The Method of Making Models from Sheets of Blotting Paper

Total Page:16

File Type:pdf, Size:1020Kb

The Method of Making Models from Sheets of Blotting Paper THE METHOD OF MAKING MODELS FROM SI-IEETS OF BLOTTING PAPER. BY SUSANNA PHELPS GAGE. Ithaca, New York. The Born Method of reconstructing models from wax plates is in use in all the larger laboratories of Anatomy and Embryology. Various modifications of that method have been introduced, notably at Johns IIopkins University. For smaller laboratories and isolated investigators the wax plates are difficult to prepare or to obtain already made. More- over, in the larger laboratories ihe preparation of the plates is a much dreaded piece of drudgery to be done in the basement. The apparatus is cumbersome and if at all accurate, expensive. Like any other ap- paratus it requires some skill to use it with success. Any one who has either cast or rolled wax plates will not need a statement of the inconveniences. In 1905, it occurred to me that sheets of blotting paper might serve instead of wax plates. A small model was at once made which showed its feasibility. Models made of this material were demonstrated at thc Association of American Anatomists in December, 1905, ( Amer. Jour. Anat. V., 1905-06, p. XXIII) and the method was further demonstrated at the International Zoological Congress held in Boston, August, 1907'. It has also been used successfully in the embryologic and anatomic laboratories of Cornell University and the University of West Virginia. Blotting paper models were demonstrated by Dr. J. H. Hathaway and by Dr. J. B. Johnston at the Association of American Anatomists held in New York, 1906 (Proc. Assoc. Amer. Anatomists, Anat. Record, April 1, 1907,). Usually with the Born method the wax plates are 1, 2, or 3 mm. in thickness and the sections of the specimen are lop or some other multiple of 5, thus making the magnification at which the drawing of the sec- tions should be made, a simple problem in proportion. It has been objected that it is difficult to obtain blotting paper of a given thickness. This is indeed true. In Ithaca, at a wholesale paper dealer's one package was bought in which the paper was of the desirable Nov. 10, '07. The Anatomical Record 167 thickness of one millimeter. The thickness since obtainable is 0.5 nim., 0.77 mm. and 0.9 mm. The following steps give a general outline of the method used: 1. For testing the thickness, a pile of 40 pieces of the same size cut from diffe'rent sheets of the blotting paper is held closely together by a rubber band. One end of the block so formed is dipped in hot paraffin and compressed with the fingers. The measurement of the parafflned end divided by the number of pieces gives the working thickness of the paper. 2. Size of model and thickness of plates.-Suppose a model is to be made of a specimen cut into a lop series and the blotting paper avail- able has a thickness of 0.9 mm. or 9OOp. Each sheet is 9OOp divided by lop = 90 times as thick as the sections. The simplest case would be for a model 90 times as large as the object. Then each section is drawn at a magnification of 90 and a plate of the blotting paper is used for each section. Suppose it were desirable to use a magnification of 120. Each section is drawn of the proper size, and must be represented by a thickness on the model of 120 X lop = 1200p or 1.2 mm. One plate is 0.9 mm. thick, that is 0.3 mm. less than it should be. In every three plates there is a loss of 0.9 mm., a loss which is made good by using two sheets of blotting paper for every third section, that is, for every group of three sections four pieces of blotting paper would be used. Suppose a magnification of 60 were desired, then each section if drawn at a magnification of 60 should be represented on the model by 60 X lop = 600p or 0.6 mm. As the thickness of the paper is 0.9 mm., one plate is 0.3 mm. too thick and three plates would be 0.9 mm. too thick. Hence if every third plate is omitted the correct thickness is secured. In practice the drawing of every third section is omitted. Other problems are easily met as occasion demands by adding plates or omitting the drawing of certain sections. The slight inaccuracy thus produced is negligible. 3. Thickness of paper, size of model and magnification having been determined, the drawings of sections are made upon the blotting paper by the aid of a camera lucida, or more satisfactorily with a projection microscope. One or more duplicate drawings may be easily secured by using carbon paper and thin sheets over the blotting paper. 