Effectiveness of Ceramic Filtration for Drinking Water Treatment in Cambodia

Total Page:16

File Type:pdf, Size:1020Kb

Effectiveness of Ceramic Filtration for Drinking Water Treatment in Cambodia View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Carolina Digital Repository EFFECTIVENESS OF CERAMIC FILTRATION FOR DRINKING WATER TREATMENT IN CAMBODIA Joseph Mark Brown A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Environmental Sciences and Engineering. Chapel Hill 2007 Approved byyyyyy Mark D. Sobsey, Ph.D. Michael D. Aitken, Ph.D. Francis A. DiGiano, Ph.D. Dana Loomis, Ph. D. David Weber, M.D. © 2007 Joseph Mark Brown ALL RIGHTS RESERVED ii ABSTRACT JOSEPH MARK BROWN: EFFECTIVENESS OF CERAMIC FILTRATION FOR DRINKING WATER TREATMENT IN CAMBODIA (Under the direction of Mark D. Sobsey, Ph.D.) For the estimated 66% of Cambodians without access to improved drinking water sources and the potentially much greater percentage without consistent access to microbiologically safe water, point-of-use water treatment coupled with appropriate storage to prevent recontamination is a promising option for securing access to safe drinking water. The ceramic water purifier (CWP) is an emerging point-of-use water treatment technology that is made locally in Cambodia and in several other developing countries based on a design originally developed in Latin America in the 1980s. Despite the filter's increasingly widespread promotion and implementation as a public health intervention within Cambodia and worldwide, its effectiveness in reducing waterborne microbes and diarrheal disease in users has not been adequately characterized. This dissertation examines: (i) the microbiological effectiveness of locally produced ceramic filters in Cambodia against bacterial and viral surrogates in the laboratory and in field use; (ii) the health impacts of the CWP and a modified CWP in a randomized, controlled trial in a rural/peri-urban village; and (iii) the continued use, microbiological effectiveness, and sustained health impacts of the CWP after up to 44 months in household use in three provinces of Cambodia. iii Results indicate filters as currently produced do reduce microbial indicators in drinking water and contribute to the reduction of diarrheal disease in users. Key findings were: (i) CWPs reduced E. coli up to 99.9999%, with mean reductions of approximately 99% in both laboratory and field testing; (ii) CWPs reduced MS2, a viral surrogate, by a mean 90-99% in laboratory testing; (iii) use of the CWP reduced diarrheal disease outcomes by approximately 40% in users versus non-users, after controlling for clustering within households and within individuals over time in a randomized, controlled trial; (iv) filters maintained effectiveness over long periods, up to 44 months in field use; (v) declining use of the CWPs after implementation was observed due to breakages of the ceramic filter elements coupled with limited availability of replacement parts in communities; and (vi) CWPs in field use were susceptible to recontamination through improper handling practices. iv I am forever indebted to my longsuffering bride, my wise and patient mentors, my generous benefactors and enablers, my steadfast friends and family, and my loyal dogs. v TABLE OF CONTENTS LIST OF TABLES………………………………………………………………... ix LIST OF FIGURES………………………………………………………………. xii LIST OF ABBREVIATIONS…………………………………………………….. xvi CHAPTER 1: INTRODUCTION AND OBJECTIVES…………………………. 1 1.1 Introduction……………………………………………………………….. 1 1.2 Objectives…………………………………………………………………. 3 1.3 References………………………………………………………………… 9 CHAPTER 2: LITERATURE REVIEW………………………………………… 10 2.1 Introduction……………………………………………………………….. 10 2.2 Summits, targets, and initiatives………………………………………….. 11 2.3 Waterborne disease……………………………………………………….. 13 2.4 Access to safe water………………………………………………………. 19 2.5 Point-of-use water treatment interventions……………………………….. 20 2.6 Ceramic filters for drinking water treatment……………………………… 33 2.7 References………………………………………………………………… 41 CHAPTER 3: LABORATORY AND FIELD EFFECTIVENESS OF LOW-COST CERAMIC FILTERS FOR DRINKING WATER TREATMENT IN CAMBODIA…………………………………………………. 51 3.1 Introduction……………………………………………………………….. 52 3.2 Purpose and objectives……………………………………………………. 55 3.3 Methods and materials……………………………………………………. 56 vi 3.4 Results…………………………………………………………………….. 