And Phytoplankton Community Compositions Related in Lakes Differing in Their Cyanobacteria Contribution and Physico-Chemical Properties?
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Identification of Associations Between Bacterioplankton and Photosynthetic Picoeukaryotes in Coastal Waters
fmicb-07-00339 March 22, 2016 Time: 11:12 # 1 ORIGINAL RESEARCH published: 22 March 2016 doi: 10.3389/fmicb.2016.00339 Identification of Associations between Bacterioplankton and Photosynthetic Picoeukaryotes in Coastal Waters Hanna M. Farnelid1,2*, Kendra A. Turk-Kubo1 and Jonathan P. Zehr1 1 Ocean Sciences Department, University of California at Santa Cruz, Santa Cruz, CA, USA, 2 Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden Photosynthetic picoeukaryotes are significant contributors to marine primary productivity. Associations between marine bacterioplankton and picoeukaryotes frequently occur and can have large biogeochemical impacts. We used flow cytometry to sort cells from seawater to identify non-eukaryotic phylotypes that are associated with photosynthetic picoeukaryotes. Samples were collected at the Santa Cruz wharf on Monterey Bay, CA, USA during summer and fall, 2014. The phylogeny of associated microbes was assessed through 16S rRNA gene amplicon clone and Illumina MiSeq libraries. The most frequently detected bacterioplankton phyla Edited by: within the photosynthetic picoeukaryote sorts were Proteobacteria (Alphaproteobacteria Xavier Mayali, and Gammaproteobacteria) and Bacteroidetes. Intriguingly, the presence of free-living Lawrence Livermore National Laboratory, USA bacterial genera in the photosynthetic picoeukaryote sorts could suggest that some Reviewed by: of the photosynthetic picoeukaryotes were mixotrophs. However, the occurrence of Cécile Lepère, bacterial sequences, which were not prevalent in the corresponding bulk seawater Blaise Pascal University, France Manuela Hartmann, samples, indicates that there was also a selection for specific OTUs in association with National Oceanography Centre, UK photosynthetic picoeukaryotes suggesting specific functional associations. The results Michael Morando, show that diverse bacterial phylotypes are found in association with photosynthetic University of Southern California, USA picoeukaryotes. -
Cyanobacteria Blooms in the Baltic Sea: a Review of Models and Facts
https://doi.org/10.5194/bg-2020-151 Preprint. Discussion started: 19 May 2020 c Author(s) 2020. CC BY 4.0 License. Cyanobacteria Blooms in the Baltic Sea: A Review of Models and Facts Britta Munkes1, Ulrike Löptien1,2, and Heiner Dietze1,2 1GEOMAR, Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, D-24105 Kiel, Germany. 2Institute of Geosciences, Christian-Albrechts-University of Kiel, Ludewig-Meyn-Str. 10, 24 118 Kiel, Germany Correspondence: Britta Munkes ([email protected]) Abstract. The ecosystem of the Baltic Sea is endangered by eutrophication. This has triggered expensive international man- agement efforts. Some of these efforts are impeded by natural processes such as nitrogen-fixing cyanobacteria blooms that add bioavailable nitrogen to the already over-fertilised system and thereby enhance primary production, export of organic matter to depth and associated oxygen consumption. Controls of cyanobacteria blooms are not comprehensively understood and this 5 adds to the uncertainty of model-based projections into the warming future of the Baltic Sea. Here we review our current un- derstanding of cyanobacteria bloom dynamics. We summarise published field studies, laboratory experiments and dissect the basic principles ingrained in state-of-the-art coupled ocean-circulation biogeochemical models. 1 Introduction 10 The Baltic Sea is a shallow, brackish and semi-enclosed sea in central Northern Europe. It’s drainage basin is densely populated by around 84 million people. Their footprint exerts pressure on the ecosystem (Unger et al., 2013; Hannerz and Destouni, 2006). One, particularly severe, problem is eutrophication. Antropogenic nutrients enter the Baltic Sea via rivers and air-sea fluxes (Helcom, 2018, 2014). -
Stimulated Bacterioplankton Growth and Selection for Certain Bacterial Taxa in the Vicinity of the Ctenophore Mnemiopsis Leidyi