4. The difficulty of cutting wax plates is considerable. This difficulty has been met by Dr. E. TJ. Mark by using a sewing-machine with an electrically heated wire as cutting edge. (Demonstrated at the Asso- 168 The Anatomical Record Now. 10, ’07. ciation of American Anatomists, December, 1906. Method published in the American Read. Arts and Sciences, March, 1907. See also Science, XXV, 1907, Anat. Record, Apr., 1907.) With the blotting paper, if the drawings are small the cutting is easily done with scissors or a knife. When the drawings are large and especially when the model is to be made by representing each section by two to four thicknesses of blotting paper it has been found that an ordinary sewing-machine can be used to do the cutting. By setting the regulator for the shortest stitch an almost continuous cut is made and the parts are easily separated. If a large sewing-machine needle is sharpened in the form of a chisel, the cut becomes considerably smoother. It has heen found advantageous when long continued or heavy work is to be done to attach to the machine an electric sewing-machine motor. Skill in guiding the work is soon acquired. Therc are some details of a complicated drawing which are more easily cut by the scissors or a knife after the main lines have been cut by the machine. 5. It is a great advantage in any working model to have sections at regular intervals in marked contrast with the body of the material. Blot- ting paper of a large variety of colors (black, red, blue, pink) is easilg obtained in the market. In the models made every tenth plate was a bright or light color and every lOOdth was black, rendering rapid num- eration easy. 6. \Then the paper sections are thus prepared they are piled and re- piled as is usual until the shape conforms to an outline predetermined from photographs, drawings, or iueasurements made before the specimen was cut. It has been found that an easily prepared support and guide for the model in process of setting up, is made by cutting the outline to be fol- lowed from a block of four or five sheets of blotting paper, marking upon it the lines of direction for every tenth or twentieth section. The colored numerating plates must of course conform to the spacing and direction of these lines. ‘7. The preliminary shaping having been accomplished more exact modeling is undertaken. The paper sections slide very easily upon one another. The most satisfactory means of fastening them together is by the use of ribbon pins, ordinary pins, or wire nails of various sizes, depending upon the size of the model. No kind of paste or glue was found suitable for this purpose. 8. When the model is well formed, inequalities are best removed by rubbing with the edge of a dull knifc and smoothing with sand paper. Nov. 10, ’07. The Anatomical Record 169 Any dissections of the model for showing internal structures should be planned for at this stage for it is now more easily separated than later. It is also at this time that superfluous “bridges,” which have been left in place to support detached parts, would better be removed. 9. To finish the model it is held together firmly and coated with hot paraffin either by a camel’s hair brush or by dipping in paraffin and removing the superfluous coating by a hot instrument. On a very large model Dr. Hathaway used a thermo-cautery for this purpose. The paraffin renders the model almost of the toughness of wood with- out destroying the lightness of the paper. 10. For coloring the surface of the model, it was found most desirable to use Japanese bibulous paper (the lens paper of the microscope deal- ers) which had been dipped in water color and clried. Any of the laboratory dyes or inks can be used, such as eosin, picric acid, methylene green, black ink, etc. The colored lens paper molds over the surface with ease and is held in place by painting with hot paraffin. All color and enumeration lines and fine modeling show through the transparent paper. When the model ceases to be a working model it can be covered with oil paints mixed with hot paraffin and rubbed to any degree of finish desired. 11. One can dissect the model by a hot knife run along the planes of cleavage or cut across them by a saw. The advantages claimed for blotting paper models arc the ease and cleanliness of their production and the lightness and durability of the product. The models are broken with difficulty, are easily packed or transported, and when they cleave apart are easily repaired, thus contrast- with the weight and fragility of wax models and their deformation by heat.
