Discovery of Sheath-Forming, Iron-Oxidizing Zetaproteobacteria at Loihi Seamount, Hawaii, USA Emily J

Total Page:16

File Type:pdf, Size:1020Kb

Discovery of Sheath-Forming, Iron-Oxidizing Zetaproteobacteria at Loihi Seamount, Hawaii, USA Emily J RESEARCH ARTICLE Hidden in plain sight: discovery of sheath-forming, iron-oxidizing Zetaproteobacteria at Loihi Seamount, Hawaii, USA Emily J. Fleming1, Richard E. Davis2, Sean M. McAllister3,, Clara S. Chan4, Craig L. Moyer3, Bradley M. Tebo2 & David Emerson1 1Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, USA; 2Department of Environmental and Biomolecular Systems, Oregon Health and Science University, Portland, OR, USA; 3Department of Biology, Western Washington University, Bellingham, WA, USA and 4Department of Geological Sciences, University of Delaware, Newark, DE, USA Correspondence: David Emerson, Bigelow Abstract Laboratory for Ocean Sciences, PO Box 380, East Boothbay, ME 04544, USA. Tel.: +1 207 Lithotrophic iron-oxidizing bacteria (FeOB) form microbial mats at focused 315 2567; fax: +1 207 315 2329; flow or diffuse flow vents in deep-sea hydrothermal systems where Fe(II) is a e-mail: [email protected] dominant electron donor. These mats composed of biogenically formed Fe(III)-oxyhydroxides include twisted stalks and tubular sheaths, with sheaths Present address: Sean M. McAllister, typically composing a minor component of bulk mats. The micron diameter Department of Geological Sciences, Fe(III)-oxyhydroxide-containing tubular sheaths bear a strong resemblance to University of Delaware, Newark, DE, USA sheaths formed by the freshwater FeOB, Leptothrix ochracea. We discovered that Received 20 December 2012; revised 28 veil-like surface layers present in iron-mats at the Loihi Seamount were domi- – February 2013; accepted 28 February 2013. nated by sheaths (40 60% of total morphotypes present) compared with deeper Final version published online 15 April 2013. (> 1 cm) mat samples (0–16% sheath). By light microscopy, these sheaths appeared nearly identical to those of L. ochracea. Clone libraries of the SSU DOI: 10.1111/1574-6941.12104 rRNA gene from this top layer were dominated by Zetaproteobacteria, and lacked phylotypes related to L. ochracea. In mats with similar morphologies, ter- € Editor: Max Haggblom minal-restriction fragment length polymorphism (T-RFLP) data along with quantitative PCR (Q-PCR) analyses using a Zetaproteobacteria-specific primer Keywords Leptothrix ochracea; iron-oxidation; confirmed the presence and abundance of Zetaproteobacteria.AZetaproteobacte- Zetaproteobacteria FISH probes; Loihi ria fluorescence in situ hybridization (FISH) probe hybridized to ensheathed Seamount; convergent evolution; marine cells (4% of total cells), while a L. ochracea-specific probe and a Betaproteobacte- iron-mats; deep-sea sampling. ria probe did not. Together, these results constitute the discovery of a novel group of marine sheath-forming FeOB bearing a striking morphological similar- ity to L. ochracea, but belonging to an entirely different class of Proteobacteria. [Fe(II)] compounds often give rise to prolific and diverse Introduction microbial mat communities of sulfur-oxidizing or iron- Microbial mats are commonly found in habitats charac- oxidizing bacteria (FeOB), respectively (Ruby et al., 1981; terized by steep gradients of redox-active substrates. They Emerson & Moyer, 2010; Wankel et al., 2011). are highly productive and tend to be stratified into differ- Loihi Seamount is an active undersea volcano located ent populations of microorganisms adapted to the spe- at the eastern edge of the Hawaiian hotspot (Garcia et al., cific, yet dynamic physicochemical conditions that exist 2006). Near the Loihi summit (960 meters below sea within the mat (Teske & Stahl, 2002). Deep-sea hydro- level) are a