Some Aspects of the Biology of Bathypolypus Sponsalis (Mollusca, Cephalopoda) in the North Aegean Sea (Eastern Mediterranean

Total Page:16

File Type:pdf, Size:1020Kb

Some Aspects of the Biology of Bathypolypus Sponsalis (Mollusca, Cephalopoda) in the North Aegean Sea (Eastern Mediterranean SOME ASPECTS OF THE BIOLOGY OF BATHYPOLYPUS SPONSALIS (MOLLUSCA, CEPHALOPODA) IN THE NORTH AEGEAN SEA (EASTERN MEDITERRANEAN SEA) D Onghia, A Tursi, A Matarrese, P Panetta To cite this version: D Onghia, A Tursi, A Matarrese, P Panetta. SOME ASPECTS OF THE BIOLOGY OF BATHY- POLYPUS SPONSALIS (MOLLUSCA, CEPHALOPODA) IN THE NORTH AEGEAN SEA (EAST- ERN MEDITERRANEAN SEA). Vie et Milieu / Life & Environment, Observatoire Océanologique - Laboratoire Arago, 1993, pp.161-164. hal-03045793 HAL Id: hal-03045793 https://hal.sorbonne-universite.fr/hal-03045793 Submitted on 8 Dec 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. VIE MILIEU, 1993, 43 (2-3): 161-164 SOME ASPECTS OF THE BIOLOGY OF BATHYPOLYPUS SPONSALIS (MOLLUSCA, CEPHALOPODA) IN THE NORTH AEGEAN SEA (EASTERN MEDITERRANEAN SEA) D'ONGHIA G., A. TURSI, A. MATARRESE, P. PANETTA Institute of Zoology and Comparative Anatomy, University of Bari Via Amendola 165/A, 70126 Bari, Italy CEPHALOPODA ABSTRACT - The présence of the Cephalopod Bathypolypus sponsalis (P. & H. NEW RECORDS Fischer, 1892) in the North Aegean Sea (Greece) is recorded. Spécimens of this BIOLOGY species were found during four trawl surveys carried out from 1990 to 1991 in AEGEAN SEA MEDITERRANEAN SEA the Aegean Sea. Some biological aspects of the species are reported. CÉPHALOPODES RÉSUMÉ - La présence du Céphalopode Bathypolypus sponsalis (R & H. Fischer, MER EGÉE 1892) dans la Mer Egée septentrionale (Grèce) est signalée pour la première fois. MÉDITERRANÉE De nombreux exemplaires (94) de cette espèce ont été capturés pendant quatre BIOLOGIE croisières effectuées de 1990 à 1991 dans la Mer Egée. Quelques aspects de la biologie de cette espèce ont été analysés. INTRODUCTION Zoology and Comparative Anatomy of the Univer- sity of Bari (Italy) and the National Center for Marine Research of Athens (Greece) cooperate. Although the présence of Bathypolypus The area investigated, shown in Fig.l, covers sponsalis (P. & H. Fischer, 1892) in the Mediter- two zones of the North Aegean Sea. One lies near ranean Sea was first recorded in 1954 (Wirz, the Sporades Islands and has an area of 1954), there are some areas, mostly in the eastern 1 800 km2; the other, in the eastern area south of basin, in which the species had not been pre- the island of Limnos, has a surface of about viously recorded and its présence was therefore 6 000 km2. considered uncertain (Mangold & Boletzky, 1987). Récent research, aiming at the assessment of A professional trawler of 115 tons, equipped the demersal resources of the Aegean Sea, has led with a nylon net with 16 mm meshes to the cod- to the finding of some rare species including B. end, was hired. sponsalis. The sampling was random-stratified and the This report gives some information on the bi- area investigated was divided into three depth ology of this species. strata: 0-100 m, 100-200 m, 200-500 m. The minimum and maximum depths trawled were 60 and 440 m respectively in the western area and 32 and 437 m in the eastern one. MATERIALS AND METHODS The hauls, 11 in the western area and 21 in the eastern one, lasted each about 1 hour. The following data were collected during four The spécimens of B. sponsalis found during the trawl surveys carried out, respectively, in August- surveys were kept aboard in 5 % formol and their September 1990, November-December 1990, Feb- dorsal mantle length (DML) in mm and weight (in ruary-March 1991 and June 1991 within the EEC grams) were measured. For the spécimens for financed programme "Investigation of the abun- which it was technically possible, sex and stage dance and distribution of demersal stocks of pri- of maturity of the gonads (Mangold-Wirz, 1963) mary importance to the Greek fishery in the North were assessed and the eggs or spermatophores pré- Aegean Sea (Greece)", with which the Institute of sent in mature individuals were counted. 