Recommended publications
  • Leafing Through History
    Leafing Through History Leafing Through History Several divisions of the Missouri Botanical Garden shared their expertise and collections for this exhibition: the William L. Brown Center, the Herbarium, the EarthWays Center, Horticulture and the William T. Kemper Center for Home Gardening, Education and Tower Grove House, and the Peter H. Raven Library. Grateful thanks to Nancy and Kenneth Kranzberg for their support of the exhibition and this publication. Special acknowledgments to lenders and collaborators James Lucas, Michael Powell, Megan Singleton, Mimi Phelan of Midland Paper, Packaging + Supplies, Dr. Shirley Graham, Greg Johnson of Johnson Paper, and the Campbell House Museum for their contributions to the exhibition. Many thanks to the artists who have shared their work with the exhibition. Especial thanks to Virginia Harold for the photography and Studiopowell for the design of this publication. This publication was printed by Advertisers Printing, one of only 50 U.S. printing companies to have earned SGP (Sustainability Green Partner) Certification, the industry standard for sustainability performance. Copyright © 2019 Missouri Botanical Garden 2 James Lucas Michael Powell Megan Singleton with Beth Johnson Shuki Kato Robert Lang Cekouat Léon Catherine Liu Isabella Myers Shoko Nakamura Nguyen Quyet Tien Jon Tucker Rob Snyder Curated by Nezka Pfeifer Museum Curator Stephen and Peter Sachs Museum Missouri Botanical Garden Inside Cover: Acapulco Gold rolling papers Hemp paper 1972 Collection of the William L. Brown Center [WLBC00199] Previous Page: Bactrian Camel James Lucas 2017 Courtesy of the artist Evans Gallery Installation view 4 Plants comprise 90% of what we use or make on a daily basis, and yet, we overlook them or take them for granted regularly.
    [Show full text]
  • Making Paper from Trees
    Making Paper from Trees Forest Service U.S. Department of Agriculture FS-2 MAKING PAPER FROM TREES Paper has been a key factor in the progress of civilization, especially during the past 100 years. Paper is indispensable in our daily life for many purposes. It conveys a fantastic variety and volume of messages and information of all kinds via its use in printing and writing-personal and business letters, newspapers, pamphlets, posters, magazines, mail order catalogs, telephone directories, comic books, school books, novels, etc. It is difficult to imagine the modern world without paper. Paper is used to wrap packages. It is also used to make containers for shipping goods ranging from food and drugs to clothing and machinery. We use it as wrappers or containers for milk, ice cream, bread, butter, meat, fruits, cereals, vegetables, potato chips, and candy; to carry our food and department store purchases home in; for paper towels, cellophane, paper handkerchiefs and sanitary tissues; for our notebooks, coloring books, blotting paper, memo pads, holiday greeting and other “special occasion’’ cards, playing cards, library index cards; for the toy hats, crepe paper decorations, paper napkins, paper cups, plates, spoons, and forks for our parties. Paper is used in building our homes and schools-in the form of roofing paper, and as paperboard- heavy, compressed product made from wood pulp-which is used for walls and partitions, and in such products as furniture. Paper is also used in linerboard, “cardboard,” and similar containers. Wood pulp is the principal fibrous raw material from which paper is made, and over half of the wood cut in this country winds up in some form of paper products.