variety of hydrothermal vent sites of low to thermal vents, both at spreading ridge axes and sea- intermediate temperature (4–60 °C) with both focused mounts, offer a case in point by supporting microbial and diffuse venting. The vent fluids at Loihi Seamount MICROBIOLOGY ECOLOGY MICROBIOLOGY mat communities that take advantage of gradients of are highly enriched in Fe(II) as well as CO2 and are lar- inorganic, redox-active compounds in the vent fluids and gely devoid of sulfide (Glazer & Rouxel, 2009). The pH oxygen in the surrounding ocean. Hydrothermal vent of the hydrothermal source fluids can be around 5.5, and fluids highly enriched in reduced sulfur- or ferrous iron plume waters can as low as 7.2 (Garcia et al., 2006). ª 2013 Federation of European Microbiological Societies FEMS Microbiol Ecol 85 (2013) 116–127 Published by John Wiley & Sons Ltd. All rights reserved Sheath-forming Zetaproteobacteria 117 Microbial mats at these vents derive their primary energy associate them with any specific vent site or condition. Fur- source from the oxidation of Fe(II), making Loihi a thermore, there are few reported observations of such model system for studying communities of marine FeOB. structures in other marine iron-mats (Hodges & Olson, The first convincing evidence for deep-sea communities 2009; Li et al., 2012). of FeOB was found at Loihi Seamount (Karl et al., 1989), In freshwater iron-mat communities, L. ochracea is eas- and it was subsequently shown that FeOB were abundant ily recognizable due to its copious production of hollow, and formed the mat-like communities responsible for tubular Fe(III)-oxyhydroxide-encrusted sheaths mostly most of the deposition of biogenic Fe(III)-oxyhydroxides devoid of cells; even in the most actively growing mats, (Emerson & Moyer, 2002). The Zetaproteobacteria,a only 10% of the sheaths contain cells (Emerson & Revsb- novel class of Proteobacteria, were discovered at Loihi ech, 1994; Fleming et al., 2011). Only recently, cultivation- Seamount and are represented by the novel obligate independent analysis has shown that L. ochracea is a mem- chemolithotroph Mariprofundus ferrooxydans (Emerson ber of the Betaproteobacteria, related to other sheath-form- et al., 2007). The Zetaproteobacteria have subsequently ing heterotrophic Leptothrix spp., and Sphaerotilus spp. been shown to be an abundant group at other deep-sea (Fleming et al., 2011). Despite L. ochracea’s relationship to and shallow marine hydrothermal systems (Emerson & these heterotrophic sheath-formers, its physiology remains Moyer, 2010). unclear; it cannot be enriched on media that support One remarkable trait of many FeOB that grow at growth of Sphaerotilus spp. or other Leptothrix spp., and, circumneutral pH is their ability to produce biomineral- unlike these organisms, it has an absolute requirement for ized extracellular structures such as stalks and sheaths Fe(II). This has led to speculation that it may be a litho- (Emerson et al., 2010). Mariprofundus ferrooxydans and troph that utilizes Fe(II) as an energy source (Emerson related marine strains produce a twisted stalk containing et al., 2010). an organic component that controls the deposition of the The role of these Leptothrix-like sheath-forming bacteria Fe(III) metabolic byproducts of cell growth (Ghiorse, in marine systems is even less understood. Cultivation- 1984; Chan et al., 2011). These stalks bear a striking simi- independent studies of marine iron-mat communities have larity to the structures produced by the freshwater FeOB not reported the presence of SSU rRNA gene sequences Gallionella ferruginea (Comolli et al., 2011). Until related to L. ochracea, or other iron-oxidizing Betaproteo- recently, this led to the assumption that the stalk-like bacteria. However, because the sheaths are infrequently