The Use of 185 Nm Radiation for Drinking Water Treatment Influence of Major Solutes and Temperature on the Degradation of Trace Organic Contaminants

Total Page:16

File Type:pdf, Size:1020Kb

The Use of 185 Nm Radiation for Drinking Water Treatment Influence of Major Solutes and Temperature on the Degradation of Trace Organic Contaminants The Use of 185 nm Radiation for Drinking Water Treatment Influence of Major Solutes and Temperature on the Degradation of Trace Organic Contaminants by Laith Furatian B.Sc., The University of Alberta, 1999 M.Sc., The University of New Hampshire, 2011 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in The Faculty of Graduate and Postdoctoral Studies (Chemical and Biological Engineering) THE UNIVERSITY OF BRITISH COLUMBIA (Vancouver) June 2017 © Laith Furatian 2017 Abstract The treatment of water via 185 nm radiation allows for the oxidative degra- dation of trace organic contaminants without the need for chemical addition. Critical information required for the practical application of such a process has been lacking. Carbamazepine was determined to be an ideal probe com- pound for study of the 185 nm regime due to negligible direct photolysis at 254 nm. An increase in probe degradation rate due to 185 nm is observed with increasing temperature when water is the only significant absorber of photons. A comparison with the temperature dependence of the 254 nm - H2O2 process is made and a fundamental explanation proposed. Experi- mental evidence reveals that probe degradation rate is strongly influenced by anionic composition at environmentally relevant concentrations, partic- ularly chloride. Evidence for the role of the chlorine radical is obtained by kinetic studies involving select probes, radical scavengers, and ionic strength. Interactions between the major organic and inorganic solutes indicate that resulting degradation kinetics are highly sensitive to the composition of the water matrix, a fact that has been neglected from the literature. A method to quantify molar absorption coefficients is developed that is not prone to errors due to stray radiant energy or wavelength inaccuracies. A method to quantify the 185:254 nm output of a low pressure mercury lamp is presented with results in agreement with values reported in the literature. In addition to the hydroxyl radical ( OH), other radical species such as chlorine (Cl ) { and sulphate (SO4 ) are proposed to be involved in oxidative degradation of trace organics in the 185 nm regime. This suggests that the degradation rate of a given target contaminant depends on the composition of the water matrix, the second-order rate constants with the relevant radicals, and the relative reaction rate constants of the target and the matrix. ii Lay Summary Certain types of chemical impurities are difficult to remove from water. One method that may be useful in destroying certain chemicals is to split water molecules using ultraviolet radiation to produce an aggressive oxidant that will then attack impurities. However, this process is highly dependent on the types and amounts of naturally occurring substances also dissolved in water. A complex mixture of oxidants may be produced with potentially significant differences in their abilities to attack a given impurity. Thus, since the composition of water differs between places and over the seasons, the efficiency of this approach may differ substantially between locations and over time. An attempt to understand how the natural composition of water and its temperature influence the efficiency of this process were the goals of this research. This information could then be used to optimize the pro- cess and even determine under what conditions its use would be impractical. iii Preface This dissertation is original, unpublished, independent work by the author, Laith Furatian. iv Table of Contents Abstract ................................. ii Lay Summary .............................. iii Preface .................................. iv Table of Contents ............................v List of Tables .............................. viii List of Figures ..............................x Nomenclature .............................. xiii Acknowledgements ........................... xv Dedication ................................ xvii 1 Introduction .............................1 1.1 Public Drinking Water Supplies . .1 1.2 A Recent History of Water Treatment . .4 1.3 UV Disinfection . 10 1.4 Advanced Oxidation Processes . 13 1.5 185 nm Advanced Oxidation . 18 1.6 Knowledge Gaps . 21 1.7 Research Objectives . 27 2 Experimental Approach ...................... 29 2.1 General Approach . 29 v Table of Contents 2.2 The Probe Compound and the Observable k0 ......... 29 2.3 Expressing the Extent of Reaction . 32 2.4 A 185 nm Kinetic Model . 36 2.5 Experimental Apparatus . 40 2.6 Materials . 43 2.7 Probe Compound Selection and Characterization . 43 2.7.1 Molar Absorption Coefficients at 254 nm . 45 2.7.2 Photolysis Quantum Yields at 254 nm . 45 2.7.3 Second-order OH Rate Constants . 46 2.8 Analytical Methods . 47 2.9 Initial Testing of 185 nm Experimental Methods . 48 3 Temperature ............................. 54 3.1 Temperature and Water Treatment . 54 3.2 Temperature Dependence of UV AOPs . 54 3.3 Experimental Approach . 58 3.4 Results . 59 3.4.1 Temperature Effects in the 254 nm - H2O2 Regime . 59 3.4.2 Temperature Effects in the 185 nm Regime . 61 3.5 Discussion . 64 3.6 Summary . 66 4 Dissolved Organic Matter .................... 67 4.1 Dissolved Organic Matter in Natural Waters . 67 4.2 The 185 nm AOP and Influence of Dissolved Organic Matter 70 4.3 Use of Reference Materials . 71 4.4 Pure Substances as Model Organic Matter . 75 4.5 Estimation of 185 nm Incident Fluence Rate . 82 4.6 Summary . 84 5 Chloride ................................ 86 5.1 Chloride in Natural Waters . 86 5.2 Impact of Chloride on AOPs . 87 5.3 Chloride in the 254 nm - H2O2 Regime . 90 vi Table of Contents 5.4 Chloride in the 185 nm Regime . 92 5.5 Relative Reactivity of OH and Cl ............... 100 5.6 Evidence for Cl from Probe-Scavenger Systems . 101 5.7 Evidence from Ionic Strength Effects . 107 5.8 Product Studies of Phenol Degradation . 112 5.9 Bleaching of Dissolved Organic Matter in 185 nm Regime . 113 5.10 Molar Absorption Coefficient of Chloride at 185 nm . 114 5.11 Potential Cl to OH Interconversion . 118 5.12 Summary . 119 6 Sulphate, Bicarbonate and Interactions of Major Solutes 122 6.1 The 185 nm AOP and Other Solutes . 122 6.2 Sulphate . 123 6.2.1 Sulphate in the 254 nm - H2O2 Regime . 124 6.2.2 Sulphate in the 185 nm Regime . 127 6.3 Bicarbonate . 131 6.4 Interactions Among Major Solutes . 137 6.4.1 Sulphate and Bicarbonate . 140 6.4.2 Chloride and Bicarbonate . 143 6.4.3 Chloride, Sulphate, and Bicarbonate . 146 6.5 Summary . 151 7 Conclusions and Recommendations .............. 153 7.1 Conclusions . 153 7.2 Recommendations . 156 Bibliography ............................... 158 Appendices A Experimental Data and Calculations .............. 179 vii List of Tables 1.1 Molar absorption coefficient () and quantum yield (Φ) for { 2{ Cl and SO4 at 185 nm . 22 { 1.2 Comparison of rate constants for OH, Cl , and SO4 with { 2{ HCO3 and CO3 ......................... 24 { { 1.3 Important reactions involving Cl , Cl2 , and SO4 ...... 25 2.1 Photochemical reaction parameters for probe compounds at 254 nm . 44 3.1 Effect of temperature on removal rate of carbamazepine probe in 254 nm-H2O2 regime . 59 3.2 Effect of temperature on removal rate of carbamazepine probe in 185 nm regime . 63 3.3 Experimental activation energies for carbamazepine degra- dation in the presence of tert-butanol in 254 nm-H2O2 and 185 nm regimes . 63 3.4 Summary of fundamental activation energies estimated from this work . 64 4.1 The removal rate of probe for varying concentration and source of DOM in 185 nm regime . 72 4.2 Selected pure compounds used as model organic matter in studies of 185 nm regime . 