Making Competition Work in Electricity

Total Page:16

File Type:pdf, Size:1020Kb

Making Competition Work in Electricity Making Competition Work in electricity SALLY HUNT John Wiley & Sons, Inc. Making Competition Work in electricity Founded in 1807, John Wiley & Sons is the oldest independent publishing company in the United States. With offices in North America, Europe, Australia, and Asia, Wiley is globally committed to developing and marketing print and electronic products and services for our customers’ professional and personal knowledge and understanding. The Wiley Finance series contains books written specifically for finance and investment professionals as well as sophisticated individual investors and their financial advisors. Book topics range from portfolio management to e-commerce, risk management, financial engineering, valuation and financial instrument analysis, as well as much more. For a list of available titles, please visit our Web site at www.WileyFinance.com. Making Competition Work in electricity SALLY HUNT John Wiley & Sons, Inc. This book is printed on acid-free paper. ➇ Copyright © 2002 by Sally Hunt. All rights reserved. Published by John Wiley & Sons, Inc., New York. Published simultaneously in Canada. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4744. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 605 Third Avenue, New York, NY 10158-0012, (212) 850-6011, fax (212) 850-6008, E-Mail: [email protected]. This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold with the understanding that the publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional person should be sought. Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books. For more information about Wiley products visit our Web site at www.wiley.com. ISBN 0-471-22098-1 Printed in the United States of America. 10987654321 foreword ere is the book I’ve been looking for to guide me through the devilishly Hcomplicated experience of electric industry deregulation, drawing on the author’s direct involvement in this process in several of the countries that have undergone it—none of which, significantly, has seriously considered reversing the process. Some of its judgments are wondrously pithy. California allowed itself to get into the dreadful position of designing its trading arrangements so as to rely on demand response, and then hav- ing customer prices frozen. There was no transition: it went cold turkey into a world of no installed reserve requirement, no demand response, no intelligent price caps, no anything. Equally, some of its recommendations: FERC should just hire Bill Hogan to set out the coherent set of trading arrangements that he has been advocating indefatigably for a decade, and drop all the paraphernalia of wheeling. More important, she explains why. Most valuable of all, she presents a clear, explanatory road map, a de- tailed exposition of the order in which to proceed, step-by-step, which steps are essential, which optional, which worth taking whether or not we pro- ceed to the next one, which not. Some of the essential steps, such as pricing transmission services efficiently, are elegantly described; some, such as the overwhelming importance of instituting efficient pricing, amazingly simple. An admirable and indispensable guide; detailed, annotated and au- thoritative. ALFRED E. KAHN Former Chairman, New York State Public Service Commission Former Chairman, Civil Aeronautics Board Professor Emeritus, Cornell University v preface wanted to write this book. It seemed a fitting way to begin retirement, al- Ilowing me the luxury of concentrating on one thing, discussing complex issues with many really smart people, pulling together everything I have learned about the electric industry for nearly 30 years, and expanding it to develop a workable solution to the current impasse in the United States. It has been more difficult than anything I have ever done, but I have enjoyed it immensely. The Edison Electric Institute (EEI), at the behest of its then chairman, John Rowe, requested the book and partially supported the writing of it, but this is not an industry position paper. The members knew my views on the issues, which I had expressed in speeches and in a previous book. No EEI member was ever going to agree with everything I would say, and they do not; but the feeling was that the country needed a coherent intellectual framework to work from, and no one but the industry was going to take on the task of providing one. There are so many people to thank for their knowledge, their detailed attention, and their prose. Paul Joskow, who has been a demanding and generous colleague for a quarter century, read two of the early drafts and commented extensively. His intellectual contribution to the book is so great that it dwarfs all others. It was he who suggested dividing it into two parts, which made it a much better book although it killed three weeks. Alfred Kahn, everyone’s favorite guru, and mine, lent his time to reason with me about the federal/state question. Graham Shuttleworth of NERA London, the coauthor of my previous book, and now sadly too far away for contin- ued collaboration, read and improved it; he also provided information for the