structures that are commonly associated with flocculent observed, and the cells are even rarer, it is possible they Fe(III)-oxyhydroxide deposits at iron-rich deep-sea vents have simply gone undetected. In a recent expedition to the were formed by Gallionella. However, phylogenetic analy- iron-mats at Loihi Seamount, we were able to collect a thin sis has shown that Mariprofundus and Gallionella are dis- veil-like layer on the surface of active iron-mats, which was tantly related (Emerson et al., 2007) and share few highly highly enriched in sheath structures. Our goal was to deter- homologous functional genes (Singer et al., 2011). Fur- mine whether the sheath producing bacteria found at Loihi thermore, a number of cultivation-independent studies of were closely related to sheath producing L. ochracea found marine iron-mats (Davis & Moyer, 2008; Hodges & in freshwater habitats. Olson, 2009; Kato et al., 2009; Rassa et al., 2009; Forget et al., 2010; Handley et al., 2010; McAllister et al., 2011; Materials and Methods Meyer-Dombard et al., 2012) found evidence for Zetapro- teobacteria related to M. ferrooxydans, but not for bacteria Site/sample collection related to Gallionella species. Thus, it appears that the morphological, ecological, and physiological commonali- The description of microbial mat ecosystems at Loihi ties between Mariprofundus and Gallionella are not due to Seamount, including ecological and biomineralogical anal- a close genetic relatedness but may be the result of yses, has been previously published (Glazer & Rouxel, convergent evolution. 2009; Rassa et al., 2009; Emerson & Moyer, 2010; Edwards Another FeOB morphotype observed in Loihi Seamount et al., 2011; Toner et al., 2012). For this study, we focused iron-mats is filamentous cells encased in a robust sheath on collecting thin, cream-colored veil-like mats (see Fig. 1) composed primarily of Fe(III)-oxyhydroxides (Emerson & using a custom-designed biomat syringe (BS) sampler that Moyer, 2002, 2010). Morphologically, these structures bear could be operated with the manipulator arms of the remo- striking resemblance to a commonly observed freshwater tely operated vehicle (ROV),
Recommended publications
  • Response of Heterotrophic Stream Biofilm Communities to a Gradient of Resources
    The following supplement accompanies the article Response of heterotrophic stream biofilm communities to a gradient of resources D. J. Van Horn1,*, R. L. Sinsabaugh1, C. D. Takacs-Vesbach1, K. R. Mitchell1,2, C. N. Dahm1 1Department of Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA 2Present address: Department of Microbiology & Immunology, University of British Columbia Life Sciences Centre, Vancouver BC V6T 1Z3, Canada *Email: [email protected] Aquatic Microbial Ecology 64:149–161 (2011) Table S1. Representative sequences for each OTU, associated GenBank accession numbers, and taxonomic classifications with bootstrap values (in parentheses), generated in mothur using 14956 reference sequences from the SILVA data base Treatment Accession Sequence name SILVA taxonomy classification number Control JF695047 BF8FCONT18Fa04.b1 Bacteria(100);Proteobacteria(100);Gammaproteobacteria(100);Pseudomonadales(100);Pseudomonadaceae(100);Cellvibrio(100);unclassified; Control JF695049 BF8FCONT18Fa12.b1 Bacteria(100);Proteobacteria(100);Alphaproteobacteria(100);Rhizobiales(100);Methylocystaceae(100);uncultured(100);unclassified; Control JF695054 BF8FCONT18Fc01.b1 Bacteria(100);Planctomycetes(100);Planctomycetacia(100);Planctomycetales(100);Planctomycetaceae(100);Isosphaera(50);unclassified; Control JF695056 BF8FCONT18Fc04.b1 Bacteria(100);Proteobacteria(100);Gammaproteobacteria(100);Xanthomonadales(100);Xanthomonadaceae(100);uncultured(64);unclassified; Control JF695057 BF8FCONT18Fc06.b1 Bacteria(100);Proteobacteria(100);Betaproteobacteria(100);Burkholderiales(100);Comamonadaceae(100);Ideonella(54);unclassified;