75 4.3 The removal rate of probe for pure scavengers tert-butanol, methanol, and acetone in 185 nm regime . 79 viii List of Tables 5.1 Comparison of OH and Cl reactivities for pure compounds used as model organic matter in the 185 nm regime . 102 5.2 Model evaluation using the degradation of nitrobenzene with increasing Cl{ in the 185 nm regime . 118 6.1 Numerical values used in calculation of the second-order rate { constant for the reaction of SO with carbamazepine (k { ) 4 SO4 ;CBZ with equation 6.2 . 130 6.2 Experimental determination of the second-order rate constant { for the reaction of SO with carbamazepine (k { ) with 4 SO4 ;CBZ equation 6.2 . 130 6.3 Comparison of the calculated and experimental rates due to { HCO3 in the 185 nm regime . 136 2{ 6.4 Comparison of calculated and experimental rates due to SO4 { and HCO3 in the 185 nm regime . 141 6.5 Experimental degradation rates of carbamazepine due to Cl{ { and HCO3 in the 185 nm regime . 144 { 2{ { 6.6 Interactions of Cl , SO4 and HCO3 , in the presence of Suwan- nee River NOM . 150 ix List of Figures 2.1 The 185 nm Collimated Beam Apparatus . 42 3.1 Temperature dependence in 254 nm - H2O2 regime. 60 3.2 Arrhenius plots for 254 nm-H2O2 regime . 61 3.3 Temperature dependence in 185 nm regime. 62 3.4 Arrhenius plots for 185 nm regime . 63 4.1 Suwannee River DOM in 185 nm regime. 73 4.2 Nordic DOM in 185 nm regime. 74 4.3 Removal rate of probe with type and concentration of DOM . 74 4.4 Tert-Butanol in 185 nm regime. 76 4.5 Methanol in 185 nm regime. 77 4.6 Acetone in 185 nm regime. 77 4.7 Removal rate of probe with pure compounds as model DOM 78 5.1 Tert-Butanol in the 254 nm - H2O2 regime and influence of chloride. 91 5.2 Suwannee River NOM in the 254 nm - H2O2 regime and in- fluence of chloride. 92 5.3 Tert-Butanol in the 185 nm regime and influence of chloride, using carbamazepine as a probe. 93 5.4 Suwannee River NOM in the 185 nm regime and influence of chloride, using carbamazepine as a probe.
Recommended publications
  • Indicator Systems for Assessing Public Health Risk in Waters by Daniel
    Indicator Systems for Assessing Public Health Risk in Waters by Daniel Oliver Roop A Thesis Submitted to the Faculty of the WORCESTER POLYTECHNIC INSTITUTE in partial fulfillment of the requirements for the Degree of Master of Science in Environmental Engineering by ____________________________________ Daniel Oliver Roop May 2012 APPROVED: ____________________________________ Dr. Jeanine D. Plummer, Major Advisor ____________________________________ Dr. John Bergendahl, Committee Member 1 Abstract For over one hundred years, indicator organisms such as coliforms have been measured as an index of public health risk from transmission of waterborne diseases. Even so, waterborne disease outbreaks have occurred in systems with negative coliform results, many traced to viral or protozoan etiologies. Conversely, no discernible public health outcomes have occurred in systems with positive coliform results. These inconsistencies arise because coliforms, as bacteria, respond differently to environmental stressors and engineered treatment processes than protozoan and viral pathogens. Recent reviews of four decades of indicator and pathogen monitoring indicated that coliphages are more highly correlated to pathogen presence in a variety of waters than coliforms. Therefore, the goal of this research was to re-examine a variety of traditional and novel indicator systems to determine their value as indicators, either singly or as a toolbox. We collected samples of animal feces, wastewaters, source waters and treated drinking waters. Samples were collected from four geographical regions of the United States (Northeast, South, Midwest and West) to assess spatial variability and in all four seasons to assess temporal variability. Samples were monitored for total coliforms, E. coli, male-specific and somatic coliphages, and other physical and chemical water quality parameters including organic carbon, pH and turbidity.