162 G. D'ONGHIA RESULTS 60 pear-shaped eggs were found, ranging from 6 to 13 mm in length. Sometimes smooth eggs were The 94 individuals of both sexes caught during found together with eggs with longitudinal strip- the trawl surveys are listed in table I with the geo- ing. In sexually mature maie individuals from 4 graphical position, depth of the station, body size to 8 spermatophores were counted, their maximum of the individuals and stage of maturity of their length was 22 mm, i. e. over 50 % of the dorsal gonads. mantle length. Bathypolypus sponsalis was found in both areas The smallest mature female individual had a on muddy bottoms starting from 300 m to the size of 30 mm and the smallest maie a size of maximum depth investigated (440 m). In the 27 mm. The hectocotylus arm was distinct, with catches, together with this octopod, the species developed ligula and calamus, even in immature Sepietta oweniana, Rossia macrosoma, Octopus individuals, and its length was 60 % of that of the salutii and, in deeper stations, Neorossia caroli, opposite arm. Todarodes sagittatus and Pteroctopus tetracirrhus The size/weight ratio for B. sponsalis was cal- were frequently présent. Sometimes Sepia or- culated pooling both sexes, because of the small bignyana, Illex coindetii and Eledone cirrhosa, number of individuals fished and also to be able which have a wide bathymetrical distribution, to compare data with those recently reported by were also found together with B. sponsalis. some authors for individuals fished in the Tyr- rhenian Sea and in the Channel of Sicily (Jereb The minimum and maximum dorsal mantle et al, 1989). The ratio was : W = 0.005201 * L2 37, lengths were 20 and 50 mm for females and 18 from which the allometric nature of the growth of and 40 mm for maies, respectively. The number B. sponsalis can be recognized. The size/weight of females and maies found in each trawl survey ratio calculated separately for each sex, although and their average sizes are given in table IL Be- it must be considered as scarcely reliable due to cause in the first two surveys only a few spéci- the small number of individuals for which it was mens were fished, the comparison between the established, stresses the tendency that, females mean sizes of the two sexes is reliable only with tend to weigh more than maies with equal mantle regard to the last two surveys. Evidence arises length. from the comparison that females have a greater mean size than maies (t = 4.17, d.f. = 39, p < 0.001 in February; t = 2.28, d.f. = 35, p = 0.029 in June). The spécimens fished in the Aegean Sea DISCUSSION AND CONCLUSIONS had rather stumpy mantles, nearly as wide as long, comparable to the type of the Balearic Islands (Wirz, 1955) which are also found in the Tuscan The finding of Bathypolypus sponsalis in the archipelago (Lumare, 1970). North Aegean Sea broadens its geographical dis- In mature females, fished during the surveys tribution in the Mediterranean Sea. Within this carried out in February-March and in June, up to distribution a geographical void exists in the Ion- CEPHALOPODA : BIOLOGY IN THE AEGEAN SEA 163 Table I. - List of spécimens of Bathypolypus sponsalis Table II. - Number of individuals of Bathypolypus found during four trawl surveys carried out in the North sponsalis, with average size (DML) and standard dévia- Aegean Sea from 1990 to 1991, with indication of fish- tion, found during four trawl surveys carried out in the ing zone, depth, individual size (in mm DML) and re- North Aegean Sea from 1990 to 1991. productive stage in both females and maies. Auq.-Sept. '90 Nov. -Dec.'90 Feb.-March '91 June '91 I = immature; m = maturing; M = mature. Females 2 7 1 8 1 4 DML (mm) 36.5±3.5 28 ,7±6.4 36.7±6.1 33.7±5.4 Maies 3 4 23 23 DML (mm) 32.7±2.1 32 .0±2.8 28.8±6.0 29.8±4.9 Survey Latitud./longitud. Depth Females Maies (m) DML(mrm ) Repr. Stage DML(mm) Repr. Stage Aug7Sept.'90 39»23'/23"18' 385 34 31 M 39 (Wirz, 1955), should not ban any species of Nov./Dec.W 39°13V24°37' 32 30 cephalopod from the Aegean Sea. Moreover, al- 40 32 though only a small number of individuals of B. 30 36 25 30 sponsalis have been found, its présence at greater 25 29 depths than those investigated, should not be ex- 20 cluded. Its batyhmetrical distribution does not Feb./Mar.SI 39°23723°18' 35 38 seem to be related to sex, as far as our data suggest. 45 40 The bathymetrical distribution of B. sponsalis 40 25 30 in the North Aegean Sea is also limited to the 30 30 bathyal zone; yet this species, rather than being 25 25 bathy-benthic as reported by Mangold-Wirz 39"20725"08' (1973), seems to be distributed on epi- and meso- 42 39°25724°42' 364 35 bathyal bottoms, in accordance with the findings 39D13724D37' 437 of Torchio (1968), Perez-Gandaras and Guerra (1978) and Jereb et al. (1989). Furthermore, this 32 42 cephalopod is rather uncommon in the environ- 37 ment in which it lives, as are Neorossia caroli and other bathyal species living in the investigated area (D'Onghia et al, in press).