70 3.5 Discussion………………………………………………………………… 78 3.6 Conclusions………………………………………………………………. 84 3.7 References………………………………………………………………… 106 CHAPTER 4: POINT-OF-USE DRINKING WATER TREATMENT IN CAMBODIA: A RANDOMIZED, CONTROLLED TRIAL OF LOCALLY MADE CERAMIC FILTERS……………………………………………………………... 110 4.1 Introduction……………………………………………………………….. 111 4.2 Purpose and objectives……………………………………………………. 115 4.3 Methods and materials……………………………………………………. 116 4.4 Results…………………………………………………………………….. 128 4.5 Discussion………………………………………………………………… 138 4.6 Conclusions……………………………………………………………….. 147 4.7 References………………………………………………………………… 164 CHAPTER 5: CERAMIC FILTERS FOR POINT-OF-USE DRINKING WATER TREATMENT IN RURAL CAMBODIA: INDEPENDENT APPRAISAL OF INTERVENTIONS FROM 2002-2005…………………………………………... 169 5.1 Introduction……………………………………………………………….. 170 5.2 Purpose and objectives……………………………………………………. 173 5.3 Methods and materials……………………………………………………. 174 5.4 Results……………………………………………………………………... 192 5.5 Discussion………………………………………………………………… 208 5.6 Conclusions……………………………………………………………….. 219 5.7 References………………………………………………………………… 243 vii CHAPTER 6: SUMMARY, CONCLUSIONS, AND FUTURE WORK……………………………………………………………………………. 247 6.1 Summary…………………………………………………………………... 247 6.2 Conclusions……………………………………………………………….. 248 6.3 Research needs and remaining questions…………………………………. 251 6.4 References………………………………………………………………… 256 viii LIST OF TABLES Table 2.1. Classification of infectious diseases related to water and sanitation………………………………………………………………….…….. 15 Table 2.2. Results of meta-analysis of effects of water-related interventions on diarrhea from Fewtrell et al. (2005)………………………….…... 23 Table 2.3. Estimates of baseline and maximum effectiveness of filter technologies against microbes in water, including porous ceramic filtration and other proposed POU filtration technologies…………….…… 32 Table 3.1. Lab-based effectiveness testing for low-cost ceramic pot-style filters: summary of evidence to date………………………………….…... 54 Table 3.2. Laboratory challenge water characteristics……………………….…….. 60 Table 3.3. Summary of laboratory effectiveness data for the CWP1, CWP2, and CWP3 ceramic filters…………………………………….……. 86 Table 3.4. Field effectiveness data summary for water treatment by boiling, the CWP1, and the CWP2 over the 18 week trial………………….…… 87 Table 4.1. Characteristics of study groups………………………………….……… 148 Table 4.2. Summary of longitudinal data for diarrheal disease (all) by biweekly surveillance point………………………………………….……... 149 Table 4.3. Summary of longitudinal data for dysentery (diarrheal disease with blood) by biweekly surveillance point……………….…….. 150 Table 4.4. Diarrheal disease prevalence proportions and filter effect estimates (CWP1) by age and sex of individuals……………………….……. 151 Table 4.5. Diarrheal disease prevalence proportions and filter effect estimates (CWP2) by age and sex of individuals……………………….……. 152 Table 4.6. Dysentery (diarrhea with blood) prevalence proportions and filter effect estimates (CWP1) by age and sex of individuals………….………. 153 Table 4.7. Dysentery (diarrhea with blood) prevalence proportions and filter effect estimates (CWP2) by age and sex of individuals…………….……. 154 Table 4.8. Measured levels of E. coli (cfu/100 ml) in household drinking water by study group……………………………………………….……… 155 ix Table 4.9. Mean E. coli counts (cfu/100 ml) and turbidity averages for samples taken in intervention households (untreated and treated water)………………………………………………….…….. 156 Table 4.10. Stratum-specific risk estimates for levels of E. coli in household drinking water samples, diarrheal disease in last 7 days…………………………………………………………………….…... 157 Table 4.11. Stratum-specific risk estimates for levels of E. coli in household drinking water samples, diarrheal disease with blood (dysentery) in last 7 days………………………………….……. 158 Table 5.1. Data summary and estimated odds ratios for selected factors. Odds ratios are adjusted for time elapsed since implementation………………………………………………….……. 221 Table 5.2. Observed levels of E. coli (cfu/100 ml) in household drinking water by study group……………………………………….….. 222 Table 5.3. Arithmetic mean total coliform and E. coli counts (cfu/100 ml) and turbidity for samples taken in intervention households (untreated and treated water)………………………….…... 223 Table 5.4. Geometric mean total coliform and E. coli counts (cfu/100 ml) and turbidity for samples taken in intervention households (untreated and treated water)…………………………….... 