    [Show full text]
  • Microbiological Hazard to the Environment Posed by the Groundwater in the Vicinity of Municipal Waste Landfill Site
    ECOLOGICAL CHEMISTRY AND ENGINEERING S Vol. 18, No. 2 2011 1* 1 2 Krzysztof FR ĄCZEK , Jacek GRZYB and Dariusz ROPEK MICROBIOLOGICAL HAZARD TO THE ENVIRONMENT POSED BY THE GROUNDWATER IN THE VICINITY OF MUNICIPAL WASTE LANDFILL SITE ZAGRO ŻENIA MIKROBIOLOGICZNE DLA ŚRODOWISKA POWODOWANE PRZEZ WODY PODZIEMNE W STREFIE ODDZIAŁYWANIA SKŁADOWISKA ODPADÓW KOMUNALNYCH Abstract: In the area and environs of the municipal waste dump Barycz in Krakow, all analyzed groundwater samples, taken from piezometers C-1, P-3, P-6, P-8 and G revealed occurrence of bacteria - indicators of bad sanitary conditions. Even periodical pollution of groundwater results in its bad quality. Presence of fecal Coliform bacteria indicates on anthropogenic origin of the groundwater contamination. The number of cfu of fecal Coliform bacteria in water samples taken from piezometers was decreasing with growing distance from the waste dump borders. However, even in a 1230 m distance north from borders of the waste dump in the piezometer G, in spite of the absence of fecal Coliform bacteria, bad sanitary condition was ascertained, according to other microbiological indicators. Keywords: microbial contamination, groundwater, landfill leachate Landfilling is still the most often used method for solid waste disposal in Poland. However, this method is associated with several problems. Among these are pollution of air, soil and groundwater, high cost associated with landfill operation and than with their closing and remediation. An important issue is leachate which is both chemically and microbiologically contaminated [1, 2]. Landfill leachate consists of the liquid generated by the breakdown of waste, and the infiltrating precipitation [3]. A broad range of xenobiotic compounds occurring in leachate can be linked to household hazardous waste deposited in the landfill [4].
    [Show full text]
  • Rapid Enumeration of Fecal Coliforms in Water by a Colorimetric /3-Galactosidase Assay L
    0099-2240/78/0035-0136$02.00/() APPLIED AND ENVIRONMENIAl MICROBIOLOGY, Jan. 1978, p.136-141 Vol. 35, No. 1 Copyright © 1978 American Society for Microbiology Printed in U.S.A. Rapid Enumeration of Fecal Coliforms in Water by a Colorimetric /3-Galactosidase Assay L. S. WARREN,t R. E. BENOIT,* AND) J. A. JESSEE Department of Biology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061 Received for publication 3 August 1977 The colorimetric f8-galactosidase assay is based upon the enzymatic hydrolysis of the substrate o-nitrophenyl-fl-D-galactoside (ONPG) by fecal coliforms. This technique provides an estimate of the fecal coliform concentration within 8 to 20 h. A 100-ml portion of test sample was passed through a 0.45-j.m membrane filter. This filter was then incubated at 37°C for 1 h in EC medium followed by the addition of filter-sterilized ONPG. The incubation was continued at 44.5°C until a half-maximum absorbance (at 420 nm) was reached. The time between the start of incubation and the half-maximum absorbance was proportional to the concentration of fecal coliforms present. Escherichia coli (K-12) was used to measure the kinetics of substrate hydrolysis and the response time of different cell concentrations. High cell densities produced an immediate response, whereas 1 cell/ml will produce a response in less than 20 h. In field studies in which samples were taken from a range of grossly polluted streams to relatively clean lake water, a linear correlation between ONPG hydrolysis times and fecal coliform most-probable-number values was established.
