Hauppauge Introduces New Multi-Standard Tv Receiver

Total Page:16

File Type:pdf, Size:1020Kb

Hauppauge Introduces New Multi-Standard Tv Receiver HAUPPAUGE INTRODUCES NEW MULTI­STANDARD TV RECEIVER FOR WINDOWS AND LINUX WinTV‐HVR‐1975 supports seven different TV formats for over‐the‐air and digital cable TV in North America and Europe Hauppauge, New York February 26, 2014 – Hauppauge Computer Works Inc. has announced the WinTV-HVR-1975, a USB based TV receiver for Windows and Linux systems with multi-format TV support for both North American and Europe. The WinTV-HVR-1975 has built-in support for North America NTSC and European PAL TV, plus ATSC HD and clear QAM digital cable TV support in North America and DVB-T, DVB-T2 and DVB-C support in Europe. The WinTV-HVR-1975 is part of the WinTV-HVR-19XX family of high performance TV receivers. All models in the family have hardware video encoders which convert NTSC and PAL TV programs into MPEG-2, thereby reducing the CPU requirements of the host systems. “Our professional TV receiver customers have been looking for a universal TV tuner for Europe and North America, and the WinTV-HVR-1975 supports the most popular TV formats used in both regions. For example, the DVB-C TV format is used in many European countries for digital cable TV, and DVB-T2, the new high definition over-the-air broadcast format which started in the UK, is now spreading throughout Europe including Russia. Coupled with the support of NTSC, PAL, ATSC and DVB-T, the WinTV-HVR-1975 delivers a TV receiver which is as close to universal as possible” said Ken Plotkin, President of Hauppauge. “We expect the WinTV-HVR-1975 to be used in Linux based systems for digital signage, sports equipment, hospital patient entertainment systems and other TV watching and high speed data delivery applications”. For Windows system users, Hauppauge has developed both Windows 32-bit and 64-bit drivers and a TV application, WinTV v7. For Linux system builders, Hauppauge has driver support which can be provided under NDA. Pictures of the WinTV-HVR-1950, the retail version of the WinTV-HVR-1975, can be found here: http://www.hauppauge.com/site/press/press_pictures_hvr_americas.html#press_hvr1950 About Hauppauge Computer Works Hauppauge Computer Works , a subsidiary of Hauppauge Digital, Inc. (stock symbol: HAUP) is a leading developer and manufacturer of digital TV receivers for personal computers. The Company designs and develops digital TV video boards for TV‐in‐a‐window, TV data broadcast reception for the consumer electronics marker plus to VAR, System integrator and OEMs throughout the world. The Company is headquartered in Hauppauge, New York and the Company’s Internet web site can be found at http://www.hauppauge.com. ### For more information, please contact David Zebuth at [email protected] .
Recommended publications
  • PCI 3-In-1 TV Tuner Card Model 176149 Transform Your Desktop Computer Into a Digital Multimedia Center
    PCI 3-in-1 TV Tuner Card Model 176149 Transform your desktop computer into a digital multimedia center. Receive digital television and radio broadcasts almost anywhere! DVB-T (Digital Video Broadcasting — Terrestrial) delivers practical digital television broadcasting to consumers worldwide. Many countries have already implemented DVB-T or have decided to use it for future digital terrestrial television deployment. The MANHATTAN® PCI 3-in-1 TV Tuner Card brings free-to-air digital terrestrial and analog television and FM radio to desktop computers. Advanced Features and Controls Enhance Viewing Options Digital Personal Video Recording captures and directly saves television programs to the hard drive for replay or transfer to CD and other portable media devices. Electronic Program Guide (EPG) allows the viewer to browse program summaries, conduct channel and program searches, schedule reminders and other functions. Using the time-shifting capability, viewers can replay favorite scenes, skip annoying advertising and apply pause/rewind/ fast forward control to live video and recorded programs. Easy to Install and Ready to Use Simple connection and Plug and Play capability allow the MANHATTAN PCI 3-in-1 TV Tuner Card to easily install in seconds on a Windows-compatible desktop computer. Lifetime Warranty Strict manufacturing standards ensure the highest quality in all MANHATTAN products. All items carry a full Lifetime Warranty — the strongest quality commitment anyone can make. Model 176149 Features Specifications • Receive free-to-air DVB-T,
    [Show full text]
  • NTE15039 Integrated Circuit VHS/VCR Chroma Signal Proessor for NTSC/PAL/SECAM Systems