    [Show full text]
  • Recycling Potential of Textile Solid Waste
    Waste Management and the Environment IX 125 RECYCLING POTENTIAL OF TEXTILE SOLID WASTE MOHAMMAD FAHIM HASAN, NOWRIN MOW, MOHAMMAD RAKIBUL ALAM, SARDAR MOHAMMAD ABIR HASAN & ROWSHAN MAMTAZ Bangladesh University of Engineering and Technology (BUET), Bangladesh ABSTRACT With increasing production of textile products, textile industries (TIs) are generating a considerable amount of liquid and solid wastes which bring in many adverse impacts on the environment such as landfill occupation, contamination of air, soil, surface water, and groundwater. In Bangladesh, while prioritizing the disposal and management of textile liquid wastes, the necessity of management of textile solid wastes (TSWs) are often neglected. TSW is generated in a considerable amount but no proper management or disposal system is followed by the industries. An attempt has been made in this study to find a sustainable disposal option for TSW. The experiments were conducted throughout 2016. This research is concerned with a particular type of solid waste, very dusty in composition, generated from slitting, brushing and sueding machine in the dyeing unit of the composite TI. Using this particular type of TSW, papermaking was attempted following manual procedures. TSW at ten different ratios were added to scrap abandoned paper mixture (paper : waste = 1 : 0.25, 1 : 0.5, 1 : 0.75, 1 : 1, 1 : 1.5, 1 : 2, 1 : 2.25, 1 : 2.5, 1 : 2.75, 1 : 3, etc.) to produce papers. A pulp consistency test and different tests on produced paper e.g. basis weight, bulk, and density, book bulk, thickness, hygroexpansivity, formation, moisture, and finish were conducted according to Technical Association of the Pulp and Paper Industry (TAPPI) methods and ISO standards were followed to determine the quality of pulp and type of papers.
    [Show full text]
  • The Fine Art Trade Guild Standards for Mountboard (Mat Board) and Other Boards Used in Framing
    The Fine Art Trade Guild Standards for Mountboard (Mat Board) and other boards used in framing. Amended 10th June 2004 Copyright C Sumner, Fine Art Trade Guild Introduction These standards are directed to the composition, combinations, and characteristics of papers and paper-boards used in the framing of artwork, keepsakes and memorabilia. They help to give material categorisation of these to fit into the five levels of framing specified by the Fine Art Trade Guild. The objective of each level of framing is stated, with examples of the kinds of things for which that level is suitable. At present, all board that does not meet either the Cotton Museum Board standard or the Conservation Board standard will be deemed to be Standard Board and suitable for Commended, Budget and Minimum levels of framing only. The specifications for Standard Board may be further refined in due course as the quality of boards in this category vary greatly. Conservation Board is deemed to be acceptable for all levels except Museum level framing. Museum Board is deemed to be acceptable for all levels of framing. It is a prerequisite that the type of surface and texture must be specified relating to any board purporting to meet Guild Standards. If the surface is designed to accept decoration and embellishments, as in the case of Mountboard unless otherwise stipulated, it should be fit for the purpose. (FACTS Institute, USA, Test No. 6-97). International – Note that in some markets no distinction is made between Museum and Conservation Framing. In others, the terminology is reversed, i.e.
    [Show full text]
  • What Colors Make up the Ink in My Black Felt-Tip Pen? to Find Out, It
    What colors make up the ink in my black felt‐tip pen? To find out, it takes a little water, patience and blotting paper 1 2 In this experiment, we will copy a technique commonly used in laboratories to separate different chemicals that are present in a mixture. – in this case the ink in a black felt‐tip pen. The technique is called chromatography. When we deposit the black ink onablottingpaper,eachofits components will interact of a 3 4 different way with the paper and water. It is a kind of race where the components in of the ink finish by separating (because they do not move not all to the same speed when exposed to water), revealing the palette of colors present in a simple black felt. 1. For this experiment, Emma needs of blotting paper (from coffee filters, by example), of a pair of scissors, of two transparent glasses, a black felt pen, two paperclips, and two wooden sticks. 2. Our young chemist cuts two rectangles from the blotting paper. On the first, she draws a point. On the second, a line. Each time to about one‐half inch from the edge as on the photo. 3. It is then a question of fastening the rectangles of blotter paper onto the sticks using the paperclips. The operation is delicate and the help of a adult may prove necessary 4. Emma fills the 2 glasses with a little water, just enough for the end of the blotter paper to become wet. Then she balances the sticks on the edge of the glasses water.
