The Interplay of Microbially Mediated and Abiotic Reactions in the Biogeochemical Fe Cycle

Total Page:16

File Type:pdf, Size:1020Kb

The Interplay of Microbially Mediated and Abiotic Reactions in the Biogeochemical Fe Cycle REVIEWS The interplay of microbially mediated and abiotic reactions in the biogeochemical Fe cycle Emily D. Melton, Elizabeth D. Swanner, Sebastian Behrens, Caroline Schmidt and Andreas Kappler Abstract | Many iron (Fe) redox processes that were previously assumed to be purely abiotic, such as photochemical Fe reactions, are now known to also be microbially mediated. Owing to this overlap, discerning whether biotic or abiotic processes control Fe redox chemistry is a major challenge for geomicrobiologists and biogeochemists alike. Therefore, to understand the network of reactions within the biogeochemical Fe cycle, it is necessary to determine which abiotic or microbially mediated reactions are dominant under various environmental conditions. In this Review, we discuss the major microbially mediated and abiotic reactions in the biogeochemical Fe cycle and provide an integrated overview of biotic and chemically mediated redox transformations. Fe speciation The environmental abundance of iron (Fe) and its pos‑ and temporal distribution of Fe redox species in some Refers to the redox state of session of electrons in d orbitals with π‑character, which environments, such as heterogeneous sediments, plant iron (Fe) and the identity of its can form complexes with carbon (C), oxygen (O), nitro‑ rhizospheres and microbial mats6, and abiotic Fe trans‑ ligands. The two most common gen (N) and sulphur (S) species, make it an essential ele‑ formations with biologically produced intermediates environmental Fe redox ment for nearly all living organisms. Fe occurs in two must be taken into account7,8. species are Fe(II) and Fe(III). main redox states in the environment: oxidized ferric Fe Despite our growing knowledge of the wide‑ (Fe(iii)), which is poorly soluble at circumneutral pH; spread environmental occurrence and the importance and reduced ferrous Fe (Fe(ii)), which is easily soluble of microbial Fe redox cycling for the degradation and and therefore more bioavailable. Fe speciation and bio‑ preservatio­n of C and the fate of many nutrients availability are dynamically controlled by the prevalent and contaminants9–11, we still lack a comprehensive changing redox conditions. Redox reactions of Fe with understanding of the mechanisms and pathways of C, N, O and S drive global biogeochemical cycles, as the electron transfer in Fe(ii)-oxidizing and Fe(iii)-reducing redox potential of the Fe(iii)–Fe(ii) redox couple lies bacteria. Unlike electron transfer between other major between the redox potentials of the major C, N, O or S inorganic redox species, electron transfer to and from species redox couples. Although microbial Fe oxidation Fe can be mediated by various cellular pathways. The had been described by the early nineteenth century1, the genes that are involved in gaining energy from oxidizing prevailing view in the early twentieth century was that Fe(ii) or reducing Fe(iii) are only known for a few bac‑ Fe cycling was mainly mediated abiotically by chemical teria, such as Rhodopseudomona­s palustris strain TIE‑1 – (REFS 12–14) reactions with molecular oxygen (O2), nitrite (NO2 ), and Shewanella oneidensis strain MR‑1 . Geomicrobiology, Center divalent and tetravalent manganese (Mn), various S spe‑ Gene families that encode proteins with a potential role for Applied Geosciences, University of Tübingen, cies and organic C. Since the discovery of neutrophilic in Fe(ii) oxidation or Fe(iii) reduction within different 2–5 Sigwartstrasse 10, 72076 Fe‑metabolizing bacteria , we have entered a ‘golden microbial taxa generally have low sequence identity, Tübingen, Germany. age’ of Fe geomicrobiology. All redox processes that were although some