    [Show full text]
  • Alternative Microbial Indicators of Faecal Pollution: Current Perspective
    Iran. J. Environ. Health. Sci. Eng., 2006, Vol. 3, No. 3, pp. 205-216 ALTERNATIVE MICROBIAL INDICATORS OF FAECAL POLLUTION: CURRENT PERSPECTIVE 1V. K. Tyagi, *2A. K. Chopra, 1A. A. Kazmi, 1Arvind Kumar 1Department of Civil Engineering, Indian Institute of Technology, Roorkee- 247 667, INDIA 2Department of Zoology and Environmental Science, Gurukula Kangri University, Hardwar -249 404 , INDIA Received 10 March 2005; revised 15 May 2006; accepted 18 June 2006 ABSTRACT Worldwide coliform bacteria are used as indicators of fecal contamination and hence, the possible presence of disease causing organisms. Therefore, it is important to understand the potential and limitations of these indicator organisms before realistically implementing guidelines and regulations to safeguard our water resources and public health. This review addresses the limitations of current faecal indicator microorganisms and proposed significant alternative microbial indicators of water and wastewater quality. The relevant literature brings out four such significant microbial water pollution indicators and the study of these indicators will reveal the total spectrum of water borne pathogens. As E.coli and enterococci indicates the presence of bacterial pathogens, Coliphages indicate the presence of enteric viruses, and Clostridium perfringens, an obligate anaerobe, indicates presence of parasitic protozoan and enteric viruses. Therefore, monitoring a suite of indicator organisms in reclaimed effluent is more likely to be predictive of the presence of certain pathogens in order to protect public health, as no single indicator is most highly predictive of membership in the presence or absence category for pathogens. Key words: Indicator microorganisms, E.coli, fecal coliforms, coliphages, clostridium perfringens INTRODUCTION During the early history of various countries, humans).
    [Show full text]
  • UNIT 3: Characteristics of Water Physical Properties of Water
    UNIT 3: Characteristics of Water Physical Properties of Water 1. Water is a tasteless, odourless liquid at standard temperature and pressure. 2. Water has a high specific heat. Specific heat is the amount of energy required to change the temperature of a substance. Because water has a high specific heat, it can absorb large amounts of heat energy before it begins to get hot. It also means that water releases heat energy slowly when situations cause it to cool. Water's high specific heat allows for the moderation of the Earth's climate and helps organisms regulate their body temperature more effectively. 3. Water in a pure state has a neutral pH. As a result, pure water is neither acidic nor basic. Water changes its pH when substances are dissolved in it. Rain has a naturally acidic pH of about 5.6 because it contains natural derived carbon dioxide and sulfur dioxide. 4. Water conducts heat more easily than any liquid except mercury. This fact causes large bodies of liquid water like lakes and oceans to have essentially a uniform vertical temperature profile. 5. Water molecules exist in liquid form over an important range of temperature from 0 - 100° Celsius. This range allows water molecules to exist as a liquid in most places on our planet. 6. Water is a universal solvent. It is able to dissolve a large number of different chemical compounds. This feature also enables water to carry solvent nutrients in runoff, infiltration, groundwater flow, and living organisms. 7. Water has a high surface tension In other words, water is adhesive and elastic, and tends to aggregate in drops rather than spread out over a surface as a thin film.