Recommended publications
  • 7. Index of Scientific and Vernacular Names
    Cephalopods of the World 249 7. INDEX OF SCIENTIFIC AND VERNACULAR NAMES Explanation of the System Italics : Valid scientific names (double entry by genera and species) Italics : Synonyms, misidentifications and subspecies (double entry by genera and species) ROMAN : Family names ROMAN : Scientific names of divisions, classes, subclasses, orders, suborders and subfamilies Roman : FAO names Roman : Local names 250 FAO Species Catalogue for Fishery Purposes No. 4, Vol. 1 A B Acanthosepion pageorum .....................118 Babbunedda ................................184 Acanthosepion whitleyana ....................128 bandensis, Sepia ..........................72, 138 aculeata, Sepia ............................63–64 bartletti, Blandosepia ........................138 acuminata, Sepia..........................97,137 bartletti, Sepia ............................72,138 adami, Sepia ................................137 bartramii, Ommastrephes .......................18 adhaesa, Solitosepia plangon ..................109 bathyalis, Sepia ..............................138 affinis, Sepia ...............................130 Bathypolypus sponsalis........................191 affinis, Sepiola.......................158–159, 177 Bathyteuthis .................................. 3 African cuttlefish..............................73 baxteri, Blandosepia .........................138 Ajia-kouika .................................. 115 baxteri, Sepia.............................72,138 albatrossae, Euprymna ........................181 belauensis, Nautilus .....................51,53–54
    [Show full text]
  • Sub-Regional Report On
    EP United Nations Environment UNEP(DEPI)/MED WG 359/Inf.10 Programme October 2010 ENGLISH ORIGINAL: ENGLISH MEDITERRANEAN ACTION PLAN Tenth Meeting of Focal Points for SPAs Marseille, France 17-20 May 2011 Sub-regional report on the “Identification of important ecosystem properties and assessment of ecological status and pressures to the Mediterranean marine and coastal biodiversity in the Adriatic Sea” PNUE CAR/ASP - Tunis, 2011 Note : The designations employed and the presentation of the material in this document do not imply the expression of any opinion whatsoever on the part of UNEP concerning the legal status of any State, Territory, city or area, or of its authorities, or concerning the delimitation of their frontiers or boundaries. © 2011 United Nations Environment Programme 2011 Mediterranean Action Plan Regional Activity Centre for Specially Protected Areas (RAC/SPA) Boulevard du leader Yasser Arafat B.P.337 – 1080 Tunis Cedex E-mail : [email protected] The original version (English) of this document has been prepared for the Regional Activity Centre for Specially Protected Areas by: Bayram ÖZTÜRK , RAC/SPA International consultant With the participation of: Daniel Cebrian. SAP BIO Programme officer (overall co-ordination and review) Atef Limam. RAC/SPA International consultant (overall co-ordination and review) Zamir Dedej, Pellumb Abeshi, Nehat Dragoti (Albania) Branko Vujicak, Tarik Kuposovic (Bosnia ad Herzegovina) Jasminka Radovic, Ivna Vuksic (Croatia) Lovrenc Lipej, Borut Mavric, Robert Turk (Slovenia) CONTENTS INTRODUCTORY NOTE ............................................................................................ 1 METHODOLOGY ....................................................................................................... 2 1. CONTEXT ..................................................... ERREUR ! SIGNET NON DÉFINI.4 2. SCIENTIFIC KNOWLEDGE AND AVAILABLE INFORMATION........................ 6 2.1. REFERENCE DOCUMENTS AND AVAILABLE INFORMATION ...................................... 6 2.2.