homologues of key genes have recently Correspondence to A.K. previously assumed to be purely abiotic (for example, been identified15–18. e‑mail: andreas.kappler@ oxidation of Fe(ii) by O or photochemical oxidation of The increased understanding of the genetic and uni‑tuebingen.de 2 doi:10.1038/nrmicro3347 Fe(ii)) are now known to also be microbially mediated. mechanistic pathways that are involved in Fe geomicro‑ Published online However, the contribution of microorganisms alone biology over the past 25 years has now converged with 20 October 2014 may not be sufficient to interpret the observed spatial the understanding of the abiotic chemical pathways NATURE REVIEWS | MICROBIOLOGY VOLUME 12 | DECEMBER 2014 | 797 © 2014 Macmillan Publishers Limited. All rights reserved REVIEWS Microbially mediated reactions Chemically mediated reactions – Microaerophiles O2 hν NO3 ROS 2+ + 4Fe + 10H2O + O2 → 4Fe(OH)3 + 8H Oxidation 2+ 3+ • – Fe + O2 → Fe + O2 Gallionella spp., Leptothrix spp., 2+ • – + 3+ Fe + O2 + 2H → Fe + H2O2 Mariprofundus spp., Sideroxydans spp. 2+ + 3+ • Fe + H2O2 + H → Fe + OH + H2O Fe(III) 2+ • + 3+ Aerobic Fe + OH + H → Fe + H2O Photoferrotrophs ROS hν Reduction – 2+ • – 2+ HCO3 + Fe + 10H2O → O • – O + Fe(III) → O + Fe + 2 O2 2 2 (CH2O) + 4Fe(OH)3 + 7H Rhodopseudomonas palustris TIE-1 hν Light reactions Rhodobacter sp. SW2 hν Photic Reduction Chlorobium ferrooxidans (KoFox) hν Thiodictyon sp. F4 hν Fe(III)–L → Fe(II)–L – Nitrogen species NO3 -reducing Fe(II)-oxidizers NO – NO 2+ – 3 x Oxidation 10Fe + 2NO3 + 24H2O → 4Fe2+ + 2NO – + 5H O → Reduction + Reduction Nitrate 2 2 10Fe(OH)3 + N2 + 18H + 4FeOOH + N2O + 6H + NH4 2+ – + Acidovorax spp., KS, 2002 Fe + NO2 + 2H → FeOOH + NO + H2O 2+ + 1 1 Thiobacillus denitrificans Fe + NO + H → FeOOH + /2 N2O + /2 H2O Oxidation Oxidation Fe-ammox Manganese MnO2 Manganese + + NH4 + 6FeOOH + 10H → Oxidation – 2+ 2+ NO2 + 6Fe + 10H2O 2Fe + MnO2 + 2H2O → Mn2+ + 2FeOOH + 2H+ Unknown HumS HumS Fe(III)-reducing organic C and/or organic C Iron H -oxidizers Reduction 2 – H Fe(III) + HumS HumS + Fe(II) – + 2 → 4FeOOH + CH3CHOHCOO + 7H → 2+ – – 4Fe + CH3COO + HCO3 + 6H2O Sulphur species 2Fe(OH) + H 2Fe2+ + 2H O H2S 2 → 2 Fe(II) Reduction Sulphur 0 Geobacter spp., Shewanella spp, 2FeOOH + 3H2S → 2FeS + S + 4H2O Albidoferax ferrireducens, Geothrix spp. Figure 1 | Microbially and chemically mediated reactions that form the biogeochemical Fe cycle. Microbially mediated iron (Fe) redox reactions are shown on the left-hand side and abiotic Fe redox transformationsNature Reviews are |shown Microbiology on the right-hand side, listed in a thermodynamic order (although some of these reactions may overlap in the natural environment). Within the oxic zone, microaerophilic Fe(ii) oxidizers oxidize ferrous Fe (Fe(ii)) using oxygen (O2). Reactive •− oxygen species (ROS) can oxidize Fe(ii), and superoxide (O2 ) can abiotically reduce ferric iron (Fe(iii)). Within the photic zone, phototrophic microorganisms oxidize Fe(ii) and photochemical reactions reduce Fe(iii) that is bound to organic – ligands (L). Mixotrophic and autotrophic nitrate (NO3 )-dependent Fe(ii) oxidation is restricted to anoxic conditions in the – denitrification zone. NO3 -reducing Fe(ii)-oxidizing bacteria use Fe(ii) as an electron donor. Fe–ammox bacteria couple + the oxidation of ammonium (NH4 ) to Fe(iii) reduction. Fe(ii) can be chemically oxidized via chemodenitrification by reactive nitrogen (N) species. Fe(ii) is abiotically oxidized by manganese (Mn) via surface-catalysed reactions. Fe(iii)-reducing microorganisms can reduce Fe(iii) coupled to the oxidation of various electron donors such as organic carbon (C) and H2. Electron-rich (that is, reduced) humic substances (HumS) abiotically reduce Fe(iii) to Fe(ii). Fe(iii) is – chemically reduced by hydrogen sulphide (H2S) to ferrous sulphide (FeS) species. The different gradients of O2, light, NO3 and Fe(ii) and