ORIGINAL RESEARCH ARTICLE published: 16 August 2012 doi: 10.3389/fmicb.2012.00302 Stimulated bacterioplankton growth and selection for certain bacterial taxa in the vicinity of the ctenophore Mnemiopsis leidyi Julie Dinasquet 1,2, Lena Granhag 3,4*andLasse Riemann 2 1 Department of Natural Sciences, Linnaeus University, Kalmar, Sweden 2 Marine Biological Section, University of Copenhagen, Helsingør, Denmark 3 Department of Marine Ecology-Kristineberg, University of Gothenburg, Gothenburg, Sweden 4 Department of Shipping and Marine Technology, Chalmers University of Technology, Gothenburg, Sweden Edited by: Episodic blooms of voracious gelatinous zooplankton, such as the ctenophore Kam W. Tang, Virginia Institute of Mnemiopsis leidyi, affect pools of inorganic nutrients and dissolved organic carbon Marine Science, USA by intensive grazing activities and mucus release. This will potentially influence Reviewed by: bacterioplankton activity and community composition, at least at local scales; however, Hans-Peter Grossart, IGB-Leibniz-Institute of Freshwater available studies on this are scarce. In the present study we examined effects of M. leidyi Ecology and Inland Fisheries, on bacterioplankton growth and composition in incubation experiments. Moreover, we Germany examined community composition of bacteria associated with the surface and gut Samantha L. Bickel, Virginia Institute of M. leidyi. High release of ammonium and high bacterial growth was observed in of Marine Science, USA the treatments with M. leidyi relative to controls. Deep 454 pyrosequencing of 16 S *Correspondence: Lena Granhag, Department of rRNA genes showed specific bacterial communities in treatments with M. leidyi as Marine Ecology-Kristineberg, well as specific communities associated with M. leidyi tissue and gut. In particular, University of Gothenburg, members of Flavobacteriaceae were associated with M. -
Rhythmicity of Coastal Marine Picoeukaryotes, Bacteria and Archaea Despite Irregular Environmental Perturbations
Rhythmicity of coastal marine picoeukaryotes, bacteria and archaea despite irregular environmental perturbations Stefan Lambert, Margot Tragin, Jean-Claude Lozano, Jean-François Ghiglione, Daniel Vaulot, François-Yves Bouget, Pierre Galand To cite this version: Stefan Lambert, Margot Tragin, Jean-Claude Lozano, Jean-François Ghiglione, Daniel Vaulot, et al.. Rhythmicity of coastal marine picoeukaryotes, bacteria and archaea despite irregular environmental perturbations. ISME Journal, Nature Publishing Group, 2019, 13 (2), pp.388-401. 10.1038/s41396- 018-0281-z. hal-02326251 HAL Id: hal-02326251 https://hal.archives-ouvertes.fr/hal-02326251 Submitted on 19 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Rhythmicity of coastal marine picoeukaryotes, bacteria and archaea despite irregular environmental perturbations Stefan Lambert, Margot Tragin, Jean-Claude Lozano, Jean-François Ghiglione, Daniel Vaulot, François-Yves Bouget, Pierre Galand To cite this version: Stefan Lambert, Margot Tragin, Jean-Claude Lozano, Jean-François Ghiglione, Daniel -
Nitrogen Fixation Among Marine Bacterioplankton
Nitrogen Fixation Among Marine Bacterioplankton Kjärstin H. Boström Department of Biology & Environmental Science University of Kalmar Sweden 2006 AKADEMISK AVHANDLING som för avläggande av Filosofie Doktorsexamen vid Naturvetenskapliga Fakulteten vid högskolan i Kalmar kommer att offentligt försvaras fredagen den 20 januari 2006 Doctoral thesis 2006 University of Kalmar Faculty of Natural Sciences Dissertation series No. 26 Kjärstin H. Boström Department of Biology and Environmental Science University of Kalmar, SE 391 82 Kalmar, Sweden Supervisor: Dr. Lasse Riemann, Assistant Professor Department of Biology and Environmental Science University of Kalmar, SE 391 82 Kalmar, Sweden Opponent: Dr. Grieg Steward, Assistant Professor Department of Oceanography University of Hawaii, Honolulu, HI 96822, USA 2006 Kjärstin H. Boström ISBN: 91-89584-52-X, ISSN: 1650-2779, pp. 1-26 Printed by: Högskolans tryckeri, Kalmar 2 To Frida & Emma 3 TABLE OF CONTENTS TABLE OF CONTENTS.............................................................................................................4 ABSTRACT...................................................................................................................................5 SVENSK SAMMANFATTNING...............................................................................................6 LIST OF PUBLICATIONS.........................................................................................................8 INTRODUCTION ........................................................................................................................9 -