224 Table 5.5. Summary of log10 reduction values of E. coli by CWPs, by province………………………………………………………………….. 225 Table 5.6. Summary of log10 reduction values of E. coli by the CWP, stratified by time in use…………………………………………………... 226 Table 5.7. Summary of E. coli counts (cfu/100 ml) in filter treated water, by time in use……………………………………………………….... 227 Table 5.8. Summary of distribution of log10 reduction values of E. coli by CWPs compared with boiled, stored water……………………………. 228 Table 5.9. Selected characteristics of the intervention (households with CWPs) and control (without CWPs) groups from the longitudinal study of water quality and health………………………………………………………………………………… 229 Table 5.10. Summary of longitudinal data for diarrheal disease by surveillance point………………………………………………………..
Recommended publications
  • Water Quality Interventions to Prevent Diarrhoea: Cost and Cost-Effectiveness
    Water Quality Interventions to Prevent Diarrhoea: Cost and Cost-Effectiveness Dr Thomas F. Clasen, London School of Hygiene & Tropical Medicine, UK Ms Laurence Haller, World Health Organization, Geneva, Switzerland Public Health and the Environment Water, Sanitation and Hygiene WHO/HSE/WSH/08.02 Water Quality Interventions to Prevent Diarrhoea: Cost and Cost-Effectiveness Prepared by: Dr Thomas F. Clasen, London School of Hygiene & Tropical Medicine, UK Ms Laurence Haller, World Health Organization, Geneva, Switzerland Public Health and the Environment World Health Organization Geneva 2008 Water Quality Interventions to Prevent Diarrhoea: Cost and Cost-Effectiveness © World Health Organization 2008 The illustration on the cover page is extracted from Rescue Mission: Planet Earth, © Peace Child International 1994; used by permission. All rights reserved. Publications of the World Health Organization can be obtained from WHO Press, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel.: +41 22791 3264; fax: +41 22 791 4857; e-mail: [email protected]). Requests for permission to reproduce or translate WHO publications – whether for sale or for noncommercial distribution – should be addressed to WHO Press, at the above address (fax: +41 22 791 4806; e-mail: [email protected]). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement.
    [Show full text]
  • Indicator Systems for Assessing Public Health Risk in Waters by Daniel
    Indicator Systems for Assessing Public Health Risk in Waters by Daniel Oliver Roop A Thesis Submitted to the Faculty of the WORCESTER POLYTECHNIC INSTITUTE in partial fulfillment of the requirements for the Degree of Master of Science in Environmental Engineering by ____________________________________ Daniel Oliver Roop May 2012 APPROVED: ____________________________________ Dr. Jeanine D. Plummer, Major Advisor ____________________________________ Dr. John Bergendahl, Committee Member 1 Abstract For over one hundred years, indicator organisms such as coliforms have been measured as an index of public health risk from transmission of waterborne diseases. Even so, waterborne disease outbreaks have occurred in systems with negative coliform results, many traced to viral or protozoan etiologies. Conversely, no discernible public health outcomes have occurred in systems with positive coliform results. These inconsistencies arise because coliforms, as bacteria, respond differently to environmental stressors and engineered treatment processes than protozoan and viral pathogens. Recent reviews of four decades of indicator and pathogen monitoring indicated that coliphages are more highly correlated to pathogen presence in a variety of waters than coliforms. Therefore, the goal of this research was to re-examine a variety of traditional and novel indicator systems to determine their value as indicators, either singly or as a toolbox. We collected samples of animal feces, wastewaters, source waters and treated drinking waters. Samples were collected from four geographical regions of the United States (Northeast, South, Midwest and West) to assess spatial variability and in all four seasons to assess temporal variability. Samples were monitored for total coliforms, E. coli, male-specific and somatic coliphages, and other physical and chemical water quality parameters including organic carbon, pH and turbidity.
