A Guide to Video Standards
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Comparison of HDTV Formats Using Objective Video Quality Measures
Multimed Tools Appl DOI 10.1007/s11042-009-0441-2 Comparison of HDTV formats using objective video quality measures Emil Dumic & Sonja Grgic & Mislav Grgic # Springer Science+Business Media, LLC 2010 Abstract In this paper we compare some of the objective quality measures with subjective, in several HDTV formats, to be able to grade the quality of the objective measures. Also, comparison of objective and subjective measures between progressive and interlaced video signal will be presented to determine which scanning emission format is better, even if it has different resolution format. Several objective quality measures will be tested, to examine the correlation with the subjective test, using various performance measures. Keywords Video quality . PSNR . VQM . SSIM . TSCES . HDTV. H.264/AVC . RMSE . Correlation 1 Introduction High-Definition Television (HDTV) acceptance in home environments directly depends on two key factors: the availability of adequate HDTV broadcasts to the consumer’s home and the availability of HDTV display devices at mass market costs [6]. Although the United States, Japan and Australia have been broadcasting HDTV for some years, real interest of the general public appeared recently with the severe reduction of HDTV home equipment price. Nowadays many broadcasters in Europe have started to offer HDTV broadcasts as part of Pay-TV bouquets (like BSkyB, Sky Italia, Premiere, Canal Digital ...). Other major public broadcasters in Europe have plans for offering HDTV channels in the near future. The announcement of Blu-Ray Disc and Game consoles with HDTV resolutions has also increased consumer demand for HDTV broadcasting. The availability of different HDTV image formats such as 720p/50, 1080i/25 and 1080p/50 places the question for many users which HDTV format should be used with which compression algorithm, together with the corresponding bit rate. -
NTE15039 Integrated Circuit VHS/VCR Chroma Signal Proessor for NTSC/PAL/SECAM Systems
NTE15039 Integrated Circuit VHS/VCR Chroma Signal Proessor for NTSC/PAL/SECAM Systems Description: The NTE15039 is a multifunctional IC in a 24–Lead DIP type package that contains VHS VCT chroma signal processing circuitry. Since the package is small and a minimum number of external compo- nents are required, the NTE15039 occupies much less space on the PC board thus facilitating VCR design. The chroma section is made adjustment–free (except REC chroma level) thus streamlining the manufacture of VCRs Features: D Designed for NTSC/PAL/MESECAM Systems D Adjustment–Free Chroma Section (Except REC Chroma Level) D Few External Components Required D LPF Usable for REC/PB D Multifunctional: 2fSC Generator for CCD Drive Function to Select APC Loop Input Signal Passed/Not Passed Through Comb Filter 3rd Lock Protector of VXO Absolute Maximum Ratings: (TA = +25°C unless otherwise specified) Maximum Supply Voltage, VCCmax. 7V Allowable Power Dissipation (TA ≤ +65°C), PDmax. 850mW Operating Temperature Range, Topg . –10° to +65°C Storage Temperature Range, Tstg . –40° to +125°C Recommended Operating Conditions: (TA = +25°C unless otherwise specified) Recommended Supply Voltage, VCC . 5V Operating Voltage Range, VCCop. 4.8 to 5.5V Electrical Characteristics: (TA = +25°C, VCC = 5V unless otherwise specified) Parameter Symbol Test Conditions Min Typ Max Unit REC Current Dissipation ICC(R) 49 62 75 mA REC Output Level VO(R) 75 110 145 mVP–P REC ACC Characteristics ∆VO(R) Input ± 6dB –0.5 ±0.1 +0.5 dB Electrical Characteristics (Cont’d): (TA = +25°C, VCC -
BA(Prog)III Yr 14/04/2020 Displays Interlacing and Progressive Scan
BA(prog)III yr 14/04/2020 Displays • Colored phosphors on a cathode ray tube (CRT) screen glow red, green, or blue when they are energized by an electron beam. • The intensity of the beam varies as it moves across the screen, some colors glow brighter than others. • Finely tuned magnets around the picture tube aim the electrons onto the phosphor screen, while the intensity of the beamis varied according to the video signal. This is why you needed to keep speakers (which have strong magnets in them) away from a CRT screen. • A strong external magnetic field can skew the electron beam to one area of the screen and sometimes caused a permanent blotch that cannot be fixed by degaussing—an electronic process that readjusts the magnets that guide the electrons. • If a computer displays a still image or words onto a CRT for a long time without changing, the phosphors will permanently change, and the image or words can become visible, even when the CRT is powered down. Screen savers were invented to prevent this from happening. • Flat screen displays are all-digital, using either liquid crystal display (LCD) or plasma technologies, and have replaced CRTs for computer use. • Some professional video producers and studios prefer CRTs to flat screen displays, claiming colors are brighter and more accurately reproduced. • Full integration of digital video in cameras and on computers eliminates the analog television form of video, from both the multimedia production and the delivery platform. • If your video camera generates a digital output signal, you can record your video direct-to-disk, where it is ready for editing. -