    [Show full text]
  • Fotografía De Un Espeleotema De La Cueva De Castañar De Ibor (Extremadura)
    Todos los derechos reservados. La totalidad o una parte de este libro no puede ser reproducida o utilizada en cualquier forma o medio, electrónico o mecánico, incluyendo copias o grabaciones o por cualquier medio de almacenar información y sistema de recuperación, sin el previo permiso por escrito del IRNAS‐CSIC. © Estefanía Porca Belío Diseño y maquetación: Estefanía Porca Belío. Portada: Fotografía de un espeleotema de la Cueva de Castañar de Ibor (Extremadura). Diseño de Miguel Ángel Rogerio Candelera y Estefanía Porca Belío. Editado por: Instituto de Recursos Naturales y Agrobiología de Sevilla, IRNAS‐CSIC, España, Noviembre 2011 I.S.B.N: 978‐84‐695‐0670‐7 Impreso en España‐ Printed in Spain Aerobiología: mecanismos de dispersión de los microorganismos en cuevas turísticas. Memoria que presenta la Licenciada en Biología Dña. ESTEFANÍA PORCA BELÍO para optar al título de Doctor Europeo en Biología por la Universidad de Sevilla. Sevilla 2011 Memoria que presenta la Licenciada en Biología Dña. ESTEFANÍA PORCA BELÍO para optar al título de Doctor Europeo en Biología por la Universidad de Sevilla. Aerobiología: mecanismos de dispersión de los microorganismos en cuevas turísticas. Visado en Sevilla, a 11 de Noviembre de 2011 LOS DIRECTORES Prof. Dr. D. CESÁREO SÁIZ JIMÉNEZ Dra. Dña. VALME JURADO Profesor de Investigación en el Instituto de Doctora contratada en el Instituto Recursos Naturales y Agrobiología de Sevilla de Recursos Naturales y Agrobiología (IRNAS‐CSIC) de Sevilla (IRNAS‐CSIC). LA TUTORA Dra. Dña. CAROLINA SOUSA MARTÍN Profesora Titular de la Universidad de Sevilla Departamento de Microbiología y Parasitología, Facultad de Farmacia. PROF. DR. D. CESÁREO SÁIZ JIMÉNEZ, PROFESOR DE INVESTIGACIÓN DEL INSTITUTO DE RECURSOS NATURALES Y AGROBIOLOGÍA DE SEVILLA DEL CONSEJO SUPERIOR DE INVESTIGACIONES CIENTÍFICAS (IRNAS‐CSIC) Y DRA.
    [Show full text]
  • Sites in the Virginia-Washington, D.C.-Maryland Metro Area to Observe Or Collect Bacteria That Precipitate Iron and Manganese Oxides1
    SITES IN THE VIRGINIA-WASHINGTON, D.C.-MARYLAND METRO AREA TO OBSERVE OR COLLECT BACTERIA THAT PRECIPITATE IRON AND MANGANESE OXIDES1 by Eleanora I. Robbins U.S. Geological Survey Open-File Report 98-202 April 24, 1998 1 This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards. This publication is intended to be used along with U.S. Geological Survey EarthFax (1-800- USA-MAPS) What's the Red in the Water? What's the Black on the Rocks? What's the Oil on the Surface? and < http: //pubs.usgs. gov/publications/text/Norriemicrobes. html > SITES IN THE VIRGINIA-WASHINGTON, D.C.-MARYLAND METRO AREA TO OBSERVE OR COLLECT BACTERIA THAT PRECIPITATE IRON AND MANGANESE OXIDES VIRGINIA VA Site 1A. Fairfax County, Huntley Meadows Park: From the Beltway (495), go south on US 1. Turn right onto Lockheed Blvd.; travel to end of Lockheed Blvd., and then turn CAREFULLY into the Park at the sign. Park in parking lot, walk along the wetland path to the beginning of the boardwalk. Look to the right (north) and see red patches in the water where ground water is discharging. This ground water is anoxic and carries reduced iron. The iron bacteria here (predominantly Leptothrix ochracea^ oxidize the iron and turn it into a red flocculate. If you move the flocculate aside, you can see the underlying black color formed where the reducing bacteria reduce the iron to its black state in the zone of reduction in the mud. As you walk along the boardwalk, you will see much evidence of the iron bacterium, Leptothrix discophora] that forms glassy-looking patches that appear, at first glance, to be an nil-film VA Site IB.