    [Show full text]
  • Identification of Bacteria, Fungi, and Most Probable Coliform Around Temporary Disposal Site at Gadang Village Banjarmasin
    Heriyani, F. et al. Identification of Bacteria, Fungi… IDENTIFICATION OF BACTERIA, FUNGI, AND MOST PROBABLE COLIFORM AROUND TEMPORARY DISPOSAL SITE AT GADANG VILLAGE BANJARMASIN Farida Heriyani1, Lia Yulia Budiarti2, Nurlaili Rafina3, Normaida Novianti3, Puspa Astri Sella3 1Departement of Public Health, Medical Faculty of Lambung Mangkurat University 2Departement of Microbiology and Parasitology, Medical Faculty of Lambung Mangkurat University 3Medical Study Program, Medical Faculty of Lambung Mangkurat University Email koresponden: [email protected] Abstract: Temporary Disposal Site (TDS) of Gadang Village Banjarmasin is one of the temporary landfills in Banjarmasin. The negative effects of waste can pollute the environment, including water and air. The purpose of this study was to identify airborne contaminant bacteria and fungi as well as the Most Probable Number (MPN) of Coliform value of piped water in the residential houses around Gadang TDS Banjarmasin. The research method is descriptive observational. The sample of this study were air and piped water. Air sampling is done by open plate and MPN Coliform sampling was obtained by purposive sampling method. The results of this study showed the air contaminant bacteria in the house were Staphylococcus aureus (55.56%) and Escherichia coli (44.44%) in the environment around the TDS all results were obtained with the same percentage. Aspergillus niger was dominantly found at a distance of 20-30 m and 40-50 m while Aspergillus flavus was mostly found at the distance around 30-40 m. MPN Coliform in piped water showed coliform bacteria contamination with MPN coliform index of 2.0-7.5/100ml water samples. In conclusion, Staphylococcus aureus bacteria is more common than Escherichia coli.
    [Show full text]
  • Lake Sinissippi Water Quality Results 2002 – 2005
    Lake Sinissippi Water Quality Results 2002 – 2005 Lake Sinissippi Improvement District Hustisford, Wisconsin November 1, 2005 Contents Water Quality Monitoring Program...............................................................................................1 Summary of Water Quality Data ..................................................................................................1 Sampling Sites ............................................................................................................................1 How the Data Have Been Used ...................................................................................................2 Lake Watershed and Pollutants...................................................................................................2 Concentrated Animal Feeding Operations ...................................................................................3 Public Health Considerations.......................................................................................................3 Exposure to Illness-Causing Organisms ......................................................................................3 Public Health Considerations in Dodge County............................................................................4 References..................................................................................................................................4 Table 1. Water Quality Data Details.............................................................................................5
    [Show full text]
  • Bacteriological Quality of Some Ready to Eat Vegetables As Retailed and Consumed in Sabon-Gari, Zaria, Nigeria
    Bajopas Volume 3 Number 1 June 2010 Bayero Journal of Pure and Applied Sciences, 3(1): 173 - 175 Received: March, 2010 Accepted: May, 2010 BACTERIOLOGICAL QUALITY OF SOME READY TO EAT VEGETABLES AS RETAILED AND CONSUMED IN SABON-GARI, ZARIA, NIGERIA Abdullahi*, I.O. and Abdulkareem, S. Department of Microbiology, Ahmadu Bello University, Zaria. *Correspondence author: [email protected] ABSTRACT Some ready to eat leafy vegetables on sale at Sabon-gari market, Zaria were analysed for their bacterial flora and counts. Lettuce had aerobic plate count range of 2.0 x 107 to 5.7 x 108 cfu/g, cabbage had a count range of 1.3 x 107 – 5.6 x 108 cfu/g and cucumber had a range of count of 3.0 x 105 to 1.9 x 106. The coliform index showed lettuce to have a count of 8.8 x 106 – 1.3 x 109, cabbage was 2.1 x 106 to 8.0 x 107 cfu/g and cucumber was 8.0 x 105 to 1.9 x 106. Bacillus species and Staphylococcus aureus were the predominant bacteria isolated from these vegetables. The counts were obviously above the recommended standards for ready to eat vegetables especially coliforms which should be less than 10 coliform bacteria per gram( FAO, 1979). There is the need for hygiene officials to take interest on what is offered to consumers and specify acceptable handling practices. Key words: Quality, Vegetable, Aerobic plate count, coliform index INTRODUCTION some fresh leafy vegetables that are usually not A vegetable is the tender plant part which is not sweet cooked before consumption.
