Diplomarbeit

Total Page:16

File Type:pdf, Size:1020Kb

Diplomarbeit DIPLOMARBEIT Stable isotope probing-based ecophysiological analysis of sulphate-reducing microorganisms in an acidic fen angestrebter akademischer Grad Magister der Naturwissenschaften (Mag. rer.nat.) Verfasser: Norbert Bittner Matrikel-Nummer: 0040188 Studienrichtung(lt.Studienblatt): Molekulare Biologie Betreuer: O. Univ. Prof. Dr. Michael Wagner Wien, Jänner 2010 Table of contents 1 Introduction............................................................................................................. 1 1.1 The sulphur cycle .............................................................................................. 1 1.2 Physiology and phylogeny of SRP ................................................................... 2 1.3 Dissimilatory reduction of sulphate .................................................................. 5 1.4 Habitats of SRP................................................................................................. 6 1.5 Wetlands, climate and SRP ............................................................................... 7 1.6 Aim of this study .............................................................................................. 8 2 Material and methods ........................................................................................... 10 2.1 Provided samples ............................................................................................ 10 2.1.1 Sampling site .................................................................................................. 10 2.1.2 Sample incubation .......................................................................................... 10 2.1.3 Soil DNA and RNA extraction ....................................................................... 11 2.2 General material and methods ........................................................................ 11 2.3 Buffers, media and solutions .......................................................................... 15 2.3.1 General solutions ............................................................................................ 15 2.3.2 General solutions for ultracentrifugation ........................................................ 15 2.3.3 Buffers, solutions and standards for gel electrophoresis ............................... 15 2.3.4 Culture media for Escherichia coli strains .................................................... 16 2.3.5 Culture media for Halobacterium salinarum ................................................ 17 2.4 Methods .......................................................................................................... 18 2.4.1 Quantitative analysis of nucleic acids ............................................................ 18 2.4.1.1 Nanodrop analysis........................................................................................... 18 2.4.1.2 Picogreen analysis ........................................................................................... 18 2.4.2 Qualitative nucleic acid analysis by agarose gel electrophoresis ................... 18 2.4.2.1 Qualitative nucleic acid fragment analysis ..................................................... 18 2.4.2.1 Qualitative nucleic acid fragment analysis followed by gel extraction .......... 19 2.4.3 Amplification of specific nucleic acid fragments by PCR ............................. 19 2.4.3.1 Amplification of 16S rRNA genes .................................................................. 19 2.4.3.2 M13 screening PCR ........................................................................................ 21 2.4.3.3 Touchdown hot-start PCR amplification of dsrAB ........................................ 22 2.4.3.4 Amplification of reverse transcribed 16S rRNA fragments by RT-PCR ....... 24 2.4.4 Isopycnic centrifugation of nucleic acids ....................................................... 25 2.4.4.1 Refractrometric density measurements ........................................................... 25 2.4.4.2 Isopycnic centrifugation of DNA ................................................................... 25 2.4.4.3 Isopycnic centrifugation of RNA .................................................................... 26 2.4.5 Nucleic acid precipitation ............................................................................... 26 2.4.5.1 DNA precipitation out of CsCl gradient medium .......................................... 26 2.4.5.2 RNA precipitation out of CsTFA gradient medium ...................................... 26 2.4.6 Terminal restriction fragment length polymorphism analysis ....................... 26 2.4.7 Cloning of PCR products ............................................................................... 28 2.4.7.1 Cloning of 16S rRNA PCR products ............................................................. 