Fe(iii) in a redox-stratified environmental system are shown, as well as where the different biotic and abiotic Fe redox transformations are expected to take place. that are involved in environmental Fe cycling. So far, Microbially mediated Fe(ii) oxidation by O2. many studies have focused on either abiotic or biotic Microaerophilic­ Fe(ii) oxidizers are lithotrophic bacteria processes; however, these processes are interconnected that oxidize Fe(ii) with O2 according to the following and cannot be studied separately if we are to truly stoichiometric equation5 (FIG. 1): Microaerophilic A term used to describe understand environmental biogeochemical Fe cycling. 2+ + 4Fe + 10H2O + O2 → 4Fe(OH)3 + 8H (1) microbial metabolism that Therefore, a current challenge is to discern abiotic from requires oxygen (O2) microbially mediated Fe redox processes and to esti‑ Phylogenetically, these bacteria belong to the phy‑ concentrations to be very low; mate their overall contributions to the Fe biogeochemi‑ lum Proteobacteria, which includes the freshwater gen‑ for example, microaerophilic 19 20 21 ferrous iron Fe(ii)-oxidizing cal cycle. In this Review, we discuss the most important era Leptothrix , Gallionella and Sideroxydans and the microbially mediated and abiotic reactions and address marine genus Mariprofundus22. Microaerophilic Fe(ii) bacteria function when the O2 concentration is below 50 μM. their interactions within the biogeochemical Fe cycle. oxidizers are common in many freshwater and marine (REFS 5,23,24) environments that are exposed to O2 , and Lithotrophic Fe(ii) oxidation by O their growth is severely retarded under anoxic conditions, A term used to describe 2 NO –) microbial metabolism that uses The high redox potential of O2 and its one-electron with the exception of the nitrate ( 3 -reducing Fe(ii)- 25 inorganic substrates as transfer derivatives readily initiates the exergonic abiotic oxidizing co‑culture KS that contains a Sideroxydans
Recommended publications
  • Isolation and Identification of Denitrifying Bacteria and Its Growth and Metabolism Characteristics
    2017 2nd International Conference on Environmental Science and Energy Engineering (ICESEE 2017) ISBN: 978-1-60595-417-2 Isolation and Identification of Denitrifying Bacteria and Its Growth and Metabolism Characteristics Xin-ran JIANG, Dian JIAO, Lei ZHANG and Li-na ZHENG College of Marine Technology and Environmental, Dalian Ocean University, Dalian 116023, China Keywords: Denitrification, Nitrate, Isolation and identification, Activity research. Abstract. A denitrifying bacterium DN20 was isolated from the biofilm after centrifugation in the aquaculture purification system of a aquaculture base, and the denitrification characteristics of the strain were further studied. The strain was identified by 16S rDNA sequence analysis, the effects of temperature, salinity, pH, substrate concentration and C/N ratio on denitrification activity were studied. Introduction Denitrifying bacteria are a kind of bacteria that can cause denitrification. Biological denitrification is the use of denitrifying bacteria, nitrate nitrogen into gaseous products to remove, is considered to be the most economical and effective way of nitrogen removal [1]-[2]. The application of denitrifying bacteria and the removal of nitrate in water have become the research focus[3]-[5], many methods have been reported [6]-[8]. In recent years, some studies on salt tolerant and halophilic denitrifying bacteria have been reported abroad [9]-[10]. In this study, the sludge from the culture pond was taken as the main separation source, and the enrichment, separation and purification were carried out.To obtain a highly efficient nitrate removal ability of denitrifying bacteria, named strain DN20. The aim of this study is to provide effective bacteria source for practical application of nitrate-N treatment in aquaculture water.