    [Show full text]
  • Microbial Communities Responses in Fluvial Biofilms Under Metal Stressed Scenarios
    MICROBIAL COMMUNITIES RESPONSES IN FLUVIAL BIOFILMS UNDER METAL STRESSED SCENARIOS María Argudo Fernández Per citar o enllaçar aquest document: Para citar o enlazar este documento: Use this url to cite or link to this publication: http://hdl.handle.net/10803/671673 http://creativecommons.org/licenses/by-nc-sa/4.0/deed.ca Aquesta obra està subjecta a una llicència Creative Commons Reconeixement- NoComercial-CompartirIgual Esta obra está bajo una licencia Creative Commons Reconocimiento-NoComercial- CompartirIgual This work is licensed under a Creative Commons Attribution-NonCommercial- ShareAlike licence DOCTORAL THESIS Microbial communities responses in fluvial biofilms under metal stressed scenarios María Argudo Fernández 2020 Doctoral Programme in Water Science and Technology Supervised by: Frederic Gich Batlle Helena Guasch Padró Tutor: Anna M. Romaní Cornet Doctor candidate: María Argudo Fernández Thesis submitted in fulfilment of the requirements for the doctoral degree at the University of Girona Dr. Frederic Gich Batlle of the Biology Department of the University of Girona and Dra Helena Guasch Padró of Continental Ecology Department of CEAB-CSIC, DECLARE: That the thesis entitled “Microbial communities responses in fluvial biofilms under metal stressed scenarios” presented by MARÍA ARGUDO FERNÁNDEZ to obtain a doctoral degree, has been conducted under our supervision. For all intents and purposes, we hereby sign this document. Dr Frederic Gich Batlle Dra Helena Guasch Padró Girona, December 2020 A mi padre “The essence of the ocean cannot be seen in a drop of seawater” Kurt Tucholsky, 1925 ACKNOWLEDGEMENTS Sinceramente no sé cómo empezar porque creí que nunca llegaría el momento de rellenar este folio, los que me conocen lo saben (nunca se acaba recordadlo, sigo repasando)….Entonces empezaré por el principio.
    [Show full text]
  • The Unseen Majority”: Heterotrophic Bacteria in Freshwater, More Than Just Small and Non-Cultivable
    Eawag_07258 Diss. ETH No. 17894 “The unseen majority”: heterotrophic bacteria in freshwater, more than just small and non-cultivable A dissertation submitted to ETH ZÜRICH for the degree of Doctor of Sciences presented by Yingying Wang MPhil, The University of Hong Kong born March 16, 1980 in Tianjin citizen of China accepted on the recommendation of Prof. Dr. Thomas Egli, examiner Dr. Frederik Hammes, co-examiner Prof. Dr. Nico Boon, co-examiner Prof. Dr. Jakob Pernthaler, co-examiner Prof. Dr. Martin Ackermann, co-examiner July, 2008 Acknowledgement I am extremely grateful to Prof. Dr. Thomas Egli for his great supervision, invaluable advice, and providing many academic opportunities for me to widen and enrich my knowledge, vision and experience. I am also full of gratitude to Dr. Frederik Hammes for generously sharing his invaluable research experience, and for numerous inspirational discussions. Their professional and excellent guidance during my doctoral study and academic development are highly appreciated. My special thanks go to Prof. Dr. Nico Boon from Ghent University and Dr. Mohamed Chami from University of Basel, who share a lot of great ideas and give a lot of kind help in our collaboration. Furthermore, I would like to express my sincere thanks to: Hansueli, Thommy, Christoph, Karin, Teresa and Colette for their great technical support. All members in the “Egli group” (Alessandro, Julian, Michael, Frederik, Marius, Karin, Tony, Franzi, Carina, Stefan, Hans Peter, Eva, Margarete, Ines, Teresa, Felix, Beat and Liz) for the very pleasant working atmosphere, and excellent team work. We shared a lot of enjoyable time in the lab, office and outdoors, as well as plenty of Apéros.