    [Show full text]
  • Terminology on Paper & Pulp: Types of Paper and Containerboard, Containerboard Grades and Tests
    Terminology On Paper & Pulp: Types of Paper and Containerboard, Containerboard Grades and Tests Prepared for the Meeting of the Paper & Pulp Industry Project By Aselia Urmanbetova Date: September 10, 2001 1 Paper Products Chart: Containerboard Tree/Waste Paper Pulp Paper Paperboard Brown Coated Uncoated (container- board) Brown (65% White (95%- Copying Paper Newsprint hardwood and 100% 35% softwood) softwood) White Tissue (paperboard package) SBS (Solid Boxboard Bleach Sulfate) Coated Uncoated 2 Examples of Containerboard Grades/Mead Corporation: (Refer to the Glossary for the Explanation of the Terms) Standard Grades Grade Basis Weight Moisture Ring Crush Concora 26 SC 26.0 9.0 N/A 63 30 SC 30.0 9.0 50 68 33 SC 33.0 9.0 60 72 36 SC 36.0 9.0 71 79 40 SC 40.0 9.0 82 79 45 SC 45.0 9.0 102 95 Light Weights Grade Basis Weight Moisture Porosity Concora STFI 18 SC 18.0 7.5 30 33 9.5 20 SC 20.0 7.5 30 35 10.5 23 SC 23.0 9.0 30 59 12.0 Polar Chem Grade Basis Weight Moisture Ring Crush Concora Wet Mullen 30 PC 30.0 9.0 50 68 4.0 33 PC 33.0 9.0 60 72 4.0 36 PC 36.0 9.0 71 79 4.0 40 PC 40.0 9.0 82 79 4.0 45 PC 45.0 9.0 102 95 4.0 3 Paper Products and Containerboard Glossary B Flute A flute that is approximately 0.097 inches high.
    [Show full text]
  • Iso Standard 535
    This preview is downloaded from www.sis.se. Buy the entire standard via https://www.sis.se/std-916976 INTERNATIONAL ISO STANDARD 535 Third edition 2014-02-01 Paper and board — Determination of water absorptiveness — Cobb method Papier et carton — Détermination de l’absorption d’eau — Méthode de Cobb Reference number ISO 535:2014(E) © ISO 2014 This preview is downloaded from www.sis.se. Buy the entire standard via https://www.sis.se/std-916976 ISO 535:2014(E) COPYRIGHT PROTECTED DOCUMENT © ISO 2014 All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO’s member body in the country of the requester. ISOTel. copyright+ 41 22 749 office 01 11 Case postale 56 • CH-1211 Geneva 20 FaxWeb + www.iso.org 41 22 749 09 47 E-mail [email protected] Published in Switzerland ii © ISO 2014 – All rights reserved This preview is downloaded from www.sis.se. Buy the entire standard via https://www.sis.se/std-916976 ISO 535:2014(E) Contents Page Foreword ........................................................................................................................................................................................................................................iv Introduction ..................................................................................................................................................................................................................................v
    [Show full text]
  • Publications on Paper and Paper Research by the Staff of The
    Letter vii-3 Circular LC 447 DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS WASHINGTON (August 21, 1935) PUBLICATIONS ON PAPER AND PAPER RESEARCH BY THE STAFF OF THE NATIONAL BUREAU OF STANDARDS EEPAHTMEFT CE COMMERCE HATI017AL BUREAU OF STANDARDS FASEIHGTOH Letter VI 1-3 Circular (August 21, 1935) LC 447 PUBLICATIONS OiT PAPES AID FARES .RESEARCH SI THE STAFF OF THE 1. FAT I ORAL EUSEAU OF STANDARDS GEHEKAL IFFOSI AT I OF Character of Researches The paper research of the Fa.tional Bureau of Standards consists of studies re- lated to the standardization2. of paper and the materials and processes used in its manufacture. The work on the standardization of paper leads to formulation of standards of quality, and includes, necessarily, the development of means of measuring quality. Eor research related to the manufacture of paper, the paper section is equipped with complete lahoratory and semi- commercial papermaking facilities. This is used to o’: tain information which will assist the paper maker in obtaining the desired qualities in paper at a minimum of cost, in developing new or improved paper products, and in utilizing new fibrous raw materials, parti- cularly waste materials. General3. Scope of Bureau Work The Bureau of Standards is charged with the development, construction, custody, and maintenance of reference and working standards, and their intercomparison, im- provement, and application in science, engineering, industry, and commerce. The bureau is organized in three principal groups - research and testing; commercial standardization; administrative4. work, operation of plant, and construction of lab- oratory instruments and apparatus . The following divisions comprise the research and testing group; electricity, weights and measures, heat and power, optics, chemistry, mechanics ana sound, organic and fibrous materials, metallurgy, clay and silicate products.
