Modern Annual Deposition and Aerial Pollen Transport in the Lena Delta
Total Page:16
File Type:pdf, Size:1020Kb
Polarforschung 70: JJ5 - J22, 2000 (erschienen 2002) Modern Annual Deposition and Aerial Pollen Transport in the Lena Delta by Larissa A. Savelieva', Marina V. Dorozhkina' and Elena Yu. Pavlova' Summary: Studies of the annual pollen and spore deposition in different Iong-distance pollen transported by air masses, atmospheric areas of the Lena Delta were undertaken for the first time in the Asian sector precipitation and factors influencing pollen preservation of the Arctic during the Russian-German "LENA 98" and "LENA 99" expedi tions in the framework of the International "Laptev Sea System-2000" Project. (HICKS 1999). The study of recent spore-pellen spectra allows To achieve this objective, three spore-pellen traps were set up along the meri us to determine the factors influencing their composition dional delta profile in accordance with the European Pollen Monitoring Pro under arctic tundra conditions, which will make it possible in gramme for the period July 1998 to August 1999. A comparison betwcen the the future to more correctly interpret fossil palynospectra from results of spore-pellen analysis of the contents of traps and the surrounding vegetation was performed. The results confirmed the current spore-pollen Holocene age deposits. spectra are comprised both of pollen and spores of the local plants and of long-distance pollen and spores. The dependence of the long-distance pollen Specific studies of the problem of pollen presence in the air of deposition on the character of the wind regime of the region was established. high latitudes began in the 1930s (KIL'DYUSHEVSKY 1955). In The prevailing southerly and southeasterly wind direction determines the main pollen influx of tree species from the areas of their growth south of the Russia, this problem was considered in articles about pollen delta. The features of the morphological structure and fossilization of pollen transport to the Arctic from the south and its detection in the and the features of the productive capability and plant growing conditions are surface soil sampIes of the arctic regions (TIKHOMIROV 1950, of large significance in the pollen transfer and deposition. KUPRIYANOVA 1951). In subsequent years, studies of current Zusammenfassung: Im Rahmen des internationalen Projektes "System Lap pollen rain, pollen and spore transport and their relationship tewsee 2000" wurden während der russisch-deutschen Expeditionen "LENA with sub-fossil spectra and current vegetation were carried out 98" und "LENA 99" erstmalig Untersuchungen zur jährlichen Deposition von on Severnaya Zemlya, Novaya Zemlya and Spitsbergen (KA Pollen und Sporen in verschiedenen Regionen des Lena-Deltas, im asiatischen LUGINA et al. 1981, SEREBRYANNY et al. 1984, VAN DER KNAAP Sektor der Arktis, durchgeführt. Drei Pollen/Sporen-Fallen wurden entlang ei nes meridionalen Deltaprofils aufgestellt (Juli 1998-August 1999) im Ein 1990). klang mit der Methodik des "European Pollen Monitoring Program". Die Er gebnisse der Pollen/Sporen-Analyse des Inhaltes dieser Fallen wurden mit Due to the European Pollen Monitoring Pro gram developed in dem umgebenden Pflanzenreich verglichen. Die Resultate zeigten, dass sich 1996, it became possible using one common sampling and die heutigen Pollen/Sporen-Spektren aus Pollen der lokalen Pflanzen und windeingetragenen Pollen zusammensetzen. Die Abhängigkeit der Ablage processing methodology to determine the composition of an rung windeingetragener Pollen vom Charakter der Windbedingungen in dieser nual recent spore-pollen spectra, compare them, investigate Region wird deutlich. Die dominierenden südlichen und südöstlichen Winde their change in time and space and identify and investigate the im Delta bedingen den Eintrag von Holzpflanzen-Pollen, deren heutige Ver factors that determine the formation character of different breitungsgebiete sich südlich vom Lena-Delta befinden. Die Besonderheiten der morphologischen Struktur und der Pollenfossilisation, sowie die Bedin spectra. gungen des Pflanzenwachstums und ihre Produktivität sind von großer Bedeu tung für den Transport und die Ablagerung von Pollen. This study at the present stage aims to analyze data on the poI len rain deposition throughout the year in the Lena Delta, compare the results obtained with the composition of local ve getation and the wind regime character of the study area and INTRODUCTION reveal the factors influencing the formation of current spore pollen spectra (SAVELlEVA et al. 2000, 2000a, DOROZHKINA et Pollen and spore analysis is widely used in paleogeographical al. 2000). studies to reconstruct the vegetation and climate in the past. However, the results of paleogeographical reconstruction based on the interpretation