    [Show full text]
  • Characterization of Bacterial Community Structure in a Drinking
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, Nov. 2010, p. 7171–7180 Vol. 76, No. 21 0099-2240/10/$12.00 doi:10.1128/AEM.00832-10 Copyright © 2010, American Society for Microbiology. All Rights Reserved. Characterization of Bacterial Community Structure in a Drinking ᰔ Water Distribution System during an Occurrence of Red Water Downloaded from Dong Li,1 Zheng Li,1 Jianwei Yu,1 Nan Cao,2 Ruyin Liu,1 and Min Yang1* State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China,1 and Water Quality Monitoring Center, Beijing Waterworks Group, Beijing 100085, China2 Received 6 April 2010/Accepted 1 September 2010 The role of bacteria in the occasional emergence of red water, which has been documented worldwide, has http://aem.asm.org/ yet to be determined. To better understand the mechanisms that drive occurrences of red water, the bacterial community composition and the relative abundance of several functional bacterial groups in a water distri- bution system of Beijing during a large-scale red water event were determined using several molecular methods. Individual clone libraries of the 16S rRNA gene were constructed for three red water samples and one sample of normal water. Beta-, Alpha-, and Gammaproteobacteria comprised the major bacterial communities in both red water and normal water samples, in agreement with previous reports. A high percentage of red water clones (25.2 to 57.1%) were affiliated with or closely related to a diverse array of iron-oxidizing bacteria, including the neutrophilic microaerobic genera Gallionella and Sideroxydans, the acidophilic species Acidothio- bacillus ferrooxidans, and the anaerobic denitrifying Thermomonas bacteria.
    [Show full text]
  • The Interplay of Microbially Mediated and Abiotic Reactions in the Biogeochemical Fe Cycle
    REVIEWS The interplay of microbially mediated and abiotic reactions in the biogeochemical Fe cycle Emily D. Melton, Elizabeth D. Swanner, Sebastian Behrens, Caroline Schmidt and Andreas Kappler Abstract | Many iron (Fe) redox processes that were previously assumed to be purely abiotic, such as photochemical Fe reactions, are now known to also be microbially mediated. Owing to this overlap, discerning whether biotic or abiotic processes control Fe redox chemistry is a major challenge for geomicrobiologists and biogeochemists alike. Therefore, to understand the network of reactions within the biogeochemical Fe cycle, it is necessary to determine which abiotic or microbially mediated reactions are dominant under various environmental conditions. In this Review, we discuss the major microbially mediated and abiotic reactions in the biogeochemical Fe cycle and provide an integrated overview of biotic and chemically mediated redox transformations. Fe speciation The environmental abundance of iron (Fe) and its pos‑ and temporal distribution of Fe redox species in some Refers to the redox state of session of electrons in d orbitals with π‑character, which environments, such as heterogeneous sediments, plant iron (Fe) and the identity of its can form complexes with carbon (C), oxygen (O), nitro‑ rhizospheres and microbial mats6, and abiotic Fe trans‑ ligands. The two most common gen (N) and sulphur (S) species, make it an essential ele‑ formations with biologically produced intermediates environmental Fe redox ment for nearly all living organisms. Fe occurs in two must be taken into account7,8. species are Fe(II) and Fe(III). main redox states in the environment: oxidized ferric Fe Despite our growing knowledge of the wide‑ (Fe(iii)), which is poorly soluble at circumneutral pH; spread environmental occurrence and the importance and reduced ferrous Fe (Fe(ii)), which is easily soluble of microbial Fe redox cycling for the degradation and and therefore more bioavailable.
    [Show full text]
  • Understanding the Molecular Mechanism of Manganese
    UNDERSTANDING THE MOLECULAR MECHANISM OF MANGANESE OXIDATION IN LEPTOTHRIX DISCOPHORA SS-1 A Dissertation Presented to the Faculty of the Graduate School of Cornell University In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by Daniela Bocioaga August, 2013 © Daniela Bocioaga Understanding the molecular mechanism of Mn oxidation in Leptothrix discophora SS-1 Daniela Bocioaga, Ph.D. Cornell University 2013 The purpose of this research is to understand the molecular mechanism of manganese oxidation in Leptothrix discophora SS1 which until now has been hampered by the lack of a genetic system. Leptothrix discophora SS1 is an important model organism that has been used to study the mechanism and consequences of biological manganese oxidation. In this study we report on the development of a genetic system for L. discophora. First, the antibiotic sensitivity of L. discophora was characterized and a procedure for transformation with exogenous DNA via conjugation was developed and optimized, resulting in a maximum transfer frequency of 5.2*10-1 (transconjugant/donor). Genetic manipulation of Leptothrix was demonstrated by disrupting pyrF via chromosomal integration of a plasmid with an R6Kɣ ori through homologous recombination. This resulted in resistance to fluoroorotidine which was abolished by complementation with an ectopically expressed copy of pyrF cloned into pBBR1MCS-5. This genetic system was further used to disrupt five genes in Leptothrix discophora SS1, which were considered to be the best candidates for the enzyme encoding the manganese oxidizing activity in this bacterium. All of the disrupted mutants continued to oxidize manganese, suggesting that these genes may not play a role in manganese oxidation, as hypothesized.