28 2.4.7.2 Cloning of dsrAB amplicons .......................................................................... 28 2.4.8 DNA sequencing ............................................................................................ 29 2.4.9 Comparative sequence analysis ..................................................................... 29 2.4.9.1 Sequence alignement ..................................................................................... 29 2.4.9.2 Phylogeny ...................................................................................................... 30 2.4.9.3 Test for chimeric sequences ........................................................................... 31 2.4.9.4 Rarefaction ..................................................................................................... 31 2.4.9.5 Statistical comparison of different habitats ................................................... 31 3 Results ..................................................................................................................... 32 3.1 Gradient centrifugation of nucleic acids ....................................................... 32 3.2 T-RFLP analysis of density resolved nucleic acids ....................................... 34 3.2.1 Bacterial T-RFLP analysis of DNA SIP incubations .................................... 34 4 3.2.2 Archaeal T-RFLP analysis of DNA SIP incubations ..................................... 40 3.2.3 Bacterial T-RFLP analysis of RNA SIP incubations ..................................... 42 3.3 Amplification, cloning and sequencing of 16S rRNA genes and dsrAB ....... 43 3.4 Sequence analysis .......................................................................................... 44 3.4.1 Bacterial 16S rRNA gene analysis ................................................................. 44 3.4.2 DsrAB analysis .............................................................................................. 48 4 Discussion ............................................................................................................... 50 5 Summary ................................................................................................................ 57 6 Literature ................................................................................................................ 59 7 List of abbreviations .............................................................................................. 69 8 Appendix ................................................................................................................. 71 8 Appendix ................................................................................................................. 71 9 Curriculum vitae .................................................................................................... 82 10 Acknowledgements ................................................................................................ 83 5 Introduction 1 Introduction 1.1 The sulphur cycle Besides carbon (C), nitrogen (N) and phosphorus (P), sulphur (S) is one of the main elements found in biomass. It is an essential constituent of many enzymes, vitamins and hormones. Sulphur is present in many different oxidation states, ranging from −2 (H2S) 2− to +6 (SO4 ), being constantly transformed chemically and biologically. Most of earths sulphur is present in rocks and sediments like pyrite (FeS2) or gypsum (CaSO4). As geo- logical turnover times are long and these sulphur-species are biologically inaccessible, most of the biologically used sulphur can be found in the form of sulphate ions and hy- drogen sulphide, playing essential roles in the biological sulphur cycle as illustrated in Fig.1 (Hollemann and Wiberg 1985). Fig.1 Biological sulphur cycle (modified from Madigan 2003). Several plants, fungi and prokaryotes can use sulphate to build up the essential sulphur containing amino acids cystein and methionine through assimilatory sulphate reduction. Many organisms then use these amino acids for incorporation in their biomass. Beside the anabolic utilisation of these amino acids, many microorganisms remineralise them 1 Introduction to sulphide via desulphurylation, which is then converted back to sulphate by sulphur- oxidizing bacteria. Two distinct prokaryotic groups have the ability to oxidize sulphide. One group are anaerobic living, phototrophic sulphur bacteria, the others are aerobic chemolithotrophic bacteria (Madigan et al. 2003). Furthermore, elemental sulphur can be oxidised by some prokaryotes, like Desulfocapsa sulfoexigens, resulting in sulphate and closing the sulphur cycle (Frederiksen and Finster 2004). Alternatively, sulphate, sulphite and thiosulphate
Recommended publications
  • Fotografía De Un Espeleotema De La Cueva De Castañar De Ibor (Extremadura)