    [Show full text]
  • Microbial Communities Responses in Fluvial Biofilms Under Metal Stressed Scenarios
    MICROBIAL COMMUNITIES RESPONSES IN FLUVIAL BIOFILMS UNDER METAL STRESSED SCENARIOS María Argudo Fernández Per citar o enllaçar aquest document: Para citar o enlazar este documento: Use this url to cite or link to this publication: http://hdl.handle.net/10803/671673 http://creativecommons.org/licenses/by-nc-sa/4.0/deed.ca Aquesta obra està subjecta a una llicència Creative Commons Reconeixement- NoComercial-CompartirIgual Esta obra está bajo una licencia Creative Commons Reconocimiento-NoComercial- CompartirIgual This work is licensed under a Creative Commons Attribution-NonCommercial- ShareAlike licence DOCTORAL THESIS Microbial communities responses in fluvial biofilms under metal stressed scenarios María Argudo Fernández 2020 Doctoral Programme in Water Science and Technology Supervised by: Frederic Gich Batlle Helena Guasch Padró Tutor: Anna M. Romaní Cornet Doctor candidate: María Argudo Fernández Thesis submitted in fulfilment of the requirements for the doctoral degree at the University of Girona Dr. Frederic Gich Batlle of the Biology Department of the University of Girona and Dra Helena Guasch Padró of Continental Ecology Department of CEAB-CSIC, DECLARE: That the thesis entitled “Microbial communities responses in fluvial biofilms under metal stressed scenarios” presented by MARÍA ARGUDO FERNÁNDEZ to obtain a doctoral degree, has been conducted under our supervision. For all intents and purposes, we hereby sign this document. Dr Frederic Gich Batlle Dra Helena Guasch Padró Girona, December 2020 A mi padre “The essence of the ocean cannot be seen in a drop of seawater” Kurt Tucholsky, 1925 ACKNOWLEDGEMENTS Sinceramente no sé cómo empezar porque creí que nunca llegaría el momento de rellenar este folio, los que me conocen lo saben (nunca se acaba recordadlo, sigo repasando)….Entonces empezaré por el principio.
    [Show full text]
  • Bacteria and Cyanobacteria
    Bacteria and Cyanobacteria Bacteria represent an amazingly diverse group of organisms that are of great ecological, economic, agricultural, and medical importance. Cyanobacteria, also known as blue-green bacteria, contain thylakoid membranes with photosynthetic pigments (chlorophyll a and phycobilins) and are capable to oxygenic photosynthesis. Purple bacteria and green sulfur bacteria occupy habitats in the presence of hydrogen sulfide and oxidize and release sulfur gas rather than oxygen. Nitrogen fixing and denitrifying bacteria have an exceptionally important role in nitrogen cycling in terrestrial plant communities. Many vascular plants such as legumes and an aquatic fern have a symbiotic relationship with nitrogen fixing bacteria. Bacteria are also important carbon recyclers in the environment by assisting in the decomposition of dead organisms. Bacteria are considered Prokaryotes (before the nucleus) and represent a lineage that is ancient and possess a number of novel features. Bacteria generally lack internal compartmentalized organelles that are bound by membranes. Organelles such as Golgi bodies (dictyosomes), chloroplasts, mitochondria, and nuclei are regarded as unique to Eukaryotic (true nucleus) organisms. Recently, evolutionary biologists have determined that two major kingdoms of bacteria are present on the planet. Eubacteria represent the true bacteria and contain many of the groups that we are most familiar with such as cyanobacteria. E. coli, Streptococcus, and Rhizobium. Archaebacteria represent an ancient lineage whose members occupy rather inhospitable habitats such as deep sea thermal vents and miles deep in the Earth=s crust, but are also found in more normal environments. The objective of this lab is to examine the morphology, structure, and ecology of bacteria and cyanobacteria.
