Lawrence Berkeley National Laboratory Recent Work Title Comparative Genomic Insights into Ecophysiology of Neutrophilic, Microaerophilic Iron Oxidizing Bacteria. Permalink https://escholarship.org/uc/item/89m829jp Journal Frontiers in microbiology, 6(NOV) ISSN 1664-302X Authors Kato, Shingo Ohkuma, Moriya Powell, Deborah H et al. Publication Date 2015 DOI 10.3389/fmicb.2015.01265 Peer reviewed eScholarship.org Powered by the California Digital Library University of California ORIGINAL RESEARCH published: 13 November 2015 doi: 10.3389/fmicb.2015.01265 Comparative Genomic Insights into Ecophysiology of Neutrophilic, Microaerophilic Iron Oxidizing Bacteria Shingo Kato1,2* †, Moriya Ohkuma2, Deborah H. Powell3, Sean T. Krepski1, Kenshiro Oshima4, Masahira Hattori4,NicoleShapiro5,TanjaWoyke5 and Clara S. Chan1* 1 Department of Geological Sciences, University of Delaware, Newark, DE, USA, 2 Japan Collection of Microorganisms, Edited by: RIKEN BioResource Center, Tsukuba, Japan, 3 Delaware Biotechnology Institute, University of Delaware, Newark, DE, USA, Beth Orcutt, 4 Center for Omics and Bioinformatics, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Japan, Bigelow Laboratory for Ocean 5 Department of Energy Joint Genome Institute, Walnut Creek, CA, USA Sciences, USA Reviewed by: Neutrophilic microaerophilic iron-oxidizing bacteria (FeOB) are thought to play a James Hemp, California Institute of Technology, USA significant role in cycling of carbon, iron and associated elements in both freshwater Roman Barco, and marine iron-rich environments. However, the roles of the neutrophilic microaerophilic University of Southern California, USA FeOB are still poorly understood due largely to the difficulty of cultivation and lack of *Correspondence: functional gene markers. Here, we analyze the genomes of two freshwater neutrophilic Shingo Kato
[email protected]; microaerophilic stalk-forming FeOB, Ferriphaselus amnicola OYT1 and Ferriphaselus Clara S.