    [Show full text]
  • 2002 Appropriate Microbial Indicator Tests for Drinking Water In
    Appropriate Microbial Indicator Tests for Drinking Water in Developing Countries and Assessment of Ceramic Water Filters by Chian Siong Low B.A.Sc., Civil and Environmental Engineering University of Toronto, 2001 Submitted to the Department of Civil and Environmental Engineering in Partial Fulfillment of the Requirements for the Degree of Master of Engineering in Civil and Environmental Engineering at the Massachusetts Institute of Technology June 2002 © 2002 Massachusetts Institute of Technology All rights reserved Signature of Author………………………………………………………………………………… Department of Civil and Environmental Engineering May 13, 2002 Certified by………………………………………………………………………………………… Susan E. Murcott Lecturer, Department of CEE Thesis Supervisor Accepted by………………………………………………………………………………............... Oral Buyukozturk Chairman, Department Committee on Graduate Studies Appropriate Microbial Indicator Tests for Drinking Water in Developing Countries and Assessment of Ceramic Water Filters by Chian Siong Low Submitted to the Department of Civil and Environmental Engineering on May 13, 2002 in Partial Fulfillment of the Requirements for the Degree of Master of Engineering in Civil and Environmental Engineering ABSTRACT Indicator organisms such as coliforms and E.coli frequently replaced pathogens in the monitoring of microbial quality of drinking water. Tests for indicator organisms are typically easy to perform and results can be obtained quickly. Many studies have concluded that total coliform is not an appropriate indicator in tropical environments. Instead, E.coli is a better indicator of recent fecal contamination and E.coli is proposed as the indicator organism of choice for routine water monitoring in developing countries. Two Presence/Absence (P/A) tests were studied and compared to Membrane Filtration (MF). The P/A-Total Coliform test is useful in evaluating disinfected water supplies.
    [Show full text]
  • STP635-EB/NOV. 1977 Aeromanas, 24 Coliform Confusion, 61
    STP635-EB/NOV. 1977 Index Disease in animals, 140 Disease in man, 140 Aeromanas, 24 Enumeration, 144 Coliform confusion, 61 Sources in water, 142 Aggregation Survival in water, 142, 143 Viruses, 203 Viability, 142 American Society of Civil Engineers Water isolations, 141 Environmental Quality Committee, 197 Chlorine residual test, 20 Anaerobic lactobacilli, 136 Drinking water, 20 B Clostridium perfringens Application indicator, 66 Bacterial indicators As indicator, 65 Sewage, 260 British MPN, 77 Streptococci use, 262 Definition, 66 Bacterial survival, 3, 23, 27 Enumeration, 77 Fecal Streptococci, 247 Epidemiology, 70 Salmonella, 3, 7 Importance, 68 Sand column, 7 Relationship to E. coli, 72 Sewage effluent, 293 Sewage, 68 Shigella, 9 Sources, 70 Shigella fiexneri, 3, 9 Closure hnes, 344 Vibrio cholerae, 9 Coliform index, 200 Bacterial species, 37, 38 Coliforms Definition, 38 Atypical forms, 60 In water, 43 Biotype change after chlorination, 5 Principles, 38 Citrobacter freundii, 26 Bacterial predators, 295 Definition, 44, 48, 60, 61 Bacteriophage, 228 Die-off, 51 Bathers, 227 Drug resistant, 169,179 Bifidobacteria Gas formation, 24 Definition, 133 Incubation, 24 Identification, 133 Index organisms, 63 Survival, 133 Lactose negative, 24 Bottled drinking water Multiplication in water, 61 Clostridia, 163 R factors, 169,178,179 P. aeruginosa, 92, 163 Coliphage, 3.199 Standards, 162 Chlorination effect, 10 Britain Enterovirus relationship, 3,13 Water technology, 291 Sewage effluent, 200 British chlorination practice, 294 Test evaluation, 10 Test for E. coli, 3,10 Virus indicator, 199,228 Candida albicans Committee on bathing places Definition, 139 Recommendations, 239 351 Copyright 1977 by ASTM International www.astm.org 352 BACTERIAL INDICATORS Conference on recombinant molecules, 206,207 Ear infections Cyanophage, 198 P.