    [Show full text]
  • Limitations of Solar Disinfection (SODIS) Water Treatment in Low-Income Communities Honors Senior Thesis
    Limitations of Solar Disinfection (SODIS) Water Treatment in Low-Income Communities Honors Senior Thesis Release Agreement Form The High Library supports the preservation and dissemination of all papers and projects completed as part of the requirements for the Elizabethtown College Honors Program (Honors Senior Thesis). Your signature on the following form confirms your authorship of this work and your permission for the High Library to make this work available. By agreeing to make it available, you are also agreeing to have this work included in the institutional repository, JayScholar. If you partnered with others in the creation of this work, your signature also confirms that you have obtained their permission to make this work available. Should any concerns arise regarding making this work available, faculty advisors may contact the Director of the High Library to discuss the available options. Release Agreement I, as the author of this work, do hereby grant to Elizabethtown College and the High Library a non-exclusive worldwide license to reproduce and distribute my project, in whole or in part, in all forms of media, including but not limited to electronic media, now or hereafter known, subject to the following terms and conditions: Copyright No copyrights are transferred by this agreement, so I, as the author, retain all rights to the work, including but not limited to the right to use in future works (such as articles or books). With this submission, I represent that any third-party content included in the project has been used with permission from the copyright holder(s) or falls within fair use under United States copyright law (http://www.copyright.gov/title17/92chap1.html#107).
    [Show full text]
  • Challenges to the Commercial Viability of Point-Of-Use (POU) Water Treatment Systems in Low-Income Settings John Harris Disserta
    Challenges to the Commercial Viability of Point-of-Use (POU) Water Treatment Systems in Low-Income Settings John Harris Dissertation submitted in partial fulfillment of an: MSc in Water Science Policy and Management School of Geography and the Environment Oxford University September 2, 2005 Abstract Point-of-use (POU) water treatment systems have been put forward in recent years as low-cost, scalable, and effective solutions to the significant challenge of providing potable drinking water in lower income settings. In spite of their usefulness, however, levels of adoption and continued use remain low. Recently, several projects have turned to a commercial approach in order to make the products more widely available. This trend seeks to position POU products alongside other health-related products which have been delivered in part by a commercial approach, such as condoms or bed-nets. Drawing upon semi-structured interviews with key industry experts, this research argues that these initial projects have failed to boost significantly adoption rates. Reasons for this failure are explored. Nevertheless, the pursuit of commercial viability presents a promising strategy by which to promote POU products’ adoption and sustained use. Strategies that have helped POU projects achieve partial commercial viability thus far, and may be useful in formulating strategies for POU projects seeking commercial viability in the future, are developed and explored. While projects promoting POU products have to date been unsuccessful in achieving commercial viability, should they do so in the future, these products, in conjunction with a commercial approach, have the opportunity to change the paradigm for the provision of potable water in lower income settings.
    [Show full text]
  • Household Water Treatment and Safe Storage Factsheet: Source Protection
    Household Water Treatment and Safe Storage Factsheet: Source Protection The Treatment Process Potential Treatment Capacity Very Effective For: Somewhat Effective For: Not Effective For: Local contamination of the Naturally occurring water source contamination Contaminants introduced upstream of the water source What is Source Protection? Source Protection Practices There are many pollution problems which The following provides suggestions on may threaten drinking water quality at the several things that can be done to protect source, point of collection, or during different water sources from contamination transport. Source protection can reduce or and improve the quality. eliminate the risk of contamination, resulting For all Water Sources and Points of Use in improved water quality and reduced risk (where the water is stored or used): of disease. Source protection should always be practiced as the first step in the multi- Locate latrines down hill and at least 30 barrier approach to safe drinking water. meters away from water sources. Keep animals away by using fences What Causes Contamination? around the water source The main risk factors for contamination at Maintain separate area for washing clothes the water source, collection point and during and watering animals transport are: Keep the general environment around the Poor site selection of the water source water source and points of use clean and Poor protection of the water source against free from excreta and garbage pollution (e.g. agricultural runoff Plant trees along creeks and rivers and contaminated with manure and fertilizers) maintain a well forested area above your Poor structure design or construction (e.g. water source, to trap contaminants and lack of a well lining and/or cover, tank prevent erosion sealing, poor pipe connections) Provide adequate drainage to prevent Deterioration or damage to structures (e.g.
    [Show full text]
  • Integrating Sanitation Into Services for People Living with HIV and AIDS
    INTEGRATING SANITATION INTO THE BASIC CARE PACKAGE INTEGRATING SANITATION INTO SERVICES FOR PEOPLE LIVING WITH HIV AND AIDS JULY 2012 JULY 2012 This publication was prepared for the U.S. Agency for International Development. This publication was prepared for the U.S. Agency for International Development. INTEGRATING SANITATION INTO THE BASIC CARE PACKAGE C-Change is a USAID-funded project, implemented by FHI 360, to improve the effectiveness and sustainability of social and behavior change communication (SBCC) across development areas, including family planning and reproductive health, HIV prevention, malaria prevention, other health areas, civil society, and democracy and governance. C- Change works with regional and local partners to strengthen their capacity to implement effective SBCC programs. For information, visit www.c-changeproject.org. WASHplus, a five-year (2010–2015) cooperative agreement managed by FHI 360 with CARE and Winrock International as core partners, is funded through USAID’s Bureau for Global Health. WASHplus creates supportive environments for healthy households and communities by delivering interventions that lead to improvements in water, sanitation, hygiene (WASH) and indoor air pollution (IAP). WASHplus uses at-scale as well as integrated programming approaches to reduce diarrheal diseases and acute respiratory infections, the two top killers of children under five years of age globally. For information, visit www.washplus.org or email: [email protected]. Contact Information: USAID C-Change and WASHplus Projects FHI Development 360 1825 Connecticut Avenue, NW Washington, DC 20009-5721 Tel. 202-884-8000; Fax: 202-884-8454 Submitted to: Gloria Coe and Shanti Conly, AOTRs C-Change Project Merri Weinger, AOTR WASHplus Project U.S.
    [Show full text]
  • SAFE WATER SYSTEMS: an Evaluation of the Zambia CLORIN Program
    SAFE WATER SYSTEMS: An Evaluation of the Zambia CLORIN Program FINAL REPORT 26 September 2004 Lynnette Olembo, MPH. Principal Investigator, Johns Hopkins Bloomberg School of Public Health FAD Kaona, BA, MA PhD. Co-investigator, Mwengu Social and Health Research Center Mary Tuba, MA, B.SW. Programs Manager, Mwengu Social and Health Research Center Gilbert Burnham, MD, PhD. Department of International Health, Johns Hopkins School of Public Health Technical Advice: Eckhard Kleinau, DrPH, MD, , Senior Technical Director, Environmental Health Project (EHP) Funding Provided by: U.S. Agency for International Development (USAID) through the Environmental Health Project (EHP) Narrative Safe Water System evaluation report. 26 September 2004. Page 1 ORGANIZATION This report is organized into three parts. This first part contains the narrative. The second part contains the data tables, and the third part contains the questionnaire. ABSTRACT AND KEY FINDINGS This is a report of the evaluation of the Zambia Safe Water Systems program conducted by The Mwengu Social and Health Research Centre and the Johns Hopkins Bloomberg School of Public Health. The intent of this study was to assess how the Safe Water System was being used in areas where marketing and distribution had focused. Sites were selected on a nationwide basis using distribution information from Society for Family Health (SFH), Population Services Inter- national’s (PSI) local affiliate, who ran the social marketing program for CLORIN. A sample size of 1319 households was used, stratifying for type of marketing and household characteristics. For each of these households interviews were carried out among heads of households, primary water caretakers, primary child caretakers and information gathered on children in the household under age five.