    [Show full text]
  • Isolation and Characterization of a Novel Denitrifying Bacterium with High Nitrate Removal: Pseudomonas Stutzeri
    Iran. J. Environ. Health. Sci. Eng., 2010, Vol. 7, No. 4, pp. 313-318 ISOLATION AND CHARACTERIZATION OF A NOVEL DENITRIFYING BACTERIUM WITH HIGH NITRATE REMOVAL: PSEUDOMONAS STUTZERI *1A. Rezaee, 2H. Godini, 1S. Dehestani, 1S. Kaviani 1 Department of Environmental Health, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran 2 Department of Environmental Health, School of Public Health, Lorestan University of Medical Sciences, Khoramabbad, Iran Received 16 August 2009; revised 13 Jully 2010; accepted 20 August 2010 ABSTRACT The aim of this study was to isolate and characterize a high efficiency denitrifier bacterium for reducing nitrate in wastewater. Six denitrifier bacteria with nitrate removal activities were isolated from a petrochemical industry effluent with high salinity and high nitrogen concentrations without treatment. The isolated bacteria were tested for nitrate reomoval activity. One of the bacterium displayed the highest reduction of nitrate. The strain was preliminarily identified using biochemical tests and further identified based on similarity of PCR-16S rRNA using universal primers. Biochemical and molecular experiments showed that the best bacterium with high nitrate removal potential was Pseudomonas stutzeri, a member of the α subclass of the class Proteobacteria. The extent of nitrate removal efficiency was 99% at 200 mg/L NO3 and the nitrite content of the effluent was in the prescribed limit. The experiments showed the ability of Pseudomonas stutzeri to rapidly remove nitrate under anoxic conditions. The strain showed to be potentially good candidate for biodenitrification of high nitrate solutions. Key words: Pseudomonas stutzeri; Denitrification; Polymerase Chain Reaction, Isolation; Characterization INTRODUCTION Biological denitrification is a process carried to respire anaerobically using nitrogen oxides as out by numerous genera of bacteria.
    [Show full text]
  • Enrichment of Denitrifying Bacterial Community Using Nitrite As an Electron Acceptor for Nitrogen Removal from Wastewater
    water Article Enrichment of Denitrifying Bacterial Community Using Nitrite as an Electron Acceptor for Nitrogen Removal from Wastewater Renda Yao, Quan Yuan and Kaijun Wang * State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; [email protected] (R.Y.); [email protected] (Q.Y.) * Correspondence: [email protected]; Tel.: +86-10-6278-9411 Received: 31 October 2019; Accepted: 17 December 2019; Published: 20 December 2019 Abstract: This work aimed to enrich a denitrifying bacterial community for economical denitrification via nitrite to provide the basic objects for enhancing nitrogen removal from wastewater. A sequencing batch reactor (SBR) with continuous nitrite and acetate feeding was operated by reasonably adjusting the supply rate based on the reaction rate, and at a temperature of 20 2 C, pH of 7.5 0.2, ± ◦ ± and dissolved oxygen (DO) of 0 mg/L. The results revealed that the expected nitrite concentration can be achieved during the whole anoxic reaction period. The nitrite denitrification rate of nitrogen removal from synthetic wastewater gradually increased from approximately 10 mg/(L h) to 275.35 mg/(L h) over 12 days (the specific rate increased from 3.83 mg/(g h) to 51.80 mg/(g h)). Correspondingly, the chemical oxygen demand/nitrogen (COD/N) ratio of reaction decreased from 7.9 to 2.7. Both nitrite and nitrate can be used as electron acceptors for denitrification. The mechanism of this operational mode was determined via material balance analysis of substrates in a typical cycle. High-throughput sequencing showed that the main bacterial community was related to denitrification, which accounted for 84.26% in the cultivated sludge, and was significantly higher than the 2.16% in the seed sludge.