U.K. appendices. Among my NERA U.S. colleagues, the most special thanks must go to Hamish Fraser who worked with me constantly during the writing of the book. I no longer know which paragraphs he wrote and which I did. He has done a sterling job of keeping me honest, cutting the waffle, also drafting the trading arrangements and transmission sections. (Hamish’s training ground was in the New Zealand and the New York trading arrangements— two success stories; while I participated in the design of old U.K. Pool, now vii viii PREFACE regrettably demised, and in the contorted California process, which nearly demised me.) Hethie Parmesano drafted the retail sections and, as always, returned comments and provided examples each time I changed my mind about what I thought. Jeff Makholm explained gas deregulation, which was a turning point in the analysis. Carolyn Berry and Kristina Sepetys provided information on California. Jonathan Falk is my source for analogies, and also for market power and environmental issues. Gene Meehan, Kurt Strunk, Karl McDermott, Oscar Arnedillo, Chantral LaCasse, and Andy Joskow helped with the thinking, and Veronica Irastorza, Willis Geffert, and Veronica Lambrechts filled in many of the details. Stephanie Godkin did the graphics, David Tabak taught me about liquid and efficient markets, Bill Taylor about telephone, Lou Guth about alcohol, and Fred Dunbar about roads. Dick Rapp, the president of NERA, originally suggested writ- ing the book and has provided moral support, office space, and the time of the NERA staff. David Owens of EEI offered valuable assistance and provided Mathew Morey and Ken Linder as readers. They discussed it with me chapter by endless chapter, but they never tried to censor. Elizabeth Moler, the former Chair of FERC, provided detailed and illuminating comments; Tom Rose and Mike McCall filled me in on Texas. In these restructuring matters, working with clients on real problems has always been my major source of learning. Since 1996 when my last book was published, I have collaborated principally, and over long periods, in New Jersey with the two Franks—Cassidy and Delany—at PSE&G, in Mexico with the Energy Ministry under Luis Tellez, and in China with Noureddine Berrah for the World Bank. Thanks also to Robert Marritz, Charles Stalon, Laura Manz, Tony Robinson, Jose-Luis Aburto, Larry Ruff, Fiona Woolf, Jim Barker, and Daniel Fessler. My son, Mark Streiter, acted as a target reader on the early drafts, forcing me to greater clarity. And finally, sincere acknowledgments to Bill Hogan, who has made his thinking available to all of us, both on his Web site and in person, and has shaped so much of the progress in this area. Thank you all very much. SALLY HUNT contents CHAPTER 1 Introduction 1 The Electric Industry 2 The Case for Competition 3 The United States 9 PART ONE The Standard Prescription 15 CHAPTER 2 The Essential Aspects of Electricity 17 Functions of the Electric Industry 17 Traditional Organization of the Industry 24 Key Factors Specific to the Electric Industry 29 CHAPTER 3 Reforming the Industry 37 Candidates for Competition 37 Other Objectives and Constraints 38 Four Models for Industry Structure 41 Restructuring Existing Companies 59 Ensuring Competitive Markets 67 CHAPTER 4 Requirements for Competition: Demand Side 71 The Role of Demand in Markets 71 Demand Responsiveness 74 Inelastic Demand and Price Caps 85 CHAPTER 5 Requirements for Competition: Supply Side 89 Many Sellers 89 How Does Market Power Work? 90 ix x CONTENTS Newly Deregulated Markets 95 Market Power Solutions 96 Price Caps, Bidding Restrictions, and Profit Controls 101 Small Markets, Big Plants,
Recommended publications
  • Work and Energy Summary Sheet Chapter 6
    Work and Energy Summary Sheet Chapter 6 Work: work is done when a force is applied to a mass through a displacement or W=Fd. The force and the displacement must be parallel to one another in order for work to be done. F (N) W =(Fcosθ)d F If the force is not parallel to The area of a force vs. the displacement, then the displacement graph + W component of the force that represents the work θ d (m) is parallel must be found. done by the varying - W d force. Signs and Units for Work Work is a scalar but it can be positive or negative. Units of Work F d W = + (Ex: pitcher throwing ball) 1 N•m = 1 J (Joule) F d W = - (Ex. catcher catching ball) Note: N = kg m/s2 • Work – Energy Principle Hooke’s Law x The work done on an object is equal to its change F = kx in kinetic energy. F F is the applied force. 2 2 x W = ΔEk = ½ mvf – ½ mvi x is the change in length. k is the spring constant. F Energy Defined Units Energy is the ability to do work. Same as work: 1 N•m = 1 J (Joule) Kinetic Energy Potential Energy Potential energy is stored energy due to a system’s shape, position, or Kinetic energy is the energy of state. motion. If a mass has velocity, Gravitational PE Elastic (Spring) PE then it has KE 2 Mass with height Stretch/compress elastic material Ek = ½ mv 2 EG = mgh EE = ½ kx To measure the change in KE Change in E use: G Change in ES 2 2 2 2 ΔEk = ½ mvf – ½ mvi ΔEG = mghf – mghi ΔEE = ½ kxf – ½ kxi Conservation of Energy “The total energy is neither increased nor decreased in any process.