    [Show full text]
  • The Drinking Water Response to the Indian Ocean Tsunami Including the Role of Household Water Treatment
    World Health Organization Sustainable Development and Healthy Environments The Drinking Water Response to the Indian Ocean Tsunami Including the Role of Household Water Treatment Thomas Clasen & Lucy Smith London School of Hygiene & Tropical Medicine Protection of the Human Environment Water, Sanitation and Health Geneva 2005 WHO/SDE/WSH/05.04 English only The Drinking Water Response to the Indian Ocean Tsunami, Including the Role of Household Water Treatment Thomas Clasen & Lucy Smith London School of Hygiene & Tropical Medicine Water, Sanitation and Health Protection of the Human Environment World Health Organization Geneva 2005 The Drinking Water Response to the Indian Ocean Tsunami, Including the Role of Household Water Treatment © World Health Organization 2005 All rights reserved. Publications of the World Health Organization can be obtained from Marketing and Dissemination, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel: +41 22 791 2476; fax: +41 22 791 4857; email: [email protected]). Requests for permission to reproduce or translate WHO publications – whether for sale or for noncommercial distribution – should be addressed to Publications, at the above address (fax: +41 22 791 4806; email: [email protected]). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned.
    [Show full text]
  • Microbiological Hazard to the Environment Posed by the Groundwater in the Vicinity of Municipal Waste Landfill Site
    ECOLOGICAL CHEMISTRY AND ENGINEERING S Vol. 18, No. 2 2011 1* 1 2 Krzysztof FR ĄCZEK , Jacek GRZYB and Dariusz ROPEK MICROBIOLOGICAL HAZARD TO THE ENVIRONMENT POSED BY THE GROUNDWATER IN THE VICINITY OF MUNICIPAL WASTE LANDFILL SITE ZAGRO ŻENIA MIKROBIOLOGICZNE DLA ŚRODOWISKA POWODOWANE PRZEZ WODY PODZIEMNE W STREFIE ODDZIAŁYWANIA SKŁADOWISKA ODPADÓW KOMUNALNYCH Abstract: In the area and environs of the municipal waste dump Barycz in Krakow, all analyzed groundwater samples, taken from piezometers C-1, P-3, P-6, P-8 and G revealed occurrence of bacteria - indicators of bad sanitary conditions. Even periodical pollution of groundwater results in its bad quality. Presence of fecal Coliform bacteria indicates on anthropogenic origin of the groundwater contamination. The number of cfu of fecal Coliform bacteria in water samples taken from piezometers was decreasing with growing distance from the waste dump borders. However, even in a 1230 m distance north from borders of the waste dump in the piezometer G, in spite of the absence of fecal Coliform bacteria, bad sanitary condition was ascertained, according to other microbiological indicators. Keywords: microbial contamination, groundwater, landfill leachate Landfilling is still the most often used method for solid waste disposal in Poland. However, this method is associated with several problems. Among these are pollution of air, soil and groundwater, high cost associated with landfill operation and than with their closing and remediation. An important issue is leachate which is both chemically and microbiologically contaminated [1, 2]. Landfill leachate consists of the liquid generated by the breakdown of waste, and the infiltrating precipitation [3]. A broad range of xenobiotic compounds occurring in leachate can be linked to household hazardous waste deposited in the landfill [4].
    [Show full text]
  • Rapid Enumeration of Fecal Coliforms in Water by a Colorimetric /3-Galactosidase Assay L
    0099-2240/78/0035-0136$02.00/() APPLIED AND ENVIRONMENIAl MICROBIOLOGY, Jan. 1978, p.136-141 Vol. 35, No. 1 Copyright © 1978 American Society for Microbiology Printed in U.S.A. Rapid Enumeration of Fecal Coliforms in Water by a Colorimetric /3-Galactosidase Assay L. S. WARREN,t R. E. BENOIT,* AND) J. A. JESSEE Department of Biology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061 Received for publication 3 August 1977 The colorimetric f8-galactosidase assay is based upon the enzymatic hydrolysis of the substrate o-nitrophenyl-fl-D-galactoside (ONPG) by fecal coliforms. This technique provides an estimate of the fecal coliform concentration within 8 to 20 h. A 100-ml portion of test sample was passed through a 0.45-j.m membrane filter. This filter was then incubated at 37°C for 1 h in EC medium followed by the addition of filter-sterilized ONPG. The incubation was continued at 44.5°C until a half-maximum absorbance (at 420 nm) was reached. The time between the start of incubation and the half-maximum absorbance was proportional to the concentration of fecal coliforms present. Escherichia coli (K-12) was used to measure the kinetics of substrate hydrolysis and the response time of different cell concentrations. High cell densities produced an immediate response, whereas 1 cell/ml will produce a response in less than 20 h. In field studies in which samples were taken from a range of grossly polluted streams to relatively clean lake water, a linear correlation between ONPG hydrolysis times and fecal coliform most-probable-number values was established.
    [Show full text]
  • A Survey of Point of Use Household Water Treatment Options for Rural South India
    Georgia State University ScholarWorks @ Georgia State University Public Health Theses School of Public Health 1-6-2012 A Survey of Point of Use Household Water Treatment Options for Rural South India Kendralyn G. Jeffreys Follow this and additional works at: https://scholarworks.gsu.edu/iph_theses Part of the Public Health Commons Recommended Citation Jeffreys, Kendralyn G., "A Survey of Point of Use Household Water Treatment Options for Rural South India." Thesis, Georgia State University, 2012. https://scholarworks.gsu.edu/iph_theses/190 This Thesis is brought to you for free and open access by the School of Public Health at ScholarWorks @ Georgia State University. It has been accepted for inclusion in Public Health Theses by an authorized administrator of ScholarWorks @ Georgia State University. For more information, please contact [email protected]. A Survey of Point of Use Household Water Treatment Options for Rural South India Kendralyn G. Jeffreys Table of Contents INTRODUCTION............................................................................................................5 Purpose ..........................................................................................................................................................................6 The Need for Household Water Treatment....................................................................................................6 WATER IN INDIA ..........................................................................................................8 The Physical
    [Show full text]
  • Alternative Microbial Indicators of Faecal Pollution: Current Perspective
    Iran. J. Environ. Health. Sci. Eng., 2006, Vol. 3, No. 3, pp. 205-216 ALTERNATIVE MICROBIAL INDICATORS OF FAECAL POLLUTION: CURRENT PERSPECTIVE 1V. K. Tyagi, *2A. K. Chopra, 1A. A. Kazmi, 1Arvind Kumar 1Department of Civil Engineering, Indian Institute of Technology, Roorkee- 247 667, INDIA 2Department of Zoology and Environmental Science, Gurukula Kangri University, Hardwar -249 404 , INDIA Received 10 March 2005; revised 15 May 2006; accepted 18 June 2006 ABSTRACT Worldwide coliform bacteria are used as indicators of fecal contamination and hence, the possible presence of disease causing organisms. Therefore, it is important to understand the potential and limitations of these indicator organisms before realistically implementing guidelines and regulations to safeguard our water resources and public health. This review addresses the limitations of current faecal indicator microorganisms and proposed significant alternative microbial indicators of water and wastewater quality. The relevant literature brings out four such significant microbial water pollution indicators and the study of these indicators will reveal the total spectrum of water borne pathogens. As E.coli and enterococci indicates the presence of bacterial pathogens, Coliphages indicate the presence of enteric viruses, and Clostridium perfringens, an obligate anaerobe, indicates presence of parasitic protozoan and enteric viruses. Therefore, monitoring a suite of indicator organisms in reclaimed effluent is more likely to be predictive of the presence of certain pathogens in order to protect public health, as no single indicator is most highly predictive of membership in the presence or absence category for pathogens. Key words: Indicator microorganisms, E.coli, fecal coliforms, coliphages, clostridium perfringens INTRODUCTION During the early history of various countries, humans).
    [Show full text]