    [Show full text]
  • Paper, Paperboard, and Corrugated Fiberboard (Cobb Test)
    T 441 om-98 TENTATIVE STANDARD – 1937 OFFICIAL STANDARD – 1960 REVISED – 1977 OFFICIAL TEST METHOD – 1984 REVISED – 1990 REVISED – 1998 © 1998 TAPPI The information and data contained in this document were prepared by a technical committee of the Association. The committee and the Association assume no liability or responsibility in connection with the use of such information or data, including but not limited to any liability or responsibility under patent, copyright, or trade secret laws. The user is responsible for determining that this document is the most recent edition published. Water absorptiveness of sized (non-bibulous) paper, paperboard, and corrugated fiberboard (Cobb test) 1. Scope 1.1 This method describes a procedure for determining the quantity of water absorbed by nonbibulous paper, paperboard, and corrugated fiberboard in a specified time under standardized conditions. It is based on studies by Cobb and Lowe (1), Cobb (2) and other investigators (3, 4). 1.2 For testing unsized and absorbent paper, paperboard, or corrugated fiberboard, see TAPPI T 432 “Water Absorbency of Bibulous Paper” and TAPPI T 561 “Sorptive Rate and Capacity of Bibulous Paper and Paper Products Using Gravimetric Principles.” 2. Significance 2.1 Water absorptiveness is a function of various characteristics of paper or board such as sizing, porosity, etc. This method is generally applicable to sized paper, paperboard and corrugated fiberboard, but it is not recommended as a sizing test for writing paper. 3. Definitions 3.1 Water absorptiveness (Cobb value), the mass of water absorbed in a specific time by 1 square meter (10.76 square feet) of paper, board, or corrugated fiberboard under specified conditions.
    [Show full text]
  • Books: Binding, Inks, and Storage
    Preservation and Care of Philatelic Materials Subsidiary Page 7 Books: Binding, Inks, and Storage Bookbinding Most philatelists do maintain reference books in their personal libraries, so such collectors will be somewhat interested in at least an overview of bookbinding. The following account does not go into great detail, but it does discuss the materials used by bookbinders. The basic principles involved in hand binding have not changed over the centuries. In 1992, the Republic of China issued a set of stamps featuring different types of binding used with ancient books. The set of stamps is shown in Figure 6. Figure 6. Bookbinding used with ancient Chinese books. 3.50: Scroll; 5.00: Fold Bound Book; 9:00: Butterfly Binding; 15:00: String Bound Book. Stamps courtesy Michael Rogers, Inc. The parts of a handbound book are illustrated in Figure 7. All in all, bookbinders do a conscientious job. They use materials that are conductive to long life. Bookbinders take pride in their workmanship. Figure 7. Parts of a bound book. A half-bound volume is at the right. Wesley L. Boomgaarden (personal communication), Preservation Officer at The Ohio State University Libraries, advised us of the standards of American National Standards Institute, Inc. to establish criteria for permanence of uncoated paper (American National Standard for Permanence of Paper for Publications and Documents in Libraries and Archives). These standards establish criteria for paper to meet requirements including pH and alkaline reserve which, if complied with in printed works, should result in the work lasting several hundred years without significant deterioration under normal use and storage.