    Todos los derechos reservados. La totalidad o una parte de este libro no puede ser reproducida o utilizada en cualquier forma o medio, electrónico o mecánico, incluyendo copias o grabaciones o por cualquier medio de almacenar información y sistema de recuperación, sin el previo permiso por escrito del IRNAS‐CSIC. © Estefanía Porca Belío Diseño y maquetación: Estefanía Porca Belío. Portada: Fotografía de un espeleotema de la Cueva de Castañar de Ibor (Extremadura). Diseño de Miguel Ángel Rogerio Candelera y Estefanía Porca Belío. Editado por: Instituto de Recursos Naturales y Agrobiología de Sevilla, IRNAS‐CSIC, España, Noviembre 2011 I.S.B.N: 978‐84‐695‐0670‐7 Impreso en España‐ Printed in Spain Aerobiología: mecanismos de dispersión de los microorganismos en cuevas turísticas. Memoria que presenta la Licenciada en Biología Dña. ESTEFANÍA PORCA BELÍO para optar al título de Doctor Europeo en Biología por la Universidad de Sevilla. Sevilla 2011 Memoria que presenta la Licenciada en Biología Dña. ESTEFANÍA PORCA BELÍO para optar al título de Doctor Europeo en Biología por la Universidad de Sevilla. Aerobiología: mecanismos de dispersión de los microorganismos en cuevas turísticas. Visado en Sevilla, a 11 de Noviembre de 2011 LOS DIRECTORES Prof. Dr. D. CESÁREO SÁIZ JIMÉNEZ Dra. Dña. VALME JURADO Profesor de Investigación en el Instituto de Doctora contratada en el Instituto Recursos Naturales y Agrobiología de Sevilla de Recursos Naturales y Agrobiología (IRNAS‐CSIC) de Sevilla (IRNAS‐CSIC). LA TUTORA Dra. Dña. CAROLINA SOUSA MARTÍN Profesora Titular de la Universidad de Sevilla Departamento de Microbiología y Parasitología, Facultad de Farmacia. PROF. DR. D. CESÁREO SÁIZ JIMÉNEZ, PROFESOR DE INVESTIGACIÓN DEL INSTITUTO DE RECURSOS NATURALES Y AGROBIOLOGÍA DE SEVILLA DEL CONSEJO SUPERIOR DE INVESTIGACIONES CIENTÍFICAS (IRNAS‐CSIC) Y DRA.
    [Show full text]
  • Supporting Information
    Supporting Information Fujimura et al. 10.1073/pnas.1310750111 SI Materials and Methods respectively. Photomicrographs were captured using a Zeiss Axio House Dust Collection. Dust from homes with or without dogs was Imager Z1 and AxioVision 4.8 software (Zeiss). collected using a sterile fabric filter sock inserted into a sterile vacuum nozzle immediately before vacuuming a 3′ × 3′ area for mRNA Extraction, Reverse Transcription, and RT-PCR. mRNA was 3 min. The sock was removed from the vacuum, the collected isolated from ground lung tissue using TRIzol reagent (Invi- μ trogen) or the RNeasy Mini kit (Qiagen) according to manu- dust weighed and sieved through a 300- m sieve to remove large ’ μ debris from the sample. Comparable sieved samples have pre- facturer s instructions. A total of 5 g of RNA per sample was reverse transcribed using murine leukemia virus RTase (Applied viously been used successfully to profile microbial communities Biosystems). Expression of relevant genes was analyzed with present in house dust (1, 2). Dust samples were subsequently TaqMan gene expression assays (Applied Biosystems) using an divided into 25- or 6.25-mg fractions for dog (D)- or no-pet ABI Prism 7500 Sequence Detection System (Applied Bio- (NP)-associated houses, respectively, each stored in a sterile − systems). Gene expression was normalized to GAPDH and ex- 5-mL tube at 20 °C until used for murine supplementation. pressed as fold change over expression in control mice. Murine Models. Cockroach allergen model. BALB/c were purchased Culture and Stimulation of Lymph Node Cells. Mediastinal lymph from The Jackson Laboratory.
    [Show full text]
  • WO 2014/135633 Al 12 September 2014 (12.09.2014) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization I International Bureau (10) International Publication Number (43) International Publication Date WO 2014/135633 Al 12 September 2014 (12.09.2014) P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C12N 9/04 (2006.01) C12P 7/16 (2006.01) kind of national protection available): AE, AG, AL, AM, C12N 9/88 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, (21) Number: International Application DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, PCT/EP2014/054334 HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, (22) International Filing Date: KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, 6 March 2014 (06.03.2014) MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (25) Filing Language: English SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, (26) Publication Language: English TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: 13 158012.8 6 March 2013 (06.03.2013) EP (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (71) Applicants: CLARIANT PRODUKTE (DEUTSCH- GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, LAND) GMBH [DE/DE]; Briiningstrasse 50, 65929 UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, Frankfurt am Main (DE).