Isolation and Identification of Denitrifying Bacteria and Its Growth and Metabolism Characteristics
2017 2nd International Conference on Environmental Science and Energy Engineering (ICESEE 2017) ISBN: 978-1-60595-417-2 Isolation and Identification of Denitrifying Bacteria and Its Growth and Metabolism Characteristics Xin-ran JIANG, Dian JIAO, Lei ZHANG and Li-na ZHENG College of Marine Technology and Environmental, Dalian Ocean University, Dalian 116023, China Keywords: Denitrification, Nitrate, Isolation and identification, Activity research. Abstract. A denitrifying bacterium DN20 was isolated from the biofilm after centrifugation in the aquaculture purification system of a aquaculture base, and the denitrification characteristics of the strain were further studied. The strain was identified by 16S rDNA sequence analysis, the effects of temperature, salinity, pH, substrate concentration and C/N ratio on denitrification activity were studied. Introduction Denitrifying bacteria are a kind of bacteria that can cause denitrification. Biological denitrification is the use of denitrifying bacteria, nitrate nitrogen into gaseous products to remove, is considered to be the most economical and effective way of nitrogen removal [1]-[2]. The application of denitrifying bacteria and the removal of nitrate in water have become the research focus[3]-[5], many methods have been reported [6]-[8]. In recent years, some studies on salt tolerant and halophilic denitrifying bacteria have been reported abroad [9]-[10]. In this study, the sludge from the culture pond was taken as the main separation source, and the enrichment, separation and purification were carried out.To obtain a highly efficient nitrate removal ability of denitrifying bacteria, named strain DN20. The aim of this study is to provide effective bacteria source for practical application of nitrate-N treatment in aquaculture water. -
Ocean Iron Fertilization Experiments – Past, Present, and Future Looking to a Future Korean Iron Fertilization Experiment in the Southern Ocean (KIFES) Project
Biogeosciences, 15, 5847–5889, 2018 https://doi.org/10.5194/bg-15-5847-2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 3.0 License. Reviews and syntheses: Ocean iron fertilization experiments – past, present, and future looking to a future Korean Iron Fertilization Experiment in the Southern Ocean (KIFES) project Joo-Eun Yoon1, Kyu-Cheul Yoo2, Alison M. Macdonald3, Ho-Il Yoon2, Ki-Tae Park2, Eun Jin Yang2, Hyun-Cheol Kim2, Jae Il Lee2, Min Kyung Lee2, Jinyoung Jung2, Jisoo Park2, Jiyoung Lee1, Soyeon Kim1, Seong-Su Kim1, Kitae Kim2, and Il-Nam Kim1 1Department of Marine Science, Incheon National University, Incheon 22012, Republic of Korea 2Korea Polar Research Institute, Incheon 21990, Republic of Korea 3Woods Hole Oceanographic Institution, MS 21, 266 Woods Hold Rd., Woods Hole, MA 02543, USA Correspondence: Il-Nam Kim ([email protected]) Received: 2 November 2016 – Discussion started: 15 November 2016 Revised: 16 August 2018 – Accepted: 18 August 2018 – Published: 5 October 2018 Abstract. Since the start of the industrial revolution, hu- providing insight into mechanisms operating in real time and man activities have caused a rapid increase in atmospheric under in situ conditions. To maximize the effectiveness of carbon dioxide (CO2) concentrations, which have, in turn, aOIF experiments under international aOIF regulations in the had an impact on climate leading to global warming and future, we therefore suggest a design that incorporates sev- ocean acidification. Various approaches have been proposed eral components. (1) Experiments conducted in the center of to reduce atmospheric CO2. The Martin (or iron) hypothesis an eddy structure when grazing pressure is low and silicate suggests that ocean iron fertilization (OIF) could be an ef- levels are high (e.g., in the SO south of the polar front during fective method for stimulating oceanic carbon sequestration early summer). -
Bacteria and Cyanobacteria