    [Show full text]
  • Multidisciplinary Design Project Engineering Dictionary Version 0.0.2
    Multidisciplinary Design Project Engineering Dictionary Version 0.0.2 February 15, 2006 . DRAFT Cambridge-MIT Institute Multidisciplinary Design Project This Dictionary/Glossary of Engineering terms has been compiled to compliment the work developed as part of the Multi-disciplinary Design Project (MDP), which is a programme to develop teaching material and kits to aid the running of mechtronics projects in Universities and Schools. The project is being carried out with support from the Cambridge-MIT Institute undergraduate teaching programe. For more information about the project please visit the MDP website at http://www-mdp.eng.cam.ac.uk or contact Dr. Peter Long Prof. Alex Slocum Cambridge University Engineering Department Massachusetts Institute of Technology Trumpington Street, 77 Massachusetts Ave. Cambridge. Cambridge MA 02139-4307 CB2 1PZ. USA e-mail: [email protected] e-mail: [email protected] tel: +44 (0) 1223 332779 tel: +1 617 253 0012 For information about the CMI initiative please see Cambridge-MIT Institute website :- http://www.cambridge-mit.org CMI CMI, University of Cambridge Massachusetts Institute of Technology 10 Miller’s Yard, 77 Massachusetts Ave. Mill Lane, Cambridge MA 02139-4307 Cambridge. CB2 1RQ. USA tel: +44 (0) 1223 327207 tel. +1 617 253 7732 fax: +44 (0) 1223 765891 fax. +1 617 258 8539 . DRAFT 2 CMI-MDP Programme 1 Introduction This dictionary/glossary has not been developed as a definative work but as a useful reference book for engi- neering students to search when looking for the meaning of a word/phrase. It has been compiled from a number of existing glossaries together with a number of local additions.
    [Show full text]
  • Introduction to Electrical and Computer Engineering International
    Introduction to Electrical and Computer Engineering Basic Circuits and Simulation Electrical & Computer Engineering Basic Circuits and Simulation (1 of 22) International System of Units (SI) • Length: meter (m) • SI Prefixes (power of 10) • Mass: kilogram (kg) – 1012 Tera (T) • Time: second (s) – 109 Giga (G) – 106 Mega (M) • Current: Ampere (A) – 103 kilo (k) • Voltage: Volt (V) – 10-3 milli (m) • Temperature: Degrees – 10-6 micro (µ) Kelvin (ºK) – 10-9 nano (n) – 10-12 pico (p) Electrical & Computer Engineering Basic Circuits and Simulation (2 of 22) 1 SI Examples • A few examples: • 1 Gbit = 109 bits, or 103106 bits, or one thousand million bits – 10-5 s = 0.00001 s; use closest SI prefix • 1×10-5 s = 10 × 10-6 s or 10 μs or • 1×10-5 s = 0.01 × 10-3 s or 0.01 ms Electrical & Computer Engineering Basic Circuits and Simulation (3 of 22) Typical Ranges Voltage (V) Current (A) • 10-8 Antenna of radio • 10-12 Nerve cell in brain receiver (10 nV) • 10-7 Integrated circuit • 10-3 EKG – voltage memory cell (0.1 µA) produced by heart • 10×10-3 Threshold of • 1.5 Flashlight battery sensation in humans • 12 Car battery • 100×10-3 Fatal to humans • 110 House wiring (US) • 1-2 Typical Household • 220 House wiring (Europe) appliance • 107 Lightning bolt (10 MV) • 103 Large industrial appliance • 104 Lightning bolt Electrical & Computer Engineering Basic Circuits and Simulation (4 of 22) 2 Electrical Quantities • Electric Charge (positive or negative) – (Coulombs, C) - q – Electron: 1.602 x 10 • Current (Ampere or Amp, A) – i or I – Rate of charge flow, – 1 1 Electrical & Computer Engineering Basic Circuits and Simulation (5 of 22) Electrical Quantities (continued) • Voltage (Volts, V) – w=energy required to move a given charge between two points (Joule, J) – – 1 1 1 Joule is the work done by a constant 1 N force applied through a 1 m distance.