of palynological data can be METHODS AND SITES distorted to a great extent due to inconsistency between the spore-pellen spectrum and the actual vegetation that existed at Field methods a given time. The composition of the fossil palynospectrum depends on several factors. These are the composition of local To reveal the pollen transfer character, three traps were set up vegetation at the time of spectrum forrnation, the abundance of in the Lena Delta along the meridional delta profile (PAVLOVA & DOROZHKINA 1999) (Fig. 1). The pollen traps were estab lished in compliance with the requirements of the European I Geographical Research Institute, St. Petersburg State University, Laboratory Pollen Monitoring Program (HICKS et al. 1996). of Investigation of Environment Evolution, 41 Sredniy str., 199004 St. Petcrsburg. Russian Federation. <[email protected]> State Research Center of Russian Federation Arctic and Antarctic Research A pollen trap presents a container (plastic bucket) of 5 liters Institute (AARI), 38 Beringa str., 199397 St. Petersburg, Russian Federati with a tightly closing cone-like cover of 30 cm in diameter. In on. <[email protected]>, <[email protected]> the center of the cover there is a hole of 5 cm in diameter. The Manuscript received 07 December 2000, accepted 30 July 2001 container bottom is 3-5 cm covered with glycerin to which se- 115 N • pollen trap station (L-1 -Yugus-Jie; L-2 - Sagastyr Island; L-3Samoilov Island) .... meteostation Fig. 1: Location of spore-pellen traps in the Lena Delta and wind rose-diagrams. (1- Dunay; 2 - Samoilov Island; 3 - Stolb) Abb. 1: Lage der Sporen-Pollenfallen im Lena-Delta und die zugehörigen Windrosen. Fig. 2: Pollen trap set up on Sagastyr Island. Abb. 2: Pollenfalle auf der Insel Sagastyr. veral thymol crystals and 10-20 ml offormalin are added. The The pollen traps were set up for aperiod of 1 year from July trap is buried into the ground so that its cover is at the same le 1998 to August 1999. The content of the pollen traps when vel with the surrounding surface (Fig. 2). they were recovered, presented water (atmospheric precipita tion) with numerous remains of insects (mosquitoes, caterpil A herbarium was collected within a 30 m radius (according to lars, etc.), excrements of mammals (musk-ox, lemmings) and guidelines for mapping the vegetation around the pollen traps, a mineral fraction (clayey-sandy particles). The volume of the HICKS et al. 1996) from each trap and the species composition samples comprised 0.5-2 liters. was determined (Tab.1). 116 Plant species L-l L-2 L-3 Plant species L-l L-2 L-3 Graminaceae (Poaceae) Saxifragaceae Arctagrostis latifolia x Chrysosplenium tetrandrum x Arctagrostis arundinacea x Saxifraga cernna x Deshampsia caespitosa ssp. borealis x Saxifraga foliolosa x Dupontia fisheri x Saxifraga hirculus x x x Dupontia psilosantha x Saxifraga nelsoniana x x x Hierochloe pauciflora x Koeleria asiatica x x Rosaceae Poa arctica x x x Dryas octopetala x x x Poa paucispicula x Dryas punctata x Cyperaceae Fabaceae Carex aquatilis ssp. stans x x Astragalus umbellatus x Carex concolor x Eriophorum polystachion x Ericaceae Eriophorum vaginatum x Arctous alpina x Juncaceae Vacciniaceae Juncus biglumis x Vaccinium uliginosum x Luzula confusa x Luzula multiflora x Plumbaginaceae Luzula nivalis x Armerio maritima x Luzula tundricola x Polemoniaceae Salicaceae Polemonium boreale x Salix glauca x x Salix nummularia x Boraginaceae Salix pulchra x Myosotis asiatica x x x Salix reptans x x x Polygonaceae Scrophulariaceae Lagotis glauca ssp. minor x x Polygonum bistorta ssp. ellipticum x Pedicularis lanata x Polygonum tripterocarpum x Pedicularis oederi x Polygonum viviparum x Pedicularis sudetica ssp. interioroides x x x Pedicularis villosa x Caryophyllaceae Minuartia arctica x Valerianaceae Stellaria ciliatosepala x Valeriana capitata x x Ranunculaceae Compositae Caltha arctica x x Artemisia tilesii x Caltha caespitosa x Nardosmia frigida x Delphinium brachycentrum x Senecio congestus (arcticus) x Ranunculus alpinis x Taraxacum ceratophorum x Ranunculus pygmaeus x Papaveraceae Equisetaceae Equisetum arvense ssp. boreale x Papaver angustifolium x x Papaver pulvinatum x x ~ Cruciferae (Brassicaceae) Aulacomnium turgidum x Calliergon giganteum x x Cardamine digitata x Drepanocladus sp. x Cardamine pratensis x Hylocomium splendens x Draba borealis x Sphagnum orientale x Draba hirta x Tomenthypnum nitens x x Draba juvenilis x Parrya nudicaulis x Tab. 1: List of plants observedin the area of establishment of pollen traps. Tab. 1: Liste der Pflanzenin der Umgebungder Pollenfallen. 117 Laboratory methods shape and a size of up to 12-15 m in diameter. The central parts of polygons are swampy. The vegetation is represented The content of pollen traps was treated using a method de by herbaceous-dwarf