    [Show full text]
  • The Unseen Majority”: Heterotrophic Bacteria in Freshwater, More Than Just Small and Non-Cultivable
    Eawag_07258 Diss. ETH No. 17894 “The unseen majority”: heterotrophic bacteria in freshwater, more than just small and non-cultivable A dissertation submitted to ETH ZÜRICH for the degree of Doctor of Sciences presented by Yingying Wang MPhil, The University of Hong Kong born March 16, 1980 in Tianjin citizen of China accepted on the recommendation of Prof. Dr. Thomas Egli, examiner Dr. Frederik Hammes, co-examiner Prof. Dr. Nico Boon, co-examiner Prof. Dr. Jakob Pernthaler, co-examiner Prof. Dr. Martin Ackermann, co-examiner July, 2008 Acknowledgement I am extremely grateful to Prof. Dr. Thomas Egli for his great supervision, invaluable advice, and providing many academic opportunities for me to widen and enrich my knowledge, vision and experience. I am also full of gratitude to Dr. Frederik Hammes for generously sharing his invaluable research experience, and for numerous inspirational discussions. Their professional and excellent guidance during my doctoral study and academic development are highly appreciated. My special thanks go to Prof. Dr. Nico Boon from Ghent University and Dr. Mohamed Chami from University of Basel, who share a lot of great ideas and give a lot of kind help in our collaboration. Furthermore, I would like to express my sincere thanks to: Hansueli, Thommy, Christoph, Karin, Teresa and Colette for their great technical support. All members in the “Egli group” (Alessandro, Julian, Michael, Frederik, Marius, Karin, Tony, Franzi, Carina, Stefan, Hans Peter, Eva, Margarete, Ines, Teresa, Felix, Beat and Liz) for the very pleasant working atmosphere, and excellent team work. We shared a lot of enjoyable time in the lab, office and outdoors, as well as plenty of Apéros.
    [Show full text]
  • Discovery of Sheath-Forming, Iron-Oxidizing Zetaproteobacteria at Loihi Seamount, Hawaii, USA Emily J
    RESEARCH ARTICLE Hidden in plain sight: discovery of sheath-forming, iron-oxidizing Zetaproteobacteria at Loihi Seamount, Hawaii, USA Emily J. Fleming1, Richard E. Davis2, Sean M. McAllister3,, Clara S. Chan4, Craig L. Moyer3, Bradley M. Tebo2 & David Emerson1 1Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, USA; 2Department of Environmental and Biomolecular Systems, Oregon Health and Science University, Portland, OR, USA; 3Department of Biology, Western Washington University, Bellingham, WA, USA and 4Department of Geological Sciences, University of Delaware, Newark, DE, USA Correspondence: David Emerson, Bigelow Abstract Laboratory for Ocean Sciences, PO Box 380, East Boothbay, ME 04544, USA. Tel.: +1 207 Lithotrophic iron-oxidizing bacteria (FeOB) form microbial mats at focused 315 2567; fax: +1 207 315 2329; flow or diffuse flow vents in deep-sea hydrothermal systems where Fe(II) is a e-mail: [email protected] dominant electron donor. These mats composed of biogenically formed Fe(III)-oxyhydroxides include twisted stalks and tubular sheaths, with sheaths Present address: Sean M. McAllister, typically composing a minor component of bulk mats. The micron diameter Department of Geological Sciences, Fe(III)-oxyhydroxide-containing tubular sheaths bear a strong resemblance to University of Delaware, Newark, DE, USA sheaths formed by the freshwater FeOB, Leptothrix ochracea. We discovered that Received 20 December 2012; revised 28 veil-like surface layers present in iron-mats at the Loihi Seamount were domi- – February 2013; accepted 28 February 2013. nated by sheaths (40 60% of total morphotypes present) compared with deeper Final version published online 15 April 2013. (> 1 cm) mat samples (0–16% sheath). By light microscopy, these sheaths appeared nearly identical to those of L.