    [Show full text]
  • Kinetic Energy and Work
    Kinetic Energy and Work 8.01 W06D1 Today’s Readings: Chapter 13 The Concept of Energy and Conservation of Energy, Sections 13.1-13.8 Announcements Problem Set 4 due Week 6 Tuesday at 9 pm in box outside 26-152 Math Review Week 6 Tuesday at 9 pm in 26-152 Kinetic Energy • Scalar quantity (reference frame dependent) 1 K = mv2 ≥ 0 2 • SI unit is joule: 1J ≡1kg ⋅m2/s2 • Change in kinetic energy: 1 2 1 2 1 2 2 2 1 2 2 2 ΔK = mv f − mv0 = m(vx, f + vy, f + vz, f ) − m(vx,0 + vy,0 + vz,0 ) 2 2 2 2 Momentum and Kinetic Energy: Single Particle Kinetic energy and momentum for a single particle are related by 2 1 2 p K = mv = 2 2m Concept Question: Pushing Carts Consider two carts, of masses m and 2m, at rest on an air track. If you push one cart for 3 seconds and then the other for the same length of time, exerting equal force on each, the kinetic energy of the light cart is 1) larger than 2) equal to 3) smaller than the kinetic energy of the heavy car. Work Done by a Constant Force for One Dimensional Motion Definition: The work W done by a constant force with an x-component, Fx, in displacing an object by Δx is equal to the x- component of the force times the displacement: W = F Δx x Concept Q.: Pushing Against a Wall The work done by the contact force of the wall on the person as the person moves away from the wall is 1.
    [Show full text]
  • Feeling Joules and Watts
    FEELING JOULES AND WATTS OVERVIEW & PURPOSE Power was originally measured in horsepower – literally the number of horses it took to do a particular amount of work. James Watt developed this term in the 18th century to compare the output of steam engines to the power of draft horses. This allowed people who used horses for work on a regular basis to have an intuitive understanding of power. 1 horsepower is about 746 watts. In this lab, you’ll learn about energy, work and power – including your own capacity to do work. Energy is the ability to do work. Without energy, nothing would grow, move, or ​ change. Work is using a force to move something over some distance. ​ ​ work = force x distance Energy and work are measured in joules. One joule equals the work done (or energy ​ ​ used) when a force of one newton moves an object one meter. One newton equals the ​ ​ force required to accelerate one kilogram one meter per second squared. How much energy would it take to lift a can of soda (weighing 4 newtons) up two meters? work = force x distance = 4N x 2m = 8 joules Whether you lift the can of soda quickly or slowly, you are doing 8 joules of work (using 8 joules of energy). It’s often helpful, though, to measure how quickly we are ​ ​ doing work (or using energy). Power is the amount of work (or energy used) in a given ​ ​ amount of time. http://www.rdcep.org/demo-collection page 1 work power = time Power is measured in watts. One watt equals one joule per second.
    [Show full text]
  • Electric Potential
    Electric Potential • Electric Potential energy: b U F dl elec elec a • Electric Potential: b V E dl a Field is the (negative of) the Gradient of Potential dU dV F E x dx x dx dU dV F UF E VE y dy y dy dU dV F E z dz z dz In what direction can you move relative to an electric field so that the electric potential does not change? 1)parallel to the electric field 2)perpendicular to the electric field 3)Some other direction. 4)The answer depends on the symmetry of the situation. Electric field of single point charge kq E = rˆ r2 Electric potential of single point charge b V E dl a kq Er ˆ r 2 b kq V rˆ dl 2 a r Electric potential of single point charge b V E dl a kq Er ˆ r 2 b kq V rˆ dl 2 a r kq kq VVV ba rrba kq V const. r 0 by convention Potential for Multiple Charges EEEE1 2 3 b V E dl a b b b E dl E dl E dl 1 2 3 a a a VVVV 1 2 3 Charges Q and q (Q ≠ q), separated by a distance d, produce a potential VP = 0 at point P. This means that 1) no force is acting on a test charge placed at point P. 2) Q and q must have the same sign. 3) the electric field must be zero at point P. 4) the net work in bringing Q to distance d from q is zero.