    [Show full text]
  • Cephalopod Species Captured by Deep-Water Exploratory Trawling in the Eastern Ionian Sea By
    NOT TO BE CITED WITHOUT PRIOR REFERENCE TO THE AUTHOR(S) Northwest Atlantic Fisheries Organization Serial No. N4526 NAFO SCR Doc. 01/131 SCIENTIFIC COUNCIL MEETING – SEPTEMBER 2001 (Deep-sea Fisheries Symposium – Poster) Cephalopod Species Captured by Deep-water Exploratory Trawling in the Eastern Ionian Sea by E. Lefkaditou1, P. Maiorano2 and Ch. Mytilineou1 1National Centre for Marine Research, Aghios Kosmas, Helliniko, 16604 Athens, Greece. E-mail: [email protected] 2Department of Zoology, University of Bari, via E.Orabona 4, 70125 Bari, Italy. E-mail: [email protected] Abstract The intensive exploitation of the continental shelf has lead to a search of new fisheries resources in deeper waters. Four seasonal experimental surveys were carried out on the deep-waters of the Eastern Ionian Sea by Greek and Italian commercial trawlers from September 1999 to September 2000.Potential targets included deepwater species of fishes, shrimps and cephalopods. During the 4 cruises, a total of 26 species of cephalopods in 10 families were recorded, including 10 oegopsid squids, 3 myopsid squids, 5 octopods, 2 cuttlefishes and 6 sepiolids. Deep-water trawling resulted in the finding of some uncommon species such as Ancistroteuthis lichtensteini, Ctenopteryx sicula and Galiteuthis armata, which were recorded for the first time in the study area. Extensions of depth range were recorded for several species. The results of multivariate analyses, based on Bray-Curtis similarity indices, showed the presence of two clear associations: one consisting of hauls carried out at depths 300-550 m, where Sepietta oweniana, Todaropsis eblanae and Loligo forbesi are the most abundant species, and another with deeper hauls (up to 770 m depth) dominated by Neorossia caroli, Pteroctopus tetracirrhus and Todarodes sagittatus.
    [Show full text]
  • Arctic Cephalopod Distributions and Their Associated Predatorspor 146 209..227 Kathleen Gardiner & Terry A
    Arctic cephalopod distributions and their associated predatorspor_146 209..227 Kathleen Gardiner & Terry A. Dick Biological Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada Keywords Abstract Arctic Ocean; Canada; cephalopods; distributions; oceanography; predators. Cephalopods are key species of the eastern Arctic marine food web, both as prey and predator. Their presence in the diets of Arctic fish, birds and mammals Correspondence illustrates their trophic importance. There has been considerable research on Terry A. Dick, Biological Sciences, University cephalopods (primarily Gonatus fabricii) from the north Atlantic and the west of Manitoba, Winnipeg, Manitoba R3T 2N2, side of Greenland, where they are considered a potential fishery and are taken Canada. E-mail: [email protected] as a by-catch. By contrast, data on the biogeography of Arctic cephalopods are doi:10.1111/j.1751-8369.2010.00146.x still incomplete. This study integrates most known locations of Arctic cepha- lopods in an attempt to locate potential areas of interest for cephalopods, and the predators that feed on them. International and national databases, museum collections, government reports, published articles and personal communica- tions were used to develop distribution maps. Species common to the Canadian Arctic include: G. fabricii, Rossia moelleri, R. palpebrosa and Bathypolypus arcticus. Cirroteuthis muelleri is abundant in the waters off Alaska, Davis Strait and Baffin Bay. Although distribution data are still incomplete, groupings of cephalopods were found in some areas that may be correlated with oceanographic variables. Understanding species distributions and their interactions within the ecosys- tem is important to the study of a warming Arctic Ocean and the selection of marine protected areas.
    [Show full text]
  • A Biotope Sensitivity Database to Underpin Delivery of the Habitats Directive and Biodiversity Action Plan in the Seas Around England and Scotland
    English Nature Research Reports Number 499 A biotope sensitivity database to underpin delivery of the Habitats Directive and Biodiversity Action Plan in the seas around England and Scotland Harvey Tyler-Walters Keith Hiscock This report has been prepared by the Marine Biological Association of the UK (MBA) as part of the work being undertaken in the Marine Life Information Network (MarLIN). The report is part of a contract placed by English Nature, additionally supported by Scottish Natural Heritage, to assist in the provision of sensitivity information to underpin the implementation of the Habitats Directive and the UK Biodiversity Action Plan. The views expressed in the report are not necessarily those of the funding bodies. Any errors or omissions contained in this report are the responsibility of the MBA. February 2003 You may reproduce as many copies of this report as you like, provided such copies stipulate that copyright remains, jointly, with English Nature, Scottish Natural Heritage and the Marine Biological Association of the UK. ISSN 0967-876X © Joint copyright 2003 English Nature, Scottish Natural Heritage and the Marine Biological Association of the UK. Biotope sensitivity database Final report This report should be cited as: TYLER-WALTERS, H. & HISCOCK, K., 2003. A biotope sensitivity database to underpin delivery of the Habitats Directive and Biodiversity Action Plan in the seas around England and Scotland. Report to English Nature and Scottish Natural Heritage from the Marine Life Information Network (MarLIN). Plymouth: Marine Biological Association of the UK. [Final Report] 2 Biotope sensitivity database Final report Contents Foreword and acknowledgements.............................................................................................. 5 Executive summary .................................................................................................................... 7 1 Introduction to the project ..............................................................................................
    [Show full text]
  • Evolution of the Hectocotylus in Sepiolinae (Cephalopoda: Sepiolidae) and Description of Four New Genera
    European Journal of Taxonomy 655: 1–53 ISSN 2118-9773 https://doi.org/10.5852/ejt.2020.655 www.europeanjournaloftaxonomy.eu 2020 · Bello G. This work is licensed under a Creative Commons Attribution License (CC BY 4.0). Monograph urn:lsid:zoobank.org:pub:0042EFAE-2E4F-444B-AFB9-E321D16116E8 Evolution of the hectocotylus in Sepiolinae (Cephalopoda: Sepiolidae) and description of four new genera Giambattista BELLO Arion, Via Colombo 34, 70042 Mola di Bari, Italy. [email protected] urn:lsid:zoobank.org:author:31A50D6F-5126-48D1-B630-FBEDA63944D9 …it is impossible to doubt that the [hectocotylized] arm is thereby adapted to some particular purpose, […] because its transformation occurs in so great a number of species of the class, and bears its peculiar characters in each natural genus. Japetus Steenstrup (1857) Abstract. The subfamily Sepiolinae (Mollusca: Cephalopoda: Sepiolidae), currently containing the genera Sepiola Leach, 1817, Euprymna Steenstrup, 1887, Inioteuthis Verrill, 1881, Rondeletiola Naef, 1921 and Sepietta Naef, 1912, is characterized by the hectocotylization of the left dorsal arm, i.e., its transformation into a copulatory organ thanks to modifications of sucker/pedicel elements. The hectocotylus morphology varies to a great extent across genera and species. In particular, one to several pedicels in its proximal third lose their sucker and become highly and diversely modified in shape to constitute a copulatory apparatus. An evolutionary gradient was observed in the copulatory apparatus morphology, from the simple modification into a papilla of just one pedicel from the third element of the ventral sucker row (some nominal species of Euprymna) to a quite complex structure involving several variously modified pedicels from both the ventral and dorsal sucker rows (Inioteuthis).