    [Show full text]
  • Appendix 1. Validly Published Names, Conserved and Rejected Names, And
    Appendix 1. Validly published names, conserved and rejected names, and taxonomic opinions cited in the International Journal of Systematic and Evolutionary Microbiology since publication of Volume 2 of the Second Edition of the Systematics* JEAN P. EUZÉBY New phyla Alteromonadales Bowman and McMeekin 2005, 2235VP – Valid publication: Validation List no. 106 – Effective publication: Names above the rank of class are not covered by the Rules of Bowman and McMeekin (2005) the Bacteriological Code (1990 Revision), and the names of phyla are not to be regarded as having been validly published. These Anaerolineales Yamada et al. 2006, 1338VP names are listed for completeness. Bdellovibrionales Garrity et al. 2006, 1VP – Valid publication: Lentisphaerae Cho et al. 2004 – Valid publication: Validation List Validation List no. 107 – Effective publication: Garrity et al. no. 98 – Effective publication: J.C. Cho et al. (2004) (2005xxxvi) Proteobacteria Garrity et al. 2005 – Valid publication: Validation Burkholderiales Garrity et al. 2006, 1VP – Valid publication: Vali- List no. 106 – Effective publication: Garrity et al. (2005i) dation List no. 107 – Effective publication: Garrity et al. (2005xxiii) New classes Caldilineales Yamada et al. 2006, 1339VP VP Alphaproteobacteria Garrity et al. 2006, 1 – Valid publication: Campylobacterales Garrity et al. 2006, 1VP – Valid publication: Validation List no. 107 – Effective publication: Garrity et al. Validation List no. 107 – Effective publication: Garrity et al. (2005xv) (2005xxxixi) VP Anaerolineae Yamada et al. 2006, 1336 Cardiobacteriales Garrity et al. 2005, 2235VP – Valid publica- Betaproteobacteria Garrity et al. 2006, 1VP – Valid publication: tion: Validation List no. 106 – Effective publication: Garrity Validation List no. 107 – Effective publication: Garrity et al.
    [Show full text]
  • Anaerobic Degradation of Steroid Hormones by Novel Denitrifying Bacteria
    Anaerobic degradation of steroid hormones by novel denitrifying bacteria Von der Fakultät für Mathematik, Informatik und Naturwissenschaften der Rheinisch- Westfälischen Technischen Hochschule Aachen zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigte Dissertation vorgelegt von Diplom-Biologe Michael Fahrbach aus Bad Mergentheim (Baden-Württemberg) Berichter: Professor Dr. Juliane Hollender Professor Dr. Andreas Schäffer Tag der mündlichen Prüfung: 12. Dezember 2006 Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verfügbar. Table of Contents 1 Introduction.....................................................................................................................1 1.1 General information on steroids ...............................................................................1 1.2 Steroid hormones in the environment.......................................................................2 1.2.1 Natural and anthropogenic sources and deposits ............................................2 1.2.2 Potential impact on the environment ................................................................3 1.2.3 Fate of steroid hormones..................................................................................4 1.3 Microbial degradation of steroid hormones and sterols............................................5 1.3.1 Aerobic degradation..........................................................................................5 1.3.2 Anaerobic degradation......................................................................................7
    [Show full text]
  • Novel Nitrite Reductase Domain Structure Suggests a Chimeric
    Novel nitrite reductase domain structure suggests a chimeric denitrification repertoire in Phylum Chloroflexi Sarah Schwartz1, Lily Momper1, L. Thiberio Rangel1, Cara Magnabosco2, Jan Amend3, and Gregory Fournier1 1Massachusetts Institute of Technology 2ETH Zurich 3University of Southern California June 11, 2021 Abstract Denitrification plays a central role in the global nitrogen cycle, reducing and removing nitrogen from marine and terrestrial ecosystems. The flux of nitrogen species through this pathway has a widespread impact, affecting ecological carrying capacity, agriculture, and climate. Nitrite reductase (Nir) and nitric oxide reductase (NOR) are the two central enzymes in this pathway. Here we present a previously unreported Nir domain architecture in members of Phylum Chloroflexi. Phylogenetic analyses of protein domains within Nir indicate that an ancestral horizontal transfer and fusion event produced this chimeric domain architecture. We also identify an expanded genomic diversity of a rarely reported nitric oxide reductase subtype, eNOR. Together, these results suggest a greater diversity of denitrification enzyme arrangements exist than have been previously reported. RESEARCH PAPER TITLE: Novel nitrite reductase domain structure suggests a chimeric denitrification repertoire in Phylum Chloroflexi SHORT TITLE: Novel Denitrification Architecture in Chloroflexi Sarah L. Schwartz1,2*, Lily M. Momper2,3, L. Thiberio Rangel2, Cara Magnabosco4, Jan P. Amend5,6, and Gregory P. Fournier2 1. Microbiology Graduate Program, Massachusetts Institute of Technology 2. Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology 3. Exponent, Inc., Pasadena, CA 4. Department of Earth Sciences, ETH Zurich 5. Department of Earth Sciences, University of Southern California 6. Department of Biological Sciences, University of Southern California *Correspondence: [email protected], +1 (415) 497-1747 SUMMARY Denitrification plays a central role in the global nitrogen cycle, reducing and removing nitrogen from ma- rine and terrestrial ecosystems.