    [Show full text]
  • Maximum Frictional Dissipation and the Information Entropy of Windspeeds
    J. Non-Equilib. Thermodyn. 2002 Vol. 27 pp. 229±238 Á Á Maximum Frictional Dissipation and the Information Entropy of Windspeeds Ralph D. Lorenz Lunar and Planetary Lab, University of Arizona, Tucson, AZ, USA Communicated by A. Bejan, Durham, NC, USA Registration Number 926 Abstract A link is developed between the work that thermally-driven winds are capable of performing and the entropy of the windspeed history: this information entropy is minimized when the minimum work required to transport the heat by wind is dissipated. When the system is less constrained, the information entropy of the windspeed record increases as the windspeed ¯uctuates to dissipate its available work. Fluctuating windspeeds are a means for the system to adjust to a peak in entropy production. 1. Introduction It has been long-known that solar heating is the driver of winds [1]. Winds represent the thermodynamic conversion of heat into work: this work is expended in accelerat- ing airmasses, with that kinetic energy ultimately dissipated by turbulent drag. Part of the challenge of the weather forecaster is to predict the speed and direction of wind. In this paper, I explore how the complexity of wind records (and more generally, of velocity descriptions of thermally-driven ¯ow) relates to the available work and the frictional or viscous dissipation. 2. Zonal Energy Balance Two linked heat ¯uxes drive the Earth's weather ± the vertical transport of heat upwards, and the transport of heat from low to high latitudes. In the present paper only horizontal transport is considered, although the concepts may be extended by analogy into the vertical dimension.
    [Show full text]
  • Work-Energy for a System of Particles and Its Relation to Conservation Of
    Conservation of Energy, the Work-Energy Principle, and the Mechanical Energy Balance In your study of engineering and physics, you will run across a number of engineering concepts related to energy. Three of the most common are Conservation of Energy, the Work-Energy Principle, and the Mechanical Engineering Balance. The Conservation of Energy is treated in this course as one of the overarching and fundamental physical laws. The other two concepts are special cases and only apply under limited conditions. The purpose of this note is to review the pedigree of the Work-Energy Principle, to show how the more general Mechanical Energy Bal- ance is developed from Conservation of Energy, and finally to describe the conditions under which the Mechanical Energy Balance is preferred over the Work-Energy Principle. Work-Energy Principle for a Particle Consider a particle of mass m and velocity V moving in a gravitational field of strength g sub- G ject to a surface force Rsurface . Under these conditions, writing Conservation of Linear Momen- tum for the particle gives the following: d mV= R+ mg (1.1) dt ()Gsurface Forming the dot product of Eq. (1.1) with the velocity of the particle and rearranging terms gives the rate form of the Work-Energy Principle for a particle: 2 dV⎛⎞ d d ⎜⎟mmgzRV+=() surfacei G ⇒ () EEWK += GP mech, in (1.2) dt⎝⎠2 dt dt Gravitational mechanical Kinetic potential power into energy energy the system Recall that mechanical power is defined as WRmech, in= surfaceiV G , the dot product of the surface force with the velocity of its point of application.
    [Show full text]
  • Work-Force Ageing in OECD Countries
    CHAPTER 4 Work-force ageing in OECD countries A. INTRODUCTION AND MAIN FINDINGS force ageing, but offset part of the projected fall in labour force growth. 1. Introduction OECD labour markets have adapted to signi®- cant shifts in the age structure of the labour force in Expanding the range and quality of employ- the past. However, the ageing projected over the ment opportunities available to older workers will next several decades is outside the range of recent become increasingly important as populations age historical experience. Hence, it is uncertain how eas- in OECD countries. Accordingly, there is a need to ily such a large increase in the supply of older work- understand better the capacity of labour markets to ers can be accommodated, including the implica- adapt to ageing work forces, including how it can be tions for the earnings and employment of older enhanced. workers. Both the supply and demand sides of the There is only weak evidence that the earnings labour market will be important. It is likely that pen- of older workers are lower relative to younger work- sion programmes and social security systems in ers in countries where older workers represent a many OECD countries will be reformed so that larger share of total employment. This may indicate existing incentives for early retirement will be that workers of different ages are close substitutes reduced or eliminated. Strengthening ®nancial in production, so that an increased supply of older incentives to extend working life, together with a workers can be employed without a signi®cant fall in large increase in the older population and improve- their relative wages.