    [Show full text]
  • Diet of a Mediterranean Monk Seal Monachus Monachus in a Transitional Post-Weaning Phase and Its Implications for the Conservation of the Species
    Vol. 39: 315–320, 2019 ENDANGERED SPECIES RESEARCH Published August 22 https://doi.org/10.3354/esr00971 Endang Species Res OPENPEN ACCESSCCESS NOTE Diet of a Mediterranean monk seal Monachus monachus in a transitional post-weaning phase and its implications for the conservation of the species Cem Orkun Kıraç1,*, Meltem Ok2 1Underwater Research Society - Mediterranean Seal Research Group (SAD-AFAG), 06570 Ankara, Turkey 2Middle East Technical University - Institute of Marine Science (METU-IMS), Erdemli, 33731 Mersin, Turkey ABSTRACT: The Mediterranean monk seal Monachus monachus is the most endangered pin- niped in the world and is considered Endangered by the IUCN. Transition from suckling to active feeding is a critical time in the development of all mammal species, and understanding the dietary requirements of seals during this vulnerable period is of value in establishing conservation meas- ures, such as fishery regulations. This study provides unique information on the dietary habits of a moulted monk seal pup, through the opportunistic necropsy of a dead animal encountered at a very early age (5 mo). A total of 6 prey items from 2 families (Octopodidae, 90.8% and Congridae, 8.9%) were identified from stomach contents. The remaining stomach content mass consisted of fish bones from unidentified species (0.3%). The estimated age, low diversity and number of prey items in the stomach contents indicate that this individual may have been in a transition period from suckling to active feeding. The study confirms independent foraging in Mediterranean monk seals at about 5 mo of age. Given the importance of early life survival for maintaining stable Medi- terranean monk seal populations, and the occurrence of an ontogenetic shift in its close relative (Hawaiian monk seal), these findings contribute to the establishment and implementation of suc- cessful conservation and management strategies for this Endangered species.
    [Show full text]
  • The Phylogeny of Coleoid Cephalopods Inferred from Molecular Evolutionary Analyses of the Cytochrome C Oxidase I, Muscle Actin, and Cytoplasmic Actin Genes
    W&M ScholarWorks Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects 1998 The phylogeny of coleoid cephalopods inferred from molecular evolutionary analyses of the cytochrome c oxidase I, muscle actin, and cytoplasmic actin genes David Bruno Carlini College of William and Mary - Virginia Institute of Marine Science Follow this and additional works at: https://scholarworks.wm.edu/etd Part of the Genetics Commons, Molecular Biology Commons, and the Zoology Commons Recommended Citation Carlini, David Bruno, "The phylogeny of coleoid cephalopods inferred from molecular evolutionary analyses of the cytochrome c oxidase I, muscle actin, and cytoplasmic actin genes" (1998). Dissertations, Theses, and Masters Projects. Paper 1539616597. https://dx.doi.org/doi:10.25773/v5-3pyk-f023 This Dissertation is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter free, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted.