    NTE15039 Integrated Circuit VHS/VCR Chroma Signal Proessor for NTSC/PAL/SECAM Systems Description: The NTE15039 is a multifunctional IC in a 24–Lead DIP type package that contains VHS VCT chroma signal processing circuitry. Since the package is small and a minimum number of external compo- nents are required, the NTE15039 occupies much less space on the PC board thus facilitating VCR design. The chroma section is made adjustment–free (except REC chroma level) thus streamlining the manufacture of VCRs Features: D Designed for NTSC/PAL/MESECAM Systems D Adjustment–Free Chroma Section (Except REC Chroma Level) D Few External Components Required D LPF Usable for REC/PB D Multifunctional: 2fSC Generator for CCD Drive Function to Select APC Loop Input Signal Passed/Not Passed Through Comb Filter 3rd Lock Protector of VXO Absolute Maximum Ratings: (TA = +25°C unless otherwise specified) Maximum Supply Voltage, VCCmax. 7V Allowable Power Dissipation (TA ≤ +65°C), PDmax. 850mW Operating Temperature Range, Topg . –10° to +65°C Storage Temperature Range, Tstg . –40° to +125°C Recommended Operating Conditions: (TA = +25°C unless otherwise specified) Recommended Supply Voltage, VCC . 5V Operating Voltage Range, VCCop. 4.8 to 5.5V Electrical Characteristics: (TA = +25°C, VCC = 5V unless otherwise specified) Parameter Symbol Test Conditions Min Typ Max Unit REC Current Dissipation ICC(R) 49 62 75 mA REC Output Level VO(R) 75 110 145 mVP–P REC ACC Characteristics ∆VO(R) Input ± 6dB –0.5 ±0.1 +0.5 dB Electrical Characteristics (Cont’d): (TA = +25°C, VCC
    [Show full text]
  • The Transition to Digital Television*
    DIGITAL TELEVISION 1 The Transition to Digital Television* Jérôme Addaa and Marco Ottavianib University College London; London Business School This paper studies the role of economic policy for the transition from analogue to digital television, with particular attention to the switch off of the analogue terrestrial signal. The analogue signal cannot be credibly switched off until almost all viewers have migrated to digital, due to universality of access to television. But before switch off, only part of the population can be reached with the digital signal. In addition, those who are reached need to spend more to upgrade their reception equipment than after switch off, because the capacity to increase the power of the digital signal will be made available only then. After reviewing the competitive structure and the role of government intervention in television markets, we present the early experience of a number of industrialised countries in the transition to digital television. We then formulate a micro-econometric model of digital television adoption by individual viewers. The model is calibrated to UK data and simulated to predict the impact of government policies on the take up of digital television. Policy makers can affect the speed of take up of digital television by: (i) controlling the quality of the signals and the content of public service broadcasters; (ii) intervening in the market for digital equipment with subsidies; and (iii) publicising the conditions and date of switch off of the analogue signal. We find that if the analogue terrestrial signal is switched off conditionally on aggregate adoption, strategic delays possibly arise and expectations affect the success of the switch off policy.
    [Show full text]
  • Amateur Extra License Class
    Amateur Extra License Class 1 Amateur Extra Class Chapter 8 Radio Modes and Equipment 2 1 Modulation Systems FCC Emission Designations and Terms • Specified by ITU. • Either 3 or 7 characters long. • If 3 characters: • 1st Character = The type of modulation of the main carrier. • 2nd Character = The nature of the signal(s) modulating the main carrier. • 3rd Character = The type of information to be transmitted. • If 7 characters, add a 4-character bandwidth designator in front of the 3-character designator. 3 Modulation Systems FCC Emission Designations and Terms • Type of Modulation. N Unmodulated Carrier A Amplitude Modulation R Single Sideband Reduced Carrier J Single Sideband Suppressed Carrier C Vestigial Sideband F Frequency Modulation G Phase Modulation P, K, L, M, Q, V, W, X Various Types of Pulse Modulation 4 2 Modulation Systems FCC Emission Designations and Terms • Type of Modulating Signal. 0 No modulating signal 1 A single channel containing quantized or digital information without the use of a modulating sub-carrier 2 A single channel containing quantized or digital information with the use of a modulating sub-carrier 3 A single channel containing analog information 7 Two or more channels containing quantized or digital information 8 Two or more channels containing analog information X Cases not otherwise covered 5 Modulation Systems FCC Emission Designations and Terms • Type of Transmitted Information. N No information transmitted A Telegraphy - for aural reception B Telegraphy - for automatic reception C Facsimile D Data transmission, telemetry, telecommand E Telephony (including sound broadcasting) F Television (video) W Combination of the above X Cases not otherwise covered 6 3 Modulation Systems FCC Emission Designations and Terms • 3-character designator examples: • A1A = CW.
    [Show full text]
  • DVB-T Transmissions – Interference with Adjacent-Channel PAL Services
    DVB-T DVB-T transmissions – interference with adjacent-channel PAL services R. Poole BBC Research & Development In the UK, many of the new digital television (DVB-T) services are broadcast in adjacent channels to existing PAL services. There have been reports of PAL reception suffering as a result, possibly because the maximum DVB-T sideband levels have been incorrectly specified. This article describes how to calculate the PAL picture impairment arising from the presence of DVB-T sidebands. It also compares the calculated predictions with experimental data. The conclusion is that the sideband specification is correct: critical viewers would just notice worst-case interference. However, it is possible to misinterpret the specification. An allowance must be made for the difference in effective radiated powers between the DVB-T and PAL transmissions. An example is given of how a mistake could be made. Introduction There have been reports that some of the new digital television transmissions have been caus- ing interference to existing PAL services in adjacent channels. Such interference could result from three possible mechanisms: inadequate adjacent-channel selectivity of the PAL television receivers; overloading of the receivers caused by the additional signals; generation of spurious sidebands within the DVB-T transmitters themselves. Work has already been carried out on the adjacent-channel performance of domestic PAL receivers: BBC R&D, for example, has carried out practical tests on receivers which were reported in an internal technical note (these tests are referred to at several points in this arti- cle). If the interfering DVB-T signal is “clean” or “ideal”, interference only becomes visible when its level exceeds that of the PAL signal.
    [Show full text]
  • Improved Television Systems: NTSC and Beyond
    • Improved Television Systems: NTSC and Beyond By William F. Schreiber After a discussion ofthe limits to received image quality in NTSC and a excellent results. Demonstrations review of various proposals for improvement, it is concluded that the have been made showing good motion current system is capable ofsignificant increase in spatial and temporal rendition with very few frames per resolution. and that most of these improvements can be made in a second,2 elimination of interline flick­ er by up-conversion, 3 and improved compatible manner. Newly designed systems,for the sake ofmaximum separation of luminance and chromi­ utilization of channel capacity. should use many of the techniques nance by means of comb tilters. ~ proposedfor improving NTSC. such as high-rate cameras and displays, No doubt the most important ele­ but should use the component. rather than composite, technique for ment in creating interest in this sub­ color multiplexing. A preference is expressed for noncompatible new ject was the demonstration of the Jap­ systems, both for increased design flexibility and on the basis oflikely anese high-definition television consumer behaL'ior. Some sample systems are described that achieve system in 1981, a development that very high quality in the present 6-MHz channels, full "HDTV" at the took more than ten years.5 Orches­ CCIR rate of 216 Mbits/sec, or "better-than-35mm" at about 500 trated by NHK, with contributions Mbits/sec. Possibilities for even higher efficiency using motion compen­ from many Japanese companies, im­ sation are described. ages have been produced that are comparable to 35mm theater quality.
    [Show full text]
  • Digital Audio for NTSC Television
    Digital Audio for NTSC Television Craig C. Todd Dolby Laboratories San Francisco 0. Abstract A previously proposed method of adding a digital similarities between B-PAL and M-NTSC indicated carrier to the NTSC broadcast channel was found to that the Scandinavian test results would apply in the be marginally compatible with adjacent channel U.S. Our original 1987 proposal was: operation. The technique also has some problems unique to broadcasters. Digital transmission A. QPSK carrier with alpha=0.7 filtering. techniques are reviewed, and a new set of digital transmission parameters are developed which are B. Carrier frequency 4.85 MHz above video thought to be optimum for digital sound with NTSC carrier. television. C. Carrier level -20 dB with respect to peak vision carrier level. I. Introduction Compatibility testing of that system has been It is very feasible to compatibly add digital audio to performed, and some television sets have been found the NTSC television signal as carried on cable on which the data carrier causes detectable television systems. Besides the marketing advantage interference to the upper adjacent video channel in a which can accompany the use of anything "digital", clean laboratory setting. It should be noted that with there are some real advantages to digital these problem sets, the FM aural carrier also caused broadcasting, especially where the transmission path noticeable interference to the upper adjacent picture. is imperfect. Digital transmission is inherently The interference from data occurs into luminance, robust. While the coding of high quality audio into and manifests itself as additive noise between digital form theoretically entails a loss of quality, approximately 1 MHz and 1.4 MHz.