    [Show full text]
  • Influence of Denitrification in Aquatic Sediments on the Nitrogen Content of Natural Waters J
    6 / c__ Influence of denitrification in aquatic sediments on the nitrogen content of natural waters J. F. van Kessel Influence of denitrification in aquatic sedimentso n the nitrogen content of naturalwater s Proefschrift ter verkrijging van degraa d van doctor in de landbouwwetenschappen, op gezagva n derecto r magnificus, dr. ir. J. P.H .va n derWant , hoogleraar in devirologie , in het openbaar te verdedigen opvrijda g 8oktobe r 1976 desnamiddag s te vier uur in de aula van de Landbouwhogeschool te Wageningen Centrefor Agriculture Publishingand Documentation Wageningen —1976 Abstract Kessel, J. F. van (1976) Influence of denitrification in aquatic sediments on the nitrogen content of natural waters. Agric. Res. Rep. (Versl. landbouwk. Onderz.) 858. Pudoc, Wageningen. ISBN 90 220062 04 . (vi)+ 5 2 p.: 12figs ; 14 tables;Eng .an d Dutch summaries. Forms part of a doctoral thesis, Wageningen ((vii) + 104 p., 43 figs, 28 tables). Other parts are published in Water Research,bu t are summarized in the Agric.Res .Rep . A study was made of microbiological processes, particularly denitrification, leading to the elimi­ nation of nitrogen from natural waters. As denitrification is an anaerobic process and natural waters mostly contain dissolved oxygen, this process was suggested to proceed in the anaerobic sediment at the bottom of natural waters. Two widely differing types of aquatic sediments were tested in the laboratory for effects of temperature, oxygen and nitrate in the overlying water, and thickness of the sediment layer on the rate of denitrification. During disappearance of nitrate from the overlying water, by far most of thenitrat e was converted to molecular nitrogen by denitrification and only a small part of the nitrate was utilized for cell synthesis (immobilization).
    [Show full text]
  • Microbial Function on Climate Change Addis Ababa, Ethiopia – a Review Received: 14 March, 2018 Accepted: 28 April, 2018 Published: 30 April, 2018
    vv ISSN: 2690-0777 DOI: https://dx.doi.org/10.17352/ojeb LIFE SCIENCES GROUP Endeshaw Abatenh*, Birhanu Gizaw, Zerihun Tsegaye and Genene Tefera Review Article Endeshaw Abatenh, Ethiopia Biodiversity Institute, Department of Microbiology, Comoros Street, 0000, Microbial Function on Climate Change Addis Ababa, Ethiopia – A Review Received: 14 March, 2018 Accepted: 28 April, 2018 Published: 30 April, 2018 *Corresponding author: Endeshaw Abatenh, Ethiopia Abstract Biodiversity Institute, Department of Microbiology, Comoros Street, 0000, Addis Ababa, Ethiopia, Greenhouse gases concentration is increased through time within different human and natural E-mail: [email protected] factors. Such as combustion of coal, oil and other fossil fuels, decay of plant matter and biomass burning. Now a day’s climate change and global warming is the major problem in the world. It is damage Keywords: Green House Gases (GHGs); Climate (destroy) a number of biotic componets. It have also effect on microbial comunity stracture, function change; Microbial comunity; Biogeochemical cycle; and their metablolic activity. In order to fi ght (compromize) climate change using a number of methods Methanotropic. are listed here. For example, microorganisms and other biological componets have many potential role https://www.peertechz.com for mitigation by contribute forward response. Microorganisms have a wide function especialy used in greenhouse gas treatment and reduction through nutrient recycling processes. It act as either generators or users of these gases in a good manner. It provide to reduce environment hazards which is caused by nature and antropogenic activity. In overall biogeochemical cycles and climate changes are never see separately. Introduction of a certain region, including temperature, rainfall, and wind.