Amateur Extra License Class
Amateur Extra License Class 1 Amateur Extra Class Chapter 8 Radio Modes and Equipment 2 1 Modulation Systems FCC Emission Designations and Terms • Specified by ITU. • Either 3 or 7 characters long. • If 3 characters: • 1st Character = The type of modulation of the main carrier. • 2nd Character = The nature of the signal(s) modulating the main carrier. • 3rd Character = The type of information to be transmitted. • If 7 characters, add a 4-character bandwidth designator in front of the 3-character designator. 3 Modulation Systems FCC Emission Designations and Terms • Type of Modulation. N Unmodulated Carrier A Amplitude Modulation R Single Sideband Reduced Carrier J Single Sideband Suppressed Carrier C Vestigial Sideband F Frequency Modulation G Phase Modulation P, K, L, M, Q, V, W, X Various Types of Pulse Modulation 4 2 Modulation Systems FCC Emission Designations and Terms • Type of Modulating Signal. 0 No modulating signal 1 A single channel containing quantized or digital information without the use of a modulating sub-carrier 2 A single channel containing quantized or digital information with the use of a modulating sub-carrier 3 A single channel containing analog information 7 Two or more channels containing quantized or digital information 8 Two or more channels containing analog information X Cases not otherwise covered 5 Modulation Systems FCC Emission Designations and Terms • Type of Transmitted Information. N No information transmitted A Telegraphy - for aural reception B Telegraphy - for automatic reception C Facsimile D Data transmission, telemetry, telecommand E Telephony (including sound broadcasting) F Television (video) W Combination of the above X Cases not otherwise covered 6 3 Modulation Systems FCC Emission Designations and Terms • 3-character designator examples: • A1A = CW. -
DVB-T Transmissions – Interference with Adjacent-Channel PAL Services
DVB-T DVB-T transmissions – interference with adjacent-channel PAL services R. Poole BBC Research & Development In the UK, many of the new digital television (DVB-T) services are broadcast in adjacent channels to existing PAL services. There have been reports of PAL reception suffering as a result, possibly because the maximum DVB-T sideband levels have been incorrectly specified. This article describes how to calculate the PAL picture impairment arising from the presence of DVB-T sidebands. It also compares the calculated predictions with experimental data. The conclusion is that the sideband specification is correct: critical viewers would just notice worst-case interference. However, it is possible to misinterpret the specification. An allowance must be made for the difference in effective radiated powers between the DVB-T and PAL transmissions. An example is given of how a mistake could be made. Introduction There have been reports that some of the new digital television transmissions have been caus- ing interference to existing PAL services in adjacent channels. Such interference could result from three possible mechanisms: inadequate adjacent-channel selectivity of the PAL television receivers; overloading of the receivers caused by the additional signals; generation of spurious sidebands within the DVB-T transmitters themselves. Work has already been carried out on the adjacent-channel performance of domestic PAL receivers: BBC R&D, for example, has carried out practical tests on receivers which were reported in an internal technical note (these tests are referred to at several points in this arti- cle). If the interfering DVB-T signal is “clean” or “ideal”, interference only becomes visible when its level exceeds that of the PAL signal. -
A Review and Comparison on Different Video Deinterlacing
International Journal of Research ISSN NO:2236-6124 A Review and Comparison on Different Video Deinterlacing Methodologies 1Boyapati Bharathidevi,2Kurangi Mary Sujana,3Ashok kumar Balijepalli 1,2,3 Asst.Professor,Universal College of Engg & Technology,Perecherla,Guntur,AP,India-522438 [email protected],[email protected],[email protected] Abstract— Video deinterlacing is a key technique in Interlaced videos are generally preferred in video broadcast digital video processing, particularly with the widespread and transmission systems as they reduce the amount of data to usage of LCD and plasma TVs. Interlacing is a widely used be broadcast. Transmission of interlaced videos was widely technique, for television broadcast and video recording, to popular in various television broadcasting systems such as double the perceived frame rate without increasing the NTSC [2], PAL [3], SECAM. Many broadcasting agencies bandwidth. But it presents annoying visual artifacts, such as made huge profits with interlaced videos. Video acquiring flickering and silhouette "serration," during the playback. systems on many occasions naturally acquire interlaced video Existing state-of-the-art deinterlacing methods either ignore and since this also proved be an efficient way, the popularity the temporal information to provide real-time performance of interlaced videos escalated. but lower visual quality, or estimate the motion for better deinterlacing but with a trade-off of higher computational cost. The question `to interlace or not to interlace' divides the TV and the PC communities. A proper answer requires a common understanding of what is possible nowadays in deinterlacing video signals. This paper outlines the most relevant methods, and provides a relative comparison. -
