Mesoscale Spatio-Temporal Dynamics of Demersal Assemblages of The
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Classification of Living and Fossil Genera of Decapod Crustaceans
RAFFLES BULLETIN OF ZOOLOGY 2009 Supplement No. 21: 1–109 Date of Publication: 15 Sep.2009 © National University of Singapore A CLASSIFICATION OF LIVING AND FOSSIL GENERA OF DECAPOD CRUSTACEANS Sammy De Grave1, N. Dean Pentcheff 2, Shane T. Ahyong3, Tin-Yam Chan4, Keith A. Crandall5, Peter C. Dworschak6, Darryl L. Felder7, Rodney M. Feldmann8, Charles H. J. M. Fransen9, Laura Y. D. Goulding1, Rafael Lemaitre10, Martyn E. Y. Low11, Joel W. Martin2, Peter K. L. Ng11, Carrie E. Schweitzer12, S. H. Tan11, Dale Tshudy13, Regina Wetzer2 1Oxford University Museum of Natural History, Parks Road, Oxford, OX1 3PW, United Kingdom [email protected] [email protected] 2Natural History Museum of Los Angeles County, 900 Exposition Blvd., Los Angeles, CA 90007 United States of America [email protected] [email protected] [email protected] 3Marine Biodiversity and Biosecurity, NIWA, Private Bag 14901, Kilbirnie Wellington, New Zealand [email protected] 4Institute of Marine Biology, National Taiwan Ocean University, Keelung 20224, Taiwan, Republic of China [email protected] 5Department of Biology and Monte L. Bean Life Science Museum, Brigham Young University, Provo, UT 84602 United States of America [email protected] 6Dritte Zoologische Abteilung, Naturhistorisches Museum, Wien, Austria [email protected] 7Department of Biology, University of Louisiana, Lafayette, LA 70504 United States of America [email protected] 8Department of Geology, Kent State University, Kent, OH 44242 United States of America [email protected] 9Nationaal Natuurhistorisch Museum, P. O. Box 9517, 2300 RA Leiden, The Netherlands [email protected] 10Invertebrate Zoology, Smithsonian Institution, National Museum of Natural History, 10th and Constitution Avenue, Washington, DC 20560 United States of America [email protected] 11Department of Biological Sciences, National University of Singapore, Science Drive 4, Singapore 117543 [email protected] [email protected] [email protected] 12Department of Geology, Kent State University Stark Campus, 6000 Frank Ave. -
Marine ==- Biology © Springer-Verlag 1988
Marine Biology 98, 39-49 (1988) Marine ==- Biology © Springer-Verlag 1988 Analysis of the structure of decapod crustacean assemblages off the Catalan coast (North-West Mediterranean) P. Abell6, F.J. Valladares and A. Castell6n Institute de Ciencias del Mar, Passeig Nacional s/n, E-08003 Barcelona, Spain Abstract Zariquiey Alvarez 1968, Garcia Raso 1981, 1982, 1984), as well as different biological aspects of the economically We sampled the communities of decapod crustaceans important species (Sarda 1980, Sarda etal. 1981, etc.). inhabiting the depth zone between 3 and 871 m off the More recently, some studies of the species distribution of Catalan coast (North-West Mediterranean) from June the decapod crustacean communities of the North-West 1981 to June 1983. The 185 samples comprised 90 species Mediterranean have been published (Sarda and Palo- differing widely in their depth distributions. Multivariate mera 1981, Castellon and Abello 1983, Carbonell 1984, analysis revealed four distinct faunistic assemblages, (1) Abello 1986). However, the quantitative composition of littoral communities over sandy bottoms, (2) shelf com the decapod crustacean communities of this area remain munities over terrigenous muds, (3) upper-slope com largely unknown, and comparable efforts to those of munities, and (4) lower-slope or bathyal communities. The Arena and Li Greci (1973), Relini (1981), or Tunesi (1986) brachyuran crab Liocarcinus depurator is the most abun are lacking. dant species of the shelf assemblage, although L. vernalis The present -
An Annotated Checklist of the Shorefishes of the Canary Islands
AMERICAN MUSEUM Novitates PUBLISHED BY THE AMERICAN MUSEUM OF NATURAL HISTORY CENTRAL PARK WEST AT 79TH STREET, NEW YORK, N.Y. 10024 Number 2824, pp. 1-49, figs. 1-5 August 7, 1985 An Annotated Checklist of the Shorefishes of the Canary Islands JAMES K. DOOLEY,' JAMES VAN TASSELL,2 AND ALBERTO BRITO3 ABSTRACT The inshore canarian fish fauna includes 217 The fish fauna contains elements from the Med- species from 67 families. Fifteen new records (in- iterranean-Atlantic and West African areas, but cluding two undescribed species) and numerous does not exhibit any clear transition. Three en- rare species have been included. The number of demic species of fishes have been confirmed. The fishes documented from the Canary Islands and families with the greatest diversification include: nearby waters total approximately 400 species. Sparidae (21 species), Scorpaenidae (1 1), Gobiidae This figure includes some 200 pelagic, deepwater, (1 1), Blenniidae (10), Serranidae (9), Carangidae and elasmobranch species not treated in this study. (9), Muraenidae (7), and Labridae (7). RESUMEN La fauna ictiologica de las aguas costeras se las en el presente trabajo. La fauna contiene elemen- Islas Canarias comprende 217 especies de 67 fa- tos de las regiones Atlantico-Mediterranea y Oeste milias. Se incluyen quince citas nuevas (incluyen Africana, pero no muestra una clara transicion. dos especies no describen) y numerosas especies Tres especie endemica existe. Las familias con ma- raras. El nu'mero de peces de las aguas canarias se yor diversificacion son: Sparidae (21 especies), eleva aproximadamente a 400 especies. Este nui- Scorpaenidae (1 1), Gobiidae (1 1), Blenniidae (10), mero incluye casi 200 especies pelagicas, de aguas Serranidae (9), Carangidae (9), Muraenidae (7), y profundas y elasmobranquios que no se discuten Labridae (7). -
7. Index of Scientific and Vernacular Names
Cephalopods of the World 249 7. INDEX OF SCIENTIFIC AND VERNACULAR NAMES Explanation of the System Italics : Valid scientific names (double entry by genera and species) Italics : Synonyms, misidentifications and subspecies (double entry by genera and species) ROMAN : Family names ROMAN : Scientific names of divisions, classes, subclasses, orders, suborders and subfamilies Roman : FAO names Roman : Local names 250 FAO Species Catalogue for Fishery Purposes No. 4, Vol. 1 A B Acanthosepion pageorum .....................118 Babbunedda ................................184 Acanthosepion whitleyana ....................128 bandensis, Sepia ..........................72, 138 aculeata, Sepia ............................63–64 bartletti, Blandosepia ........................138 acuminata, Sepia..........................97,137 bartletti, Sepia ............................72,138 adami, Sepia ................................137 bartramii, Ommastrephes .......................18 adhaesa, Solitosepia plangon ..................109 bathyalis, Sepia ..............................138 affinis, Sepia ...............................130 Bathypolypus sponsalis........................191 affinis, Sepiola.......................158–159, 177 Bathyteuthis .................................. 3 African cuttlefish..............................73 baxteri, Blandosepia .........................138 Ajia-kouika .................................. 115 baxteri, Sepia.............................72,138 albatrossae, Euprymna ........................181 belauensis, Nautilus .....................51,53–54 -
Part I. an Annotated Checklist of Extant Brachyuran Crabs of the World
THE RAFFLES BULLETIN OF ZOOLOGY 2008 17: 1–286 Date of Publication: 31 Jan.2008 © National University of Singapore SYSTEMA BRACHYURORUM: PART I. AN ANNOTATED CHECKLIST OF EXTANT BRACHYURAN CRABS OF THE WORLD Peter K. L. Ng Raffles Museum of Biodiversity Research, Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 119260, Republic of Singapore Email: [email protected] Danièle Guinot Muséum national d'Histoire naturelle, Département Milieux et peuplements aquatiques, 61 rue Buffon, 75005 Paris, France Email: [email protected] Peter J. F. Davie Queensland Museum, PO Box 3300, South Brisbane, Queensland, Australia Email: [email protected] ABSTRACT. – An annotated checklist of the extant brachyuran crabs of the world is presented for the first time. Over 10,500 names are treated including 6,793 valid species and subspecies (with 1,907 primary synonyms), 1,271 genera and subgenera (with 393 primary synonyms), 93 families and 38 superfamilies. Nomenclatural and taxonomic problems are reviewed in detail, and many resolved. Detailed notes and references are provided where necessary. The constitution of a large number of families and superfamilies is discussed in detail, with the positions of some taxa rearranged in an attempt to form a stable base for future taxonomic studies. This is the first time the nomenclature of any large group of decapod crustaceans has been examined in such detail. KEY WORDS. – Annotated checklist, crabs of the world, Brachyura, systematics, nomenclature. CONTENTS Preamble .................................................................................. 3 Family Cymonomidae .......................................... 32 Caveats and acknowledgements ............................................... 5 Family Phyllotymolinidae .................................... 32 Introduction .............................................................................. 6 Superfamily DROMIOIDEA ..................................... 33 The higher classification of the Brachyura ........................ -
Updated Checklist of Marine Fishes (Chordata: Craniata) from Portugal and the Proposed Extension of the Portuguese Continental Shelf
European Journal of Taxonomy 73: 1-73 ISSN 2118-9773 http://dx.doi.org/10.5852/ejt.2014.73 www.europeanjournaloftaxonomy.eu 2014 · Carneiro M. et al. This work is licensed under a Creative Commons Attribution 3.0 License. Monograph urn:lsid:zoobank.org:pub:9A5F217D-8E7B-448A-9CAB-2CCC9CC6F857 Updated checklist of marine fishes (Chordata: Craniata) from Portugal and the proposed extension of the Portuguese continental shelf Miguel CARNEIRO1,5, Rogélia MARTINS2,6, Monica LANDI*,3,7 & Filipe O. COSTA4,8 1,2 DIV-RP (Modelling and Management Fishery Resources Division), Instituto Português do Mar e da Atmosfera, Av. Brasilia 1449-006 Lisboa, Portugal. E-mail: [email protected], [email protected] 3,4 CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal. E-mail: [email protected], [email protected] * corresponding author: [email protected] 5 urn:lsid:zoobank.org:author:90A98A50-327E-4648-9DCE-75709C7A2472 6 urn:lsid:zoobank.org:author:1EB6DE00-9E91-407C-B7C4-34F31F29FD88 7 urn:lsid:zoobank.org:author:6D3AC760-77F2-4CFA-B5C7-665CB07F4CEB 8 urn:lsid:zoobank.org:author:48E53CF3-71C8-403C-BECD-10B20B3C15B4 Abstract. The study of the Portuguese marine ichthyofauna has a long historical tradition, rooted back in the 18th Century. Here we present an annotated checklist of the marine fishes from Portuguese waters, including the area encompassed by the proposed extension of the Portuguese continental shelf and the Economic Exclusive Zone (EEZ). The list is based on historical literature records and taxon occurrence data obtained from natural history collections, together with new revisions and occurrences. -
Sepiola Trirostrata Voss, 1962 Fig
Cephalopods of the World 169 Sepiola trirostrata Voss, 1962 Fig. 245 Sepiola trirostrata Voss, 1962a, Proceedings of the Biological Society of Washington, 75: 172 [type locality: Philippines]. Frequent Synonyms: None. Misidentifications: None. FAO Names: En – Knobby bobtail squid; Fr – Sépiole bosselée; Sp – Sepiola nudosa. tentacle II left hectocotylus III left I right I left IV left male arm arrangement (after Voss, 1963) dorsal view of male Fig. 245 Sepiola trirostrata Diagnostic Features: Fins short, do not exceed length of mantle anteriorly or posteriorly. Arms III in both sexes stout and strongly curved inward, more obviously so in males. Suckers in ventral series of right arm I and arms II of males larger than dorsal suckers. Hectocotylus present, left dorsal arm modified: proximal end with 2 slender fleshy papillae (anteriormost papilla longest) and dorsolateral to these a blunt tongue-like lobe, all formed from enlarged and elongate sucker pedicels; 2 rows of suckers on arm proximal to fleshy pad; distal end of hectocotylized arm with sucker pedicels enlarged and tightly packed to form 2 double rows of columnar structures; suckers reduced with tiny, fleshy, slit-like openings. Club with 4 large suckers in transverse rows; suckers differ in size; dorsal marginal longitudinal series of suckers larger than those in ventral marginal series. Paired kidney-shaped light organs present inside mantle cavity on each side of ink sac. Colour: Mantle and head with many minute brown or black chromatophores; arms III deep pink, arms I to III each with single longitudinal row of large chromatophores, arms IV with double row of small chromatophores. -
Seasonal Variation in Community Structure and Recruitment of Benthic Decapods in a Sub-Tidal Cobble Habitat
MARINE ECOLOGY PROGRESS SERIES Vol. 206: 181–191, 2000 Published November 3 Mar Ecol Prog Ser Seasonal variation in community structure and recruitment of benthic decapods in a sub-tidal cobble habitat Martin Robinson*, Oliver Tully Department of Zoology, Trinity College, Dublin, Ireland ABSTRACT: Quantitative suction samples of benthic decapod fauna were taken in the south of Ireland during 1997. Some species settled into the area, but failed to persist to the first winter, while others were present in high numbers throughout the year. The duration of settlement was species- specific, ranging from several weeks to several months. Body size at settlement decreased with increasing temperature during larval development. Growth potential and early mortality of a number of decapod species was examined by separation of successive moult instars from length-frequency distributions. Seasonal lows in abundance and biomass of young of the year and for previously estab- lished decapod individuals were identified at the end of July and early August, which may represent the most suitable time to release juveniles for stock-enhancement purposes. Community structure differed between settlement season and over-wintering periods. Young-of-the-year community structure differed from that of previously established individuals, with higher abundance and num- ber of species recorded for the former. The data represent a baseline study of a widely distributed community and may support further work on species interactions, improving the accuracy of predic- tion of annual recruitment fluctuations. KEY WORDS: Community · Decapod · Recruitment · Seasonal variation Resale or republication not permