and other services, signals transmitted over the cables covered virtually the entire spectrum from 7 MHz to over 1 GHz. See table 1. There are many different services that operate over the air in that frequency range. All those services can be subject to interfering signals radiating from cable TV systems and in turn over the air signals can leak into the cable TV plant and cause interference. As cable TV systems began to expand the frequency range in the cable, interference started to be experienced by aeronautical users in the 100 to 140 MHz range and amateur radio operators in the 50 MHz to 54 MHz, 144 to 148 MHz, 220 to 225 MHz, and the 440 to 450 MHz bands. First responders could also experience interference when operating near a leaky cable plant. Problems in the 700 and 850 MHz cellular bands emerged as the frequencies in the cables were pushed higher and higher to provide more channels for cable TV customers. As the 600 MHz frequency range begins to be used by cellular operators, problems are likely to be seen there as well.