Video Terminology Video Standards Progressive Vs
VIDEO TERMINOLOGY VIDEO STANDARDS 1. NTSC - 525 Scanlines/frame rate - 30fps North & Central America, Phillipines & Taiwan . NTSC J - Japan has a darker black 2. PAL - 625 scanlines 25 fps Europe, Scandinavia parts of Asia, Pacific & South Africa. PAL in Brazil is 30fps and PAL colours 3. SECAM France Russia Middle East and North Africa PROGRESSIVE VS INTERLACED VIDEO All computer monitors use a progressive scan - each scan line in sequence. Interlacing is only for CRT monitors. LCD monitors work totally differently - no need to worry about. Interlacing is for broadcast TV. Every other line displayed alternatively. FRAME RATES As we transition from analogue video to digitla video. Film is 24 fps, PAL video 25 fps. NTSC 30fps. Actually film and NTSC are slightly different but we don't need to worry about that for now. IMAGE SIZE All video is shot at 72 px/inch - DV NTSC - 720 x 480 (SD is 720 x 486) DV PAL - 720 x 576 (SD PAL is 720 x 576) HD comes in both progressive and interlaced. HD480i is usual broadcast TV 480p is 480 progressive. 720i is 720 interlaced 720p is progressive. 720 means 720 vertical lines 1080 is 1080 vertical lines. 1080i is most popular. 720p is 1280 x 720, HD 1080 is 1920x1080px. All HD formats are 16:9 aspect ratio. Traditional TV is 4:3 aspect ratio. HDV is 1440 x 1080. New format - is it the new HD version of DV? Cameras like the Sony and JVC make minor alterations to this format when shooting In summary HD 1080i = 1920 x 1080 HD 720p = 1280 x 720 Traditional = 720 x 480 (NTSC) 720 x 576 (PAL) VIDEO OUTPUTS Analog Composite, S-Video, Component in increasing quality. -
Hauppauge Introduces New Multi-Standard Tv Receiver
HAUPPAUGE INTRODUCES NEW MULTISTANDARD TV RECEIVER FOR WINDOWS AND LINUX WinTV‐HVR‐1975 supports seven different TV formats for over‐the‐air and digital cable TV in North America and Europe Hauppauge, New York February 26, 2014 – Hauppauge Computer Works Inc. has announced the WinTV-HVR-1975, a USB based TV receiver for Windows and Linux systems with multi-format TV support for both North American and Europe. The WinTV-HVR-1975 has built-in support for North America NTSC and European PAL TV, plus ATSC HD and clear QAM digital cable TV support in North America and DVB-T, DVB-T2 and DVB-C support in Europe. The WinTV-HVR-1975 is part of the WinTV-HVR-19XX family of high performance TV receivers. All models in the family have hardware video encoders which convert NTSC and PAL TV programs into MPEG-2, thereby reducing the CPU requirements of the host systems. “Our professional TV receiver customers have been looking for a universal TV tuner for Europe and North America, and the WinTV-HVR-1975 supports the most popular TV formats used in both regions. For example, the DVB-C TV format is used in many European countries for digital cable TV, and DVB-T2, the new high definition over-the-air broadcast format which started in the UK, is now spreading throughout Europe including Russia. Coupled with the support of NTSC, PAL, ATSC and DVB-T, the WinTV-HVR-1975 delivers a TV receiver which is as close to universal as possible” said Ken Plotkin, President of Hauppauge. -
Improved Television Systems: NTSC and Beyond
• Improved Television Systems: NTSC and Beyond By William F. Schreiber After a discussion ofthe limits to received image quality in NTSC and a excellent results. Demonstrations review of various proposals for improvement, it is concluded that the have been made showing good motion current system is capable ofsignificant increase in spatial and temporal rendition with very few frames per resolution. and that most of these improvements can be made in a second,2 elimination of interline flick er by up-conversion, 3 and improved compatible manner. Newly designed systems,for the sake ofmaximum separation of luminance and chromi utilization of channel capacity. should use many of the techniques nance by means of comb tilters. ~ proposedfor improving NTSC. such as high-rate cameras and displays, No doubt the most important ele but should use the component. rather than composite, technique for ment in creating interest in this sub color multiplexing. A preference is expressed for noncompatible new ject was the demonstration of the Jap systems, both for increased design flexibility and on the basis oflikely anese high-definition television consumer behaL'ior. Some sample systems are described that achieve system in 1981, a development that very high quality in the present 6-MHz channels, full "HDTV" at the took more than ten years.5 Orches CCIR rate of 216 Mbits/sec, or "better-than-35mm" at about 500 trated by NHK, with contributions Mbits/sec. Possibilities for even higher efficiency using motion compen from many Japanese companies, im sation are described. ages have been produced that are comparable to 35mm theater quality. -