    [Show full text]
  • Operation Manual
    Operation Manual 1T-PAL-NTSC and 1T-PAL-NTSC-GL Standards Converters Table of Contents 1.0 Introduction 2 2.0 Specifications 3 3.0 Checking Package Contents 4 4.0 Connecting The Hardware 4 5.0 Operating The Unit 5 6.0 Troubleshooting 7 7.0 Limited Warranty 8 8.0 Regulatory Compliance 8 9.0 Contact Information 9 1.0 INTRODUCTION Thanks for purchasing this One-Task 1T-PAL-NTSC or 1T-PAL-NTSC-GL Standards Converter from TV One. The 1T-PAL-NTSC series of Standards Converters are designed to convert any of the widely used world television standard signals to any other widely used television standard plus perform frame synchronization and time base corrections to these signals as required. Our professional video conversion products have been serving the industry for over twenty years. TV One offers a full line of high quality Seamless Switchers, Video Scalers, Up/Down/Cross Converters, Analog-Digital Converters (SD/HD-SDI, HDMI, DVI), Format Converters, Standards Converters, TBC/Frame Synchronizers, Matrix Routing Switchers, Signal Distribution Amplifiers and Cat.5 Transmission Systems. 1.1 Liability Statement Every effort has been made to ensure that this product is free of errors. TV One cannot be held liable for the use of this hardware or any direct or indirect consequential damages arising from its use. It is the responsibility of the user of the hardware to check that it is suitable for his/her requirements and that it is installed correctly. All rights reserved. No parts of this manual may be reproduced or transmitted by any form or means electronic or mechanical, including photocopying, recording or by any information storage or retrieval system without the written consent of the publisher.
    [Show full text]
  • DVB-T / DVB-H Transmitter Measurements for Acceptance, Commission- Ing and Monitoring Application Note
    DVB-T / DVB-H Transmitter Measurements for Acceptance, Commission- ing and Monitoring Application Note Product: | R&SETL Broadcasting transmitters are subject to particularly stringent standards with re- spect to broadcast signal quality, because even small faults can lead to service dis- ruptions for many viewers. A single instrument, the R&S®ETL TV analyzer, performs all required DVB-T / DVB-H transmitter measurements, from the initial acceptance testing for the transmitter, to measurements performed during commissioning and preventive maintenance. 7BM101_2E - Christiane Klaus Application Application Note 12.2013 Table of Contents Table of Contents 1 Overview ................................................................................. 3 2 Preparatory Steps .................................................................. 4 2.1 Required Equipment .................................................................................... 4 2.2 Test Setup ..................................................................................................... 5 2.3 Protection against Destructive Input Power .............................................. 6 ® 2.4 R&S ETL Default Configuration ................................................................. 6 3 Measurements ........................................................................ 8 3.1 Power ............................................................................................................. 8 3.1.1 Transmitter Output Level ...............................................................................
    [Show full text]
  • The Technology of Television
    TheThe TechnologyTechnology ofof TelevisionTelevision Highlights, Timeline, and Where to Find More Information Summer 2003 THE FCC: SEVENTY-SIX TV TIMELINE YEARS OF WATCHING TV Paul Nipkow shows 1884 how to send From the Federal Radio images over wires. Commission’s issuance of the first television Campbell Swinton and 1907 license in 1928 to Boris Rosing suggest today’s transition using cathode ray tubes to digital tv, the to transmit images. Federal Vladimir Zworkin 1923 patents his iconscope - the camera tube many call the cornerstone of Communications modern tv—based on Swinton’s idea. Commission has been an integral player in the Charles Jenkins in the 1925 technology of television. U.S. and John Baird in England demonstrate the mechanical trans- One of the fundamental mission of pictures over wire circuits. technology standards that the FCC issued in Bell Telephone and the 1927 May 1941, which still Commerce Department stands today, is the conduct the 1st long NTSC standard for distance demonstration programming to be 525 of tv between New York and Washington, DC. lines per frame, 30 frames per second. Philo Farnsworth files 1927 a patent for the 1st complete electronic When this standard was and hue of red, green, and television system. first affirmed it was called Today the FCC continues to blue on the color chart. The Federal Radio 1928 “high-definition television” play a key role in defining the technology standards that must Commission issues the because it replaced 1st tv license (W3XK) be met as the United States programming being broadcast to Charles Jenkins. at 343 lines or less.
    [Show full text]
  • Ntsc and Beyond
    166 IEEE Transactions on Consumer Electronics, Vol. 34, No. 1, FEBRUARY 1988 NTSC AND BEYOND Yves Charles Faroudja, President Faroudja Laboratories, Inc. Sunnyvale, California ABSTRACT tant details of this proposal for a SuperNTSC system that goes well beyond current NTSC per- Two recent technological developments of consi- formance characteristics. derable significance have led to the critical re- evaluation of the NTSC standard as an adequate public television service. These two develop- ments were: (a) the rapid proliferation of a INTRODUCTION variety of HDTV proposals, and (b) the emer- gence of low-cost frame memories for home The major technical impact of the frequent de- receivers. This critical reevaluation, which the monstrations of various high definition systems author conducted in the course of his own re- at television conferences and equipment shows, search work, led him to the unavoidable conclu- all over the world, has been to motivate research sion that NTSC is indeed capable of rivalling and development engineers to more critically re- HDTV image quality under certain conditions, examine the existing color television systems and these are: now serving the public. In the NTSC areas of the world, where over 200 million home receivers 1. That today's much better understanding of represent almost 60% of the global color receiver the fundamental principles of color tele- population, the widespread adoption of an in- vision be put to optimal use, and compatible high definition television system is inconceivable, and fully precluded by social con- 2. That the advanced technology tools deve- straints. loped primarily for HDTV systems be applied in an equally innovative manner to That fact alone has led to a variety of research the NTSC environment.
    [Show full text]
  • Fcc Written Response to the Gao Report on Dtv Table of Contents
    FCC WRITTEN RESPONSE TO THE GAO REPORT ON DTV TABLE OF CONTENTS I. TECHNICAL GOALS 1. Develop Technical Standard for Digital Broadcast Operations……………………… 1 2. Pre-Transition Channel Assignments/Allotments……………………………………. 5 3. Construction of Pre-Transition DTV Facilities……………………………………… 10 4. Transition Broadcast Stations to Final Digital Operations………………………….. 16 5. Facilitate the production of set top boxes and other devices that can receive digital broadcast signals in connection with subscription services………………….. 24 6. Facilitate the production of television sets and other devices that can receive digital broadcast signals……………………………………………………………… 29 II. POLICY GOALS 1. Protect MVPD Subscribers in their Ability to Continue Watching their Local Broadcast Stations After the Digital Transition……………………………….. 37 2. Maximize Consumer Benefits of the Digital Transition……………………………... 42 3. Educate consumers about the DTV transition……………………………………….. 48 4. Identify public interest opportunities afforded by digital transition…………………. 53 III. CONSUMER OUTREACH GOALS 1. Prepare and Distribute Publications to Consumers and News Media………………. 59 2. Participate in Events and Conferences……………………………………………… 60 3. Coordinate with Federal, State and local Entities and Community Stakeholders…… 62 4. Utilize the Commission’s Advisory Committees to Help Identify Effective Strategies for Promoting Consumer Awareness…………………………………….. 63 5. Maintain and Expand Information and Resources Available via the Internet………. 63 IV. OTHER CRITICAL ELEMENTS 1. Transition TV stations in the cross-border areas from analog to digital broadcasting by February 17, 2009………………………………………………………………… 70 2. Promote Consumer Awareness of NTIA’s Digital-to-Analog Converter Box Coupon Program………………………………………………………………………72 I. TECHNICAL GOALS General Overview of Technical Goals: One of the most important responsibilities of the Commission, with respect to the nation’s transition to digital television, has been to shepherd the transformation of television stations from analog broadcasting to digital broadcasting.
    [Show full text]