    [Show full text]
  • Neoproterozoic Iron Formation: an Evaluation of Its Temporal, Environmental and Tectonic Significance
    ÔØ ÅÒÙ×Ö ÔØ Neoproterozoic Iron Formation: An evaluation of its temporal, environmental and tectonic significance Grant M. Cox, Galen P. Halverson, William G. Minarik, Daniel P. Le Heron, Francis A. Macdonald, Eric J. Bellefroid, Justin V. Strauss PII: S0009-2541(13)00349-5 DOI: doi: 10.1016/j.chemgeo.2013.08.002 Reference: CHEMGE 16961 To appear in: Chemical Geology Received date: 2 November 2012 Revised date: 29 July 2013 Accepted date: 5 August 2013 Please cite this article as: Cox, Grant M., Halverson, Galen P., Minarik, William G., Le Heron, Daniel P., Macdonald, Francis A., Bellefroid, Eric J., Strauss, Justin V., Neo- proterozoic Iron Formation: An evaluation of its temporal, environmental and tectonic significance, Chemical Geology (2013), doi: 10.1016/j.chemgeo.2013.08.002 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ACCEPTED MANUSCRIPT Neoproterozoic Iron Formation: An evaluation of its temporal, environmental and tectonic significance Grant M. Cox 1* , Galen P. Halverson 1, William G. Minarik 1, Daniel P. Le Heron 2, Francis A. Macdonald 3, Eric J. Bellefroid 1, Justin V. Strauss 3 *Corresponding author 1-McGill University, Montreal, Quebec, Canada 2-Royal Holloway, University of London, United Kingdom 3-Harvard University, Massachusetts, U.S.A.
    [Show full text]
  • Characterization of Bacterial Community Structure in a Drinking
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, Nov. 2010, p. 7171–7180 Vol. 76, No. 21 0099-2240/10/$12.00 doi:10.1128/AEM.00832-10 Copyright © 2010, American Society for Microbiology. All Rights Reserved. Characterization of Bacterial Community Structure in a Drinking ᰔ Water Distribution System during an Occurrence of Red Water Downloaded from Dong Li,1 Zheng Li,1 Jianwei Yu,1 Nan Cao,2 Ruyin Liu,1 and Min Yang1* State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China,1 and Water Quality Monitoring Center, Beijing Waterworks Group, Beijing 100085, China2 Received 6 April 2010/Accepted 1 September 2010 The role of bacteria in the occasional emergence of red water, which has been documented worldwide, has http://aem.asm.org/ yet to be determined. To better understand the mechanisms that drive occurrences of red water, the bacterial community composition and the relative abundance of several functional bacterial groups in a water distri- bution system of Beijing during a large-scale red water event were determined using several molecular methods. Individual clone libraries of the 16S rRNA gene were constructed for three red water samples and one sample of normal water. Beta-, Alpha-, and Gammaproteobacteria comprised the major bacterial communities in both red water and normal water samples, in agreement with previous reports. A high percentage of red water clones (25.2 to 57.1%) were affiliated with or closely related to a diverse array of iron-oxidizing bacteria, including the neutrophilic microaerobic genera Gallionella and Sideroxydans, the acidophilic species Acidothio- bacillus ferrooxidans, and the anaerobic denitrifying Thermomonas bacteria.
    [Show full text]
  • Microbial Cooking, Cleaning, and Control Under Stress
    life Review Housekeeping in the Hydrosphere: Microbial Cooking, Cleaning, and Control under Stress Bopaiah Biddanda 1,* , Deborah Dila 2 , Anthony Weinke 1 , Jasmine Mancuso 1 , Manuel Villar-Argaiz 3 , Juan Manuel Medina-Sánchez 3 , Juan Manuel González-Olalla 4 and Presentación Carrillo 4 1 Annis Water Resources Institute, Grand Valley State University, Muskegon, MI 49441, USA; [email protected] (A.W.); [email protected] (J.M.) 2 School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53204, USA; [email protected] 3 Departamento de Ecología, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain; [email protected] (M.V.-A.); [email protected] (J.M.M.-S.) 4 Instituto Universitario de Investigación del Agua, Universidad de Granada, 18071 Granada, Spain; [email protected] (J.M.G.-O.); [email protected] (P.C.) * Correspondence: [email protected]; Tel.: +1-616-331-3978 Abstract: Who’s cooking, who’s cleaning, and who’s got the remote control within the waters blan- keting Earth? Anatomically tiny, numerically dominant microbes are the crucial “homemakers” of the watery household. Phytoplankton’s culinary abilities enable them to create food by absorbing sunlight to fix carbon and release oxygen, making microbial autotrophs top-chefs in the aquatic kitchen. However, they are not the only bioengineers that balance this complex household. Ubiqui- tous heterotrophic microbes including prokaryotic bacteria and archaea (both “bacteria” henceforth), Citation: Biddanda, B.; Dila, D.; eukaryotic protists, and viruses, recycle organic matter and make inorganic nutrients available to Weinke, A.; Mancuso, J.; Villar-Argaiz, primary producers. Grazing protists compete with viruses for bacterial biomass, whereas mixotrophic M.; Medina-Sánchez, J.M.; protists produce new organic matter as well as consume microbial biomass.