Operation Manual
Operation Manual 1T-PAL-NTSC and 1T-PAL-NTSC-GL Standards Converters Table of Contents 1.0 Introduction 2 2.0 Specifications 3 3.0 Checking Package Contents 4 4.0 Connecting The Hardware 4 5.0 Operating The Unit 5 6.0 Troubleshooting 7 7.0 Limited Warranty 8 8.0 Regulatory Compliance 8 9.0 Contact Information 9 1.0 INTRODUCTION Thanks for purchasing this One-Task 1T-PAL-NTSC or 1T-PAL-NTSC-GL Standards Converter from TV One. The 1T-PAL-NTSC series of Standards Converters are designed to convert any of the widely used world television standard signals to any other widely used television standard plus perform frame synchronization and time base corrections to these signals as required. Our professional video conversion products have been serving the industry for over twenty years. TV One offers a full line of high quality Seamless Switchers, Video Scalers, Up/Down/Cross Converters, Analog-Digital Converters (SD/HD-SDI, HDMI, DVI), Format Converters, Standards Converters, TBC/Frame Synchronizers, Matrix Routing Switchers, Signal Distribution Amplifiers and Cat.5 Transmission Systems. 1.1 Liability Statement Every effort has been made to ensure that this product is free of errors. TV One cannot be held liable for the use of this hardware or any direct or indirect consequential damages arising from its use. It is the responsibility of the user of the hardware to check that it is suitable for his/her requirements and that it is installed correctly. All rights reserved. No parts of this manual may be reproduced or transmitted by any form or means electronic or mechanical, including photocopying, recording or by any information storage or retrieval system without the written consent of the publisher. -
DVB-T / DVB-H Transmitter Measurements for Acceptance, Commission- Ing and Monitoring Application Note
DVB-T / DVB-H Transmitter Measurements for Acceptance, Commission- ing and Monitoring Application Note Product: | R&SETL Broadcasting transmitters are subject to particularly stringent standards with re- spect to broadcast signal quality, because even small faults can lead to service dis- ruptions for many viewers. A single instrument, the R&S®ETL TV analyzer, performs all required DVB-T / DVB-H transmitter measurements, from the initial acceptance testing for the transmitter, to measurements performed during commissioning and preventive maintenance. 7BM101_2E - Christiane Klaus Application Application Note 12.2013 Table of Contents Table of Contents 1 Overview ................................................................................. 3 2 Preparatory Steps .................................................................. 4 2.1 Required Equipment .................................................................................... 4 2.2 Test Setup ..................................................................................................... 5 2.3 Protection against Destructive Input Power .............................................. 6 ® 2.4 R&S ETL Default Configuration ................................................................. 6 3 Measurements ........................................................................ 8 3.1 Power ............................................................................................................. 8 3.1.1 Transmitter Output Level ............................................................................... -
Video Source File Specifications
Video Source File Specifications Limelight recommends the following specifications for all video source files. Adherence to these specifications will result in optimal playback quality and efficient uploading to your account. Edvance360 Best Practices Videos should be under 1 Gig for best results (download speed and mobile devices), but our limit per file is 2 Gig for Lessons MP4 is the optimum format for uploading videos Compress the video to resolution of 1024 x 768 Limelight does compress the video, but it's best if it's done on the original file A resolution is 1080p or less is recommended Recommended frame rate is 30fps Note: The maximum file size for Introduction Videos in Courses is 50MB. This is located in Courses > Settings > Details > Introduction Video. Ideal Source File In general, a source file that represents the following will produce the best results: MP4 file (H.264/ACC-LC) Fast Start (MOOV atom at the front of file) Progressive scan (no interlacing) Frame rate of 24 (23.98), 25, or 30 (29.97) fps A Bitrate between 5,000 - 8,000 Kbps 720p resolution Detailed Recommendations The table below provides detailed recommendations (CODECs, containers, Bitrates, resolutions, etc.) for all video source material uploaded to a Limelight Account: Source File Element Recommendations Video CODEC Recommended CODEC: H.264 Accepted but not Recommended: MPEG-1, MPEG-2, MPEG-4, VP6, VP5, H.263, Windows Media Video 7 (WMV1), Windows Media Video 8 (WMV2), Windows Media Video 9 (WMV3) Audio CODEC Recommended CODEC: AAC-LC Accepted but not Recommended: MP3, MP2, WMA, WMA Pro, PCM, WAV Container MP4 Source File Element Recommendations Fast-Start Make sure your source file is created with the 'MOOV atom' at the front of the file.