    [Show full text]
  • 3. Energy, Heat, and Work
    3. Energy, Heat, and Work 3.1. Energy 3.2. Potential and Kinetic Energy 3.3. Internal Energy 3.4. Relatively Effects 3.5. Heat 3.6. Work 3.7. Notation and Sign Convention In these Lecture Notes we examine the basis of thermodynamics – fundamental definitions and equations for energy, heat, and work. 3-1. Energy. Two of man's earliest observations was that: 1)useful work could be accomplished by exerting a force through a distance and that the product of force and distance was proportional to the expended effort, and 2)heat could be ‘felt’ in when close or in contact with a warm body. There were many explanations for this second observation including that of invisible particles traveling through space1. It was not until the early beginnings of modern science and molecular theory that scientists discovered a true physical understanding of ‘heat flow’. It was later that a few notable individuals, including James Prescott Joule, discovered through experiment that work and heat were the same phenomenon and that this phenomenon was energy: Energy is the capacity, either latent or apparent, to exert a force through a distance. The presence of energy is indicated by the macroscopic characteristics of the physical or chemical structure of matter such as its pressure, density, or temperature - properties of matter. The concept of hot versus cold arose in the distant past as a consequence of man's sense of touch or feel. Observations show that, when a hot and a cold substance are placed together, the hot substance gets colder as the cold substance gets hotter.
    [Show full text]
  • Work, Power, & Energy
    WORK, POWER, & ENERGY In physics, work is done when a force acting on an object causes it to move a distance. There are several good examples of work which can be observed everyday - a person pushing a grocery cart down the aisle of a grocery store, a student lifting a backpack full of books, a baseball player throwing a ball. In each case a force is exerted on an object that caused it to move a distance. Work (Joules) = force (N) x distance (m) or W = f d The metric unit of work is one Newton-meter ( 1 N-m ). This combination of units is given the name JOULE in honor of James Prescott Joule (1818-1889), who performed the first direct measurement of the mechanical equivalent of heat energy. The unit of heat energy, CALORIE, is equivalent to 4.18 joules, or 1 calorie = 4.18 joules Work has nothing to do with the amount of time that this force acts to cause movement. Sometimes, the work is done very quickly and other times the work is done rather slowly. The quantity which has to do with the rate at which a certain amount of work is done is known as the power. The metric unit of power is the WATT. As is implied by the equation for power, a unit of power is equivalent to a unit of work divided by a unit of time. Thus, a watt is equivalent to a joule/second. For historical reasons, the horsepower is occasionally used to describe the power delivered by a machine.
    [Show full text]
  • A) B) C) D) 1. Which Is an SI Unit for Work Done on an Object? A) Kg•M/S
    1. Which is an SI unit for work done on an object? 10. Which is an acceptable unit for impulse? A) B) A) N•m B) J/s C) J•s D) kg•m/s C) D) 11. Using dimensional analysis, show that the expression has the same units as acceleration. [Show all the 2. Which combination of fundamental units can be used to express energy? steps used to arrive at your answer.] A) kg•m/s B) kg•m2/s 12. Which quantity and unit are correctly paired? 2 2 2 C) kg•m/s D) kg•m /s A) 3. A joule is equivalent to a B) A) N•m B) N•s C) N/m D) N/s C) 4. A force of 1 newton is equivalent to 1 A) B) D) C) D) 13. Which two quantities are measured in the same units? 5. Which two quantities can be expressed using the same A) mechanical energy and heat units? B) energy and power A) energy and force C) momentum and work B) impulse and force D) work and power C) momentum and energy 14. Which is a derived unit? D) impulse and momentum A) meter B) second 6. Which pair of quantities can be expressed using the same C) kilogram D) Newton units? 15. Which combination of fundamental unit can be used to A) work and kinetic energy express the weight of an object? B) power and momentum A) kilogram/second C) impulse and potential energy B) kilogram•meter D) acceleration and weight C) kilogram•meter/second 7.
    [Show full text]