    [Show full text]
  • A Comprehensive and Quantitative Review of Dark Fermentative Biohydrogen Production Simon Rittmann and Christoph Herwig*
    Rittmann and Herwig Microbial Cell Factories 2012, 11:115 http://www.microbialcellfactories.com/content/11/1/115 REVIEW Open Access A comprehensive and quantitative review of dark fermentative biohydrogen production Simon Rittmann and Christoph Herwig* Abstract Biohydrogen production (BHP) can be achieved by direct or indirect biophotolysis, photo-fermentation and dark fermentation, whereof only the latter does not require the input of light energy. Our motivation to compile this review was to quantify and comprehensively report strains and process performance of dark fermentative BHP. This review summarizes the work done on pure and defined co-culture dark fermentative BHP since the year 1901. Qualitative growth characteristics and quantitative normalized results of H2 production for more than 2000 conditions are presented in a normalized and therefore comparable format to the scientific community. Statistically based evidence shows that thermophilic strains comprise high substrate conversion efficiency, but mesophilic strains achieve high volumetric productivity. Moreover, microbes of Thermoanaerobacterales (Family III) have to be preferred when aiming to achieve high substrate conversion efficiency in comparison to the families Clostridiaceae and Enterobacteriaceae. The limited number of results available on dark fermentative BHP from fed-batch cultivations indicates the yet underestimated potential of this bioprocessing application. A Design of Experiments strategy should be preferred for efficient bioprocess development and optimization
    [Show full text]
  • Molecular Analysis of Bacterial Community Succession During Prolonged Compost Curing
    RESEARCH ARTICLE Molecularanalysis of bacterial community succession during prolonged compost curing Michael Danon1, Ingrid H. Franke-Whittle2, Heribert Insam2, Yona Chen1 & Yitzhak Hadar1 1Faculty of Agricultural, Food and Environmental Quality Sciences, The Hebrew University of Jerusalem, Rehovot, Israel; and 2Institute for Microbiology, University of Innsbruck, Technikerstraße 25d, A-6020 Innsbruck, Austria Downloaded from https://academic.oup.com/femsec/article/65/1/133/620549 by guest on 30 September 2021 Correspondence: Yitzhak Hadar, Abstract Department of Plant Pathology and Microbiology, Faculty of Agricultural, Food The compost environment consists of complex organic materials that form a and Environmental Quality Sciences, The habitat for a rich and diverse microbial community. The aim of this research was to Hebrew University of Jerusalem, PO Box 12, study the dynamics of microbial communities during the compost-curing phase. Rehovot 76100, Israel. Tel.: 1972 8 9489935; Three different methods based on 16S rRNA gene sequence were applied to fax: 1972 8 9468785; e-mail: monitor changes in the microbial communities: (1) denaturing gradient gel [email protected] electrophoresis of PCR-generated rRNA gene fragments; (2) partial rRNA gene clone libraries; and (3) a microarray of oligonucleotide probes targeting rRNA Received 20 December 2007; revised 11 March gene sequences. All three methods indicated distinctive community shifts during 2008; accepted 10 April 2008. First published online 4 June 2008. curing and the dominant species prevailing during the different curing stages were identified. We found a successional transition of different bacterial phylogenetic DOI:10.1111/j.1574-6941.2008.00506.x groups during compost curing. The Proteobacteria were the most abundant phylum in all cases.