    [Show full text]
  • Assessing Microbial Safety of Drinking Water
    Assessing Microbial Safety of Drinking Water IMPROVING APPROACHES AND METHODS Published on behalf of the World Health Organization and the Organisation for Economic Co-operation and Development by This book is one of a series of texts developed to support the development of microbial aspects in the third edition of WHO's Guidelines for Drinking-water Quality and to provide guidance to policy-makers, regulators and practitioners in aspects of planning and implementation. The other volumes include: • Protecting groundwater for health: managing the quality of drinking-water sources • Protecting surface water for health: managing the quality of drinking-water sources • Water quality and drinking-water treatment: the impact of treatment processes on microbial water quality and occurrence of pathogens and indicators in surface waters • Microbial water quality in piped distribution systems: a review of knowledge and practice • Managing water in the home: accelerating health gains from improved water quality • Water safety plans: managing public water supplies for safety Other texts of direct relevance include: From WHO • Water Quality: Guidelines, standards and health • Legionella and the prevention of legionellosis • A separate series of texts deals with emerging issues in water and infectious disease • Pathogenic mycobacteria in water • Hazard characterization for pathogens in food and water (WHO and FAO) • Quantifying public health risks in the Guidelines for Drinking-water Quality: a burden of disease approach From OECD • OECD Proceedings. Biotechnology for water use and conservation: The Mexico '96 Workshop (1997) • The price of water: trends in OECD countries (1999) • Molecular technologies for safe drinking water (1998) (available at http://www.oecd.org/pdf/M000014000/M00014623.pdf) • Drinking water and infectious disease: establishing the links (co-published by IWA, 2002) FOREWORD Inadequate drinking water supply and quality and poor sanitation are among the world’s major causes of preventable morbidity and mortality.
    [Show full text]
  • Alternative Microbial Indicators of Faecal Pollution
    Iran. J. Environ. Health. Sci. Eng., 2006, Vol. 3, No. 3, pp. 205-216 ALTERNATIVE MICROBIAL INDICATORS OF FAECAL POLLUTION: CURRENT PERSPECTIVE 1V. K. Tyagi, *2A. K. Chopra, 1A. A. Kazmi, 1Arvind Kumar 1Department of Civil Engineering, Indian Institute of Technology, Roorkee- 247 667, INDIA 2Department of Zoology and Environmental Science, Gurukula Kangri University, Hardwar -249 404 , INDIA Received 10 March 2005; revised 15 May 2006; accepted 18 June 2006 ABSTRACT Worldwide coliform bacteria are used as indicators of fecal contamination and hence, the possible presence of disease causing organisms. Therefore, it is important to understand the potential and limitations of these indicator organisms before realistically implementing guidelines and regulations to safeguard our water resources and public health. This review addresses the limitations of current faecal indicator microorganisms and proposed significant alternative microbial indicators of water and wastewater quality. The relevant literature brings out four such significant microbial water pollution indicators and the study of these indicators will reveal the total spectrum of water borne pathogens. As E.coli and enterococci indicates the presence of bacterial pathogens, Coliphages indicate the presence of enteric viruses, and Clostridium perfringens, an obligate anaerobe, indicates presence of parasitic on Friday, August 24, 2012 protozoan and enteric viruses. Therefore, monitoring a suite of indicator organisms in reclaimed effluent is more likely to be predictive of the presence of certain pathogens in order to protect public health, as no single indicator is most highly predictive of membership in the presence or absence category for pathogens. Key words: Indicator microorganisms, E.coli, fecal coliforms, coliphages, clostridium perfringens http://journals.tums.ac.ir/ INTRODUCTION During the early history of various countries, humans).
    [Show full text]