    [Show full text]
  • And Phytoplankton Community Compositions Related in Lakes Differing in Their Cyanobacteria Contribution and Physico-Chemical Properties?
    G C A T T A C G G C A T genes Article Are Bacterio- and Phytoplankton Community Compositions Related in Lakes Differing in Their Cyanobacteria Contribution and Physico-Chemical Properties? Mikołaj Kokoci ´nski 1,*, Dariusz Dziga 2 , Adam Antosiak 2 and Janne Soininen 3 1 Department of Hydrobiology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Pozna´nskiego 6, 61-614 Pozna´n,Poland 2 Laboratory of Metabolomics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland; [email protected] (D.D.); [email protected] (A.A.) 3 Department of Geosciences and Geography, University of Helsinki, P.O. Box 64, FIN-00014 Helsinki, Finland; janne.soininen@helsinki.fi * Correspondence: [email protected] Abstract: Bacterioplankton community composition has become the center of research attention in recent years. Bacteria associated with toxic cyanobacteria blooms have attracted considerable interest. However, little is known about the environmental factors driving the bacteria community, including the impact of invasive cyanobacteria. Therefore, our aim has been to determine the relationships be- tween heterotrophic bacteria and phytoplankton community composition across 24 Polish lakes with different contributions of cyanobacteria including the invasive species Raphidiopsis raciborskii. This Citation: Kokoci´nski,M.; Dziga, D.; analysis revealed that cyanobacteria were present in 16 lakes, while R. raciborskii occurred in 14 lakes. Antosiak, A.; Soininen, J. Are Bacterio- Our results show that bacteria communities differed between lakes dominated by cyanobacteria and and Phytoplankton Community lakes with minor contributions of cyanobacteria but did not differ between lakes with R. raciborskii Compositions Related in Lakes and other lakes.
    [Show full text]
  • Discovery of Sheath-Forming, Iron-Oxidizing Zetaproteobacteria at Loihi Seamount, Hawaii, USA Emily J
    RESEARCH ARTICLE Hidden in plain sight: discovery of sheath-forming, iron-oxidizing Zetaproteobacteria at Loihi Seamount, Hawaii, USA Emily J. Fleming1, Richard E. Davis2, Sean M. McAllister3,, Clara S. Chan4, Craig L. Moyer3, Bradley M. Tebo2 & David Emerson1 1Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, USA; 2Department of Environmental and Biomolecular Systems, Oregon Health and Science University, Portland, OR, USA; 3Department of Biology, Western Washington University, Bellingham, WA, USA and 4Department of Geological Sciences, University of Delaware, Newark, DE, USA Correspondence: David Emerson, Bigelow Abstract Laboratory for Ocean Sciences, PO Box 380, East Boothbay, ME 04544, USA. Tel.: +1 207 Lithotrophic iron-oxidizing bacteria (FeOB) form microbial mats at focused 315 2567; fax: +1 207 315 2329; flow or diffuse flow vents in deep-sea hydrothermal systems where Fe(II) is a e-mail: [email protected] dominant electron donor. These mats composed of biogenically formed Fe(III)-oxyhydroxides include twisted stalks and tubular sheaths, with sheaths Present address: Sean M. McAllister, typically composing a minor component of bulk mats. The micron diameter Department of Geological Sciences, Fe(III)-oxyhydroxide-containing tubular sheaths bear a strong resemblance to University of Delaware, Newark, DE, USA sheaths formed by the freshwater FeOB, Leptothrix ochracea. We discovered that Received 20 December 2012; revised 28 veil-like surface layers present in iron-mats at the Loihi Seamount were domi- – February 2013; accepted 28 February 2013. nated by sheaths (40 60% of total morphotypes present) compared with deeper Final version published online 15 April 2013. (> 1 cm) mat samples (0–16% sheath). By light microscopy, these sheaths appeared nearly identical to those of L.
    [Show full text]