    [Show full text]
  • Old Acetogens, New Light Steven L
    Eastern Illinois University The Keep Faculty Research & Creative Activity Biological Sciences January 2008 Old Acetogens, New Light Steven L. Daniel Eastern Illinois University, [email protected] Harold L. Drake University of Bayreuth Anita S. Gößner University of Bayreuth Follow this and additional works at: http://thekeep.eiu.edu/bio_fac Part of the Bacteriology Commons, Environmental Microbiology and Microbial Ecology Commons, and the Microbial Physiology Commons Recommended Citation Daniel, Steven L.; Drake, Harold L.; and Gößner, Anita S., "Old Acetogens, New Light" (2008). Faculty Research & Creative Activity. 114. http://thekeep.eiu.edu/bio_fac/114 This Article is brought to you for free and open access by the Biological Sciences at The Keep. It has been accepted for inclusion in Faculty Research & Creative Activity by an authorized administrator of The Keep. For more information, please contact [email protected]. Old Acetogens, New Light Harold L. Drake, Anita S. Gößner, & Steven L. Daniel Keywords: acetogenesis; acetogenic bacteria; acetyl-CoA pathway; autotrophy; bioenergetics; Clostridium aceticum; electron transport; intercycle coupling; Moorella thermoacetica; nitrate dissimilation Abstract: Acetogens utilize the acetyl-CoA Wood-Ljungdahl pathway as a terminal electron-accepting, energy-conserving, CO2-fixing process. The decades of research to resolve the enzymology of this pathway (1) preceded studies demonstrating that acetogens not only harbor a novel CO2-fixing pathway, but are also ecologically important, and (2) overshadowed the novel microbiological discoveries of acetogens and acetogenesis. The first acetogen to be isolated, Clostridium aceticum, was reported by Klaas Tammo Wieringa in 1936, but was subsequently lost. The second acetogen to be isolated, Clostridium thermoaceticum, was isolated by Francis Ephraim Fontaine and co-workers in 1942.
    [Show full text]
  • Old Acetogens, New Light Steven L
    Eastern Illinois University From the SelectedWorks of Steven L. Daniel 2008 Old Acetogens, New Light Steven L. Daniel, Eastern Illinois University Harold L. Drake, University of Bayreuth Anita S. Gößner, University of Bayreuth Available at: https://works.bepress.com/steven_daniel/3/ Old Acetogens, New Light Harold L. Drake, Anita S. Gößner, & Steven L. Daniel Keywords: acetogenesis; acetogenic bacteria; acetyl-CoA pathway; autotrophy; bioenergetics; Clostridium aceticum; electron transport; intercycle coupling; Moorella thermoacetica; nitrate dissimilation Abstract: Acetogens utilize the acetyl-CoA Wood-Ljungdahl pathway as a terminal electron-accepting, energy-conserving, CO2-fixing process. The decades of research to resolve the enzymology of this pathway (1) preceded studies demonstrating that acetogens not only harbor a novel CO2-fixing pathway, but are also ecologically important, and (2) overshadowed the novel microbiological discoveries of acetogens and acetogenesis. The first acetogen to be isolated, Clostridium aceticum, was reported by Klaas Tammo Wieringa in 1936, but was subsequently lost. The second acetogen to be isolated, Clostridium thermoaceticum, was isolated by Francis Ephraim Fontaine and co-workers in 1942. C. thermoaceticum became the most extensively studied acetogen and was used to resolve the enzymology of the acetyl- CoA pathway in the laboratories of Harland Goff Wood and Lars Gerhard Ljungdahl. Although acetogenesis initially intrigued few scientists, this novel process fostered several scientific milestones, including the first 14C-tracer studies in biology and the discovery that tungsten is a biologically active metal. The acetyl-CoA pathway is now recognized as a fundamental component of the global carbon cycle and essential to the metabolic potentials of many different prokaryotes.
    [Show full text]