    [Show full text]
  • PRINT BIBLE & Setup Guide
    C Y . REA ED T E IV P E S . A Y F L F D O N R E I D R A F B PRINT & SET-UP BIBLE L O E C E . CONTENTS INTRO / HOW IT WORKS - - - - - - - - -3 INK COVERAGE - - - - - - - - - - - - - - - - -17 APPLICATIONS - - - - - - - - - - - - - - - - -4 INK COVERAGE CONT. - - - - - - - - - - - -18 INKS / COLOURS - - - - - - - - - - - - - - -5 GRADIENTS - - - - - - - - - - - - - - - - - - -19 METALLIC GOLD - - - - - - - - - - - - - - - - 6 TEXT / TYPE - - - - - - - - - - - - - - - - - - -20 OVERLAY - - - - - - - - - - - - - - - - - - - - -7 STENCILS - - - - - - - - - - - - - - - - - - - - -21 PAPERS - - - - - - - - - - - - - - - - - - - - - - 8 STENCIL FORMATS - - - - - - - - - - - - - - -22 PREPARING FILES + GLITCHES - - - - - - -9 IMPERFECTIONS - - - - - - - - - - - - - - - -23 COMMON PROBLEMS - - - - - - - - - - - -10 SUSTAINABILITY - - - - - - - - - - - - - - - - -24 FLATTENING FILES - - - - - - - - - - - - - -11 PRCING - - - - - - - - - - - - - - - - - - - - - - 25 A3 LAYOUT - - - - - - - - - - - - - - - - - - - 12 QUOTES + EXTRA SERVICES - - - - - - - -26 CARD + FLYER LAYOUT - - - - - - - - - - - -13 TURN AROUND - - - - - - - - - - - - - - - - 27 TRIMMING OPTIONS - - - - - - - - - - - - -14 AMENDMENTS + PROBLEMS - - - - - - -28 NAMING FILES - - - - - - - - - - - - - - - - - 15 TERMS + CONDITIONS - - - - - - - - - - -29 OPACITIES - - - - - - - - - - - - - - - - - - - -16 PRINT DISCLAIMER / VISITATION - - - -30 THE RISOGRAPH: IONAL S The RISO works by trans- AT H N IP R P forming your artwork into a E IN It looks like a photocopier T G N stencil.
    [Show full text]
  • DISASTER PREPAREDNESS: Paper, Photographs, & Electronic Records
    DISASTER PREPAREDNESS: Paper, Photographs, & Electronic Records Why Reduce Preparing PREPARE? RISK TO MATERIALS FOR DISASTERS South Carolina faces a variety of • Identify areas of risk: are parts • Create a salvage priority list. natural disasters that could affect of your building prone to • List areas within your institu- your records including hurricanes, flood? Are you near chemical tion or off-site that could be floods, tornados, and even ice industries or construction used as command centers or storms. You may also experience zones that could affect you in a salvage areas. non-natural disasters that affect disaster? • Meet your first responders. your holdings such as fire or burst • Do not house materials or Have them tour the building pipes. The loss or damage of re- computer stations near leaky with you to identify risk areas cords that these events can cause windows or ceilings or under and brief you on their pro- may leave you unable to resume pipes. cedures. Brief them on your business, to provide services to cit- • Are your collections insured? priorities in case of disaster. izens, to prove ownership of assets, Do so if applicable • Maintain an (off-site) inven- or to cause your user base to lose • Elevate computer towers and tory of computer towers that faith in your ability to do your job. record boxes from the floor by includes serial numbers and at least 2 inches. staff assignments. Use this information to create a • Back up electronic data and • Designate responsible staff to formal disaster plan now so that store a back up off site.
    [Show full text]