Bacteria and Cyanobacteria Bacteria represent an amazingly diverse group of organisms that are of great ecological, economic, agricultural, and medical importance. Cyanobacteria, also known as blue-green bacteria, contain thylakoid membranes with photosynthetic pigments (chlorophyll a and phycobilins) and are capable to oxygenic photosynthesis. Purple bacteria and green sulfur bacteria occupy habitats in the presence of hydrogen sulfide and oxidize and release sulfur gas rather than oxygen. Nitrogen fixing and denitrifying bacteria have an exceptionally important role in nitrogen cycling in terrestrial plant communities. Many vascular plants such as legumes and an aquatic fern have a symbiotic relationship with nitrogen fixing bacteria. Bacteria are also important carbon recyclers in the environment by assisting in the decomposition of dead organisms. Bacteria are considered Prokaryotes (before the nucleus) and represent a lineage that is ancient and possess a number of novel features. Bacteria generally lack internal compartmentalized organelles that are bound by membranes. Organelles such as Golgi bodies (dictyosomes), chloroplasts, mitochondria, and nuclei are regarded as unique to Eukaryotic (true nucleus) organisms. Recently, evolutionary biologists have determined that two major kingdoms of bacteria are present on the planet. Eubacteria represent the true bacteria and contain many of the groups that we are most familiar with such as cyanobacteria. E. coli, Streptococcus, and Rhizobium. Archaebacteria represent an ancient lineage whose members occupy rather inhospitable habitats such as deep sea thermal vents and miles deep in the Earth=s crust, but are also found in more normal environments. The objective of this lab is to examine the morphology, structure, and ecology of bacteria and cyanobacteria. -
Factors Controlling the Community Structure of Picoplankton in Contrasting Marine Environments
Biogeosciences, 15, 6199–6220, 2018 https://doi.org/10.5194/bg-15-6199-2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License. Factors controlling the community structure of picoplankton in contrasting marine environments Jose Luis Otero-Ferrer1, Pedro Cermeño2, Antonio Bode6, Bieito Fernández-Castro1,3, Josep M. Gasol2,5, Xosé Anxelu G. Morán4, Emilio Marañon1, Victor Moreira-Coello1, Marta M. Varela6, Marina Villamaña1, and Beatriz Mouriño-Carballido1 1Departamento de Ecoloxía e Bioloxía Animal, Universidade de Vigo, Vigo, Spain 2Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas, Barcelona, Spain 3Departamento de Oceanografía, Instituto de investigacións Mariñas (IIM-CSIC), Vigo, Spain 4King Abdullah University of Science and Technology (KAUST), Read Sea Research Center, Biological and Environmental Sciences and Engineering Division, Thuwal, Saudi Arabia 5Centre for Marine Ecosystem Research, School of Sciences, Edith Cowan University, WA, Perth, Australia 6Centro Oceanográfico de A Coruña, Instituto Español de Oceanografía (IEO), A Coruña, Spain Correspondence: Jose Luis Otero-Ferrer ([email protected]) Received: 27 April 2018 – Discussion started: 4 June 2018 Revised: 4 October 2018 – Accepted: 10 October 2018 – Published: 26 October 2018 Abstract. The effect of inorganic nutrients on planktonic as- played a significant role. Nitrate supply was the only fac- semblages has traditionally relied on concentrations rather tor that allowed the distinction among the ecological -
Isolation and Characterization of a Novel Denitrifying Bacterium with High Nitrate Removal: Pseudomonas Stutzeri
Iran. J. Environ. Health. Sci. Eng., 2010, Vol. 7, No. 4, pp. 313-318 ISOLATION AND CHARACTERIZATION OF A NOVEL DENITRIFYING BACTERIUM WITH HIGH NITRATE REMOVAL: PSEUDOMONAS STUTZERI *1A. Rezaee, 2H. Godini, 1S. Dehestani, 1S. Kaviani 1 Department of Environmental Health, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran 2 Department of Environmental Health, School of Public Health, Lorestan University of Medical Sciences, Khoramabbad, Iran Received 16 August 2009; revised 13 Jully 2010; accepted 20 August 2010 ABSTRACT The aim of this study was to isolate and characterize a high efficiency denitrifier bacterium for reducing nitrate in wastewater. Six denitrifier bacteria with nitrate removal activities were isolated from a petrochemical industry effluent with high salinity and high nitrogen concentrations without treatment. The isolated bacteria were tested for nitrate reomoval activity. One of the bacterium displayed the highest reduction of nitrate. The strain was preliminarily identified using biochemical tests and further identified based on similarity of PCR-16S rRNA using universal primers. Biochemical and molecular experiments showed that the best bacterium with high nitrate removal