    [Show full text]
  • Field Identification Guide to the Living Marine Resources of the Eastern
    Abdallah, M. 2002. Length-weight relationship of fishes caught by trawl off Alexandria, Egypt. Naga ICLARM Q. 25(1):19–20. Abdul Malak, D., Livingstone, S., Pollard, D., Polidoro, B., Cuttelod, A., Bariche, M., Bilecenoglu, M., Carpenter, K., Collette, B., Francour, P., Goren, M., Kara, M., Massutí, E., Papaconstantinou, C. & Tunesi L. 2011. Overview of the Conservation Status of the Marine Fishes of the Mediterranean Sea. Gland, Switzerland and Malaga, Spain: IUCN, vii + 61 pp. (also available at http://data.iucn.org/dbtw-wpd/edocs/RL-262-001.pdf). Abecasis, D., Bentes, L., Ribeiro, J., Machado, D., Oliveira, F., Veiga, P., Gonçalves, J.M.S & Erzini, K. 2008. First record of the Mediterranean parrotfish, Sparisoma cretense in Ria Formosa (south Portugal). Mar. Biodiv. Rec., 1: e27. DOI: 10.1017/5175526720600248x. Abella, A.J., Arneri, E., Belcari, P., Camilleri, M., Fiorentino, F., Jukic-Peladic, S., Kallianiotis, A., Lembo, G., Papacostantinou, C., Piccinetti, C., Relini, G. & Spedicato, M.T. 2002. Mediterranean stock assessment: current status, problems and perspective: Sub-Committee on Stock Assessment, Barcelona. 18 pp. Abellan, E. & Basurco, B. 1999. Finfish species diversification in the context of Mediterranean marine fish farming development. Marine finfish species diversification: current situation and prospects in Mediterranean aquaculture. CIHEAM/FAO, 9–27. CIHEAM/FAO, Zaragoza. ACCOBAMS, May 2009 www.accobams.org Agostini, V.N. & Bakun, A. 2002. “Ocean triads” in the Mediterranean Sea: physical mechanisms potentially structuring reproductive habitat suitability (with example application to European anchovy, Engraulis encrasicolus), Fish. Oceanogr., 3: 129–142. Akin, S., Buhan, E., Winemiller, K.O. & Yilmaz, H. 2005. Fish assemblage structure of Koycegiz Lagoon-Estuary, Turkey: spatial and temporal distribution patterns in relation to environmental variation.
    [Show full text]
  • Mesoscale Spatio-Temporal Dynamics of Demersal Assemblages of The
    Aquat. Living Resour. 26, 381–397 (2013) Aquatic c EDP Sciences, IFREMER, IRD 2013 DOI: 10.1051/alr/2013067 Living www.alr-journal.org Resources Mesoscale spatio-temporal dynamics of demersal assemblages of the Eastern Ionian Sea in relationship with natural and fisheries factors Konstantinos Tsagarakis1,a, Chryssi Mytilineou1, John Haralabous1, Pascal Lorance2, Chrissi-Yianna Politou1 and John Dokos1 1 Institute of Marine Biological Resources, Hellenic Centre for Marine Research, Agios Kosmas, 16610 Elliniko, Athens, Greece 2 IFREMER, rue de l’Ile d’Yeu, BP 21105, 44311 Nantes Cedex 03, France Received 12 March 2013; Accepted 30 October 2013 Abstract – Data from the MEDITS bottom trawl surveys in the Eastern Ionian Sea, covering a depth range of 28 to 845 m were analysed for the period 1998–2008. For each trawling location, environmental and geographical pa- rameters were recorded, while biomass, abundance, biodiversity and size-based metrics were estimated for the total megafaunal community, as well as for four taxonomic sub-communities (Osteichthyes, Chondrichthyes, Crustacea and Cephalopoda) which were expected to respond differently to environmental changes and fishing. In addition, biomass and abundance of ten species selected based on commercial interest, depth range and life history traits were explored, with particular emphasis on deep-sea species. Fishing effort data collected during the study period were analysed and showed a decreasing trend, mainly due to a decrease in the activity of static nets. The relation between the estimated parameters and environmental and spatial factors, as well as temporal (interannual) effects and the effect of fishing effort were explored using generalized additive models (GAMs).