    [Show full text]
  • Appendix 1. Validly Published Names, Conserved and Rejected Names, And
    Appendix 1. Validly published names, conserved and rejected names, and taxonomic opinions cited in the International Journal of Systematic and Evolutionary Microbiology since publication of Volume 2 of the Second Edition of the Systematics* JEAN P. EUZÉBY New phyla Alteromonadales Bowman and McMeekin 2005, 2235VP – Valid publication: Validation List no. 106 – Effective publication: Names above the rank of class are not covered by the Rules of Bowman and McMeekin (2005) the Bacteriological Code (1990 Revision), and the names of phyla are not to be regarded as having been validly published. These Anaerolineales Yamada et al. 2006, 1338VP names are listed for completeness. Bdellovibrionales Garrity et al. 2006, 1VP – Valid publication: Lentisphaerae Cho et al. 2004 – Valid publication: Validation List Validation List no. 107 – Effective publication: Garrity et al. no. 98 – Effective publication: J.C. Cho et al. (2004) (2005xxxvi) Proteobacteria Garrity et al. 2005 – Valid publication: Validation Burkholderiales Garrity et al. 2006, 1VP – Valid publication: Vali- List no. 106 – Effective publication: Garrity et al. (2005i) dation List no. 107 – Effective publication: Garrity et al. (2005xxiii) New classes Caldilineales Yamada et al. 2006, 1339VP VP Alphaproteobacteria Garrity et al. 2006, 1 – Valid publication: Campylobacterales Garrity et al. 2006, 1VP – Valid publication: Validation List no. 107 – Effective publication: Garrity et al. Validation List no. 107 – Effective publication: Garrity et al. (2005xv) (2005xxxixi) VP Anaerolineae Yamada et al. 2006, 1336 Cardiobacteriales Garrity et al. 2005, 2235VP – Valid publica- Betaproteobacteria Garrity et al. 2006, 1VP – Valid publication: tion: Validation List no. 106 – Effective publication: Garrity Validation List no. 107 – Effective publication: Garrity et al.
    [Show full text]
  • Anaerobic Degradation of Steroid Hormones by Novel Denitrifying Bacteria
    Anaerobic degradation of steroid hormones by novel denitrifying bacteria Von der Fakultät für Mathematik, Informatik und Naturwissenschaften der Rheinisch- Westfälischen Technischen Hochschule Aachen zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigte Dissertation vorgelegt von Diplom-Biologe Michael Fahrbach aus Bad Mergentheim (Baden-Württemberg) Berichter: Professor Dr. Juliane Hollender Professor Dr. Andreas Schäffer Tag der mündlichen Prüfung: 12. Dezember 2006 Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verfügbar. Table of Contents 1 Introduction.....................................................................................................................1 1.1 General information on steroids ...............................................................................1 1.2 Steroid hormones in the environment.......................................................................2 1.2.1 Natural and anthropogenic sources and deposits ............................................2 1.2.2 Potential impact on the environment ................................................................3 1.2.3 Fate of steroid hormones..................................................................................4 1.3 Microbial degradation of steroid hormones and sterols............................................5 1.3.1 Aerobic degradation..........................................................................................5 1.3.2 Anaerobic degradation......................................................................................7
    [Show full text]
  • Novel Nitrite Reductase Domain Structure Suggests a Chimeric
    Novel nitrite reductase domain structure suggests a chimeric denitrification repertoire in Phylum Chloroflexi Sarah Schwartz1, Lily Momper1, L. Thiberio Rangel1, Cara Magnabosco2, Jan Amend3, and Gregory Fournier1 1Massachusetts Institute of Technology 2ETH Zurich 3University of Southern California June 11, 2021 Abstract Denitrification plays a central role in the global nitrogen cycle, reducing and removing nitrogen from marine and terrestrial ecosystems. The flux of nitrogen species through this pathway has a widespread impact, affecting ecological carrying capacity, agriculture, and climate. Nitrite reductase (Nir) and nitric oxide reductase (NOR) are the two central enzymes in this pathway. Here we present a previously unreported Nir domain architecture in members of Phylum Chloroflexi. Phylogenetic analyses of protein domains within Nir indicate that an ancestral horizontal transfer and fusion event produced this chimeric domain architecture. We also identify an expanded genomic diversity of a rarely reported nitric oxide reductase subtype, eNOR. Together, these results suggest a greater diversity of denitrification enzyme arrangements exist than have been previously reported. RESEARCH PAPER TITLE: Novel nitrite reductase domain structure suggests a chimeric denitrification repertoire in Phylum Chloroflexi SHORT TITLE: Novel Denitrification Architecture in Chloroflexi Sarah L. Schwartz1,2*, Lily M. Momper2,3, L. Thiberio Rangel2, Cara Magnabosco4, Jan P. Amend5,6, and Gregory P. Fournier2 1. Microbiology Graduate Program, Massachusetts Institute of Technology 2. Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology 3. Exponent, Inc., Pasadena, CA 4. Department of Earth Sciences, ETH Zurich 5. Department of Earth Sciences, University of Southern California 6. Department of Biological Sciences, University of Southern California *Correspondence: [email protected], +1 (415) 497-1747 SUMMARY Denitrification plays a central role in the global nitrogen cycle, reducing and removing nitrogen from ma- rine and terrestrial ecosystems.
    [Show full text]
  • Comparative Genomic Insights Into Ecophysiology of Neutrophilic, Microaerophilic Iron Oxidizing Bacteria
    Lawrence Berkeley National Laboratory Recent Work Title Comparative Genomic Insights into Ecophysiology of Neutrophilic, Microaerophilic Iron Oxidizing Bacteria. Permalink https://escholarship.org/uc/item/89m829jp Journal Frontiers in microbiology, 6(NOV) ISSN 1664-302X Authors Kato, Shingo Ohkuma, Moriya Powell, Deborah H et al. Publication Date 2015 DOI 10.3389/fmicb.2015.01265 Peer reviewed eScholarship.org Powered by the California Digital Library University of California ORIGINAL RESEARCH published: 13 November 2015 doi: 10.3389/fmicb.2015.01265 Comparative Genomic Insights into Ecophysiology of Neutrophilic, Microaerophilic Iron Oxidizing Bacteria Shingo Kato1,2* †, Moriya Ohkuma2, Deborah H. Powell3, Sean T. Krepski1, Kenshiro Oshima4, Masahira Hattori4,NicoleShapiro5,TanjaWoyke5 and Clara S. Chan1* 1 Department of Geological Sciences, University of Delaware, Newark, DE, USA, 2 Japan Collection of Microorganisms, Edited by: RIKEN BioResource Center, Tsukuba, Japan, 3 Delaware Biotechnology Institute, University of Delaware, Newark, DE, USA, Beth Orcutt, 4 Center for Omics and Bioinformatics, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Japan, Bigelow Laboratory for Ocean 5 Department of Energy Joint Genome Institute, Walnut Creek, CA, USA Sciences, USA Reviewed by: Neutrophilic microaerophilic iron-oxidizing bacteria (FeOB) are thought to play a James Hemp, California Institute of Technology, USA significant role in cycling of carbon, iron and associated elements in both freshwater Roman Barco, and marine iron-rich environments. However, the roles of the neutrophilic microaerophilic University of Southern California, USA FeOB are still poorly understood due largely to the difficulty of cultivation and lack of *Correspondence: functional gene markers. Here, we analyze the genomes of two freshwater neutrophilic Shingo Kato [email protected]; microaerophilic stalk-forming FeOB, Ferriphaselus amnicola OYT1 and Ferriphaselus Clara S.
    [Show full text]