potential was Pseudomonas stutzeri, a member of the α subclass of the class Proteobacteria. The extent of nitrate removal efficiency was 99% at 200 mg/L NO3 and the nitrite content of the effluent was in the prescribed limit. The experiments showed the ability of Pseudomonas stutzeri to rapidly remove nitrate under anoxic conditions. The strain showed to be potentially good candidate for biodenitrification of high nitrate solutions. Key words: Pseudomonas stutzeri; Denitrification; Polymerase Chain Reaction, Isolation; Characterization INTRODUCTION Biological denitrification is a process carried to respire anaerobically using nitrogen oxides as out by numerous genera of bacteria. -
Enrichment of Denitrifying Bacterial Community Using Nitrite As an Electron Acceptor for Nitrogen Removal from Wastewater
water Article Enrichment of Denitrifying Bacterial Community Using Nitrite as an Electron Acceptor for Nitrogen Removal from Wastewater Renda Yao, Quan Yuan and Kaijun Wang * State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; [email protected] (R.Y.); [email protected] (Q.Y.) * Correspondence: [email protected]; Tel.: +86-10-6278-9411 Received: 31 October 2019; Accepted: 17 December 2019; Published: 20 December 2019 Abstract: This work aimed to enrich a denitrifying bacterial community for economical denitrification via nitrite to provide the basic objects for enhancing nitrogen removal from wastewater. A sequencing batch reactor (SBR) with continuous nitrite and acetate feeding was operated by reasonably adjusting the supply rate based on the reaction rate, and at a temperature of 20 2 C, pH of 7.5 0.2, ± ◦ ± and dissolved oxygen (DO) of 0 mg/L. The results revealed that the expected nitrite concentration can be achieved during the whole anoxic reaction period. The nitrite denitrification rate of nitrogen removal from synthetic wastewater gradually increased from approximately 10 mg/(L h) to 275.35 mg/(L h) over 12 days (the specific rate increased from 3.83 mg/(g h) to 51.80 mg/(g h)). Correspondingly, the chemical oxygen demand/nitrogen (COD/N) ratio of reaction decreased from 7.9 to 2.7. Both nitrite and nitrate can be used as electron acceptors for denitrification. The mechanism of this operational mode was determined via material balance analysis of substrates in a typical cycle. High-throughput sequencing showed that the main bacterial community was related to denitrification, which accounted for 84.26% in the cultivated sludge, and was significantly higher than the 2.16% in the seed sludge. -
Influence of Denitrification in Aquatic Sediments on the Nitrogen Content of Natural Waters J
6 / c__ Influence of denitrification in aquatic sediments on the nitrogen content of natural waters J. F. van Kessel Influence of denitrification in aquatic sedimentso n the nitrogen content of naturalwater s Proefschrift ter verkrijging van degraa d van doctor in de landbouwwetenschappen, op gezagva n derecto r magnificus, dr. ir. J. P.H .va n derWant , hoogleraar in devirologie , in het openbaar te verdedigen opvrijda g 8oktobe r 1976 desnamiddag s te vier uur in de aula van de Landbouwhogeschool te Wageningen Centrefor Agriculture Publishingand Documentation Wageningen —1976 Abstract Kessel, J. F. van (1976) Influence of denitrification in aquatic sediments on the nitrogen content of natural waters. Agric. Res. Rep. (Versl. landbouwk. Onderz.) 858. Pudoc, Wageningen. ISBN 90 220062 04 . (vi)+ 5 2 p.: 12figs ; 14 tables;Eng .an d Dutch summaries. Forms part of a doctoral thesis, Wageningen ((vii) + 104 p., 43 figs, 28 tables). Other parts are published in Water Research,bu t are summarized in the Agric.Res .Rep . A study was made of microbiological processes, particularly denitrification, leading to the elimi nation of nitrogen from natural waters. As denitrification is an anaerobic process and natural waters mostly contain dissolved oxygen, this process was suggested to proceed in the anaerobic sediment at the bottom of natural waters. Two widely differing types of aquatic sediments were tested in the laboratory for effects of temperature, oxygen and nitrate in the overlying water, and thickness of the sediment layer on the rate of denitrification. During disappearance of nitrate from the overlying water, by far most of thenitrat e was converted to molecular nitrogen by denitrification and only a small part of the nitrate was utilized for cell synthesis (immobilization).