    [Show full text]
  • Rossia Macrosoma (Delle Chiaie, 1830) Fig
    Cephalopods of the World 183 3.2.2 Subfamily ROSSIINAE Appellöf, 1898 Rossia macrosoma (Delle Chiaie, 1830) Fig. 261 Sepiola macrosoma Delle Chiaie, 1830, Memoire sulla storia e notomia degli Animali senza vertebre del Regno di Napoli. 4 volumes, atlas. Napoli, pl. 17 [type locality: Tyrrhenian Sea]. Frequent Synonyms: Sepiola macrosoma Delle Chiaie, 1829. Misidentifications: None. FAO Names: En – Stout bobtail squid; Fr – Sépiole melon; Sp – Globito robusto. tentacular club arm dorsal view Fig. 261 Rossia macrosoma Diagnostic Features: Body smooth, soft. Males mature at smaller sizes and do not grow as large as females. Mantle dome-shaped. Dorsal mantle free from head (not fused to head). Nuchal cartilage oval, broad. Fins short, do not exceed length of mantle anteriorly or posteriorly. Arm webs broad between arms III and IV. Non-hectocotylized arm sucker arrangement same in both sexes: arm suckers biserial basally, tetraserial medially and distally. Dorsal and ventral sucker rows of arms II to IV of males enlarged; ventral marginal rows of arms II and III with 1 to 3 greatly enlarged suckers basally (diameter 8 to 11% mantle length); dorsal and ventral marginal sucker rows of arms II to IV with more than 10 enlarged suckers (diameter 4 to 7% mantle length); suckers on median rows in males smaller than female arm suckers in size. Hectocotylus present; both dorsal arms modified: ventrolateral edge of proximal oral surface of hectocotylized arms bordered by swollen glandular crest, inner edge of which forms a deep furrow; glandular crest extends over entire arm length; suckers decrease in size from proximal to distal end of arms; biserial proximally, tetraserial distally (marginal and medial suckers similar in size, smaller than on rest of arm); arms with deep median furrow and with transversely grooved ridges.
    [Show full text]
  • CEPHALOPODS SQUIDS (Teuthoidea)
    previous page 193 CEPHALOPODS TECHNICAL TERMS AND PRINCIPAL MEASUREMENTS AND GUIDE TO MAJOR TAXONOMIC GROUPS SQUIDS (Teuthoidea) Gladius (or internal shell) chitinous, flexible, pen-shaped; 8 arms and 2 non-retractile tentacles. suckers arms tentacle carpus (fixing funnel groove apparatus) head funnel manus eye dactylus mantle photophores photophores fin fin length tail mantle length lamellae modified portion composite diagram illustrating basic squid (teuthoid) features rachis normal suckers vane gladius of squid example of hectocotylized arm in male (Illex) arm I (dorsal) 194 CEPHALOPODS CUTTLEFISHES (Sepioidea) Sepion (internal shelf) large, chalky, rigid; 8 arms and 2 retractile tentacles. tentacular club 2 rows stalk 4 rows hectocotylus pocket striations funnel mantle fin outer cone inner cone spine (or rostrum) ventral view dorsal view spine ventral view diagram of basic cuttlefish features OCTOPUSES (Octopoda) Internal shell reduced or absent; 8 arms, no tentacles. mantle length head dorsal mantle arms web eye suckers ligula length hectocotylus ligula outer gill funnel lamellae (internal) aperture ventral suckers total length diagram of hectocotylus diagram of basic octopus features (lateral view) showing ligula measurement 195 CEPHALOPODS SEPIOIDEA - CUTTLEFISHES Sepion (internal shell) large, chalky, rigid; 8 arms and 2 retractile tentacles. anterior limit SEPIIDAE of striations Sepia bertheloti Orbigny, 1838 FAO names : En - African cuttlefish ; Fr - Seiche africaine; Sp - Jibia africana. Size : females 13 cm, males 17.5 cm (mantle length). Fishing gear : bottom trawls. elongate tubercles Habitat : benthic; captured from 20 to 140 m depth. Loc.name(s) : cuttlebone round, light- 8 rows of coloured suckers of patches about equal size mottled dark and light tentacular club dorsal view Sepia elegans Blainville, 1827 FAO names : En - Elegant cuttlefish; Fr - Seiche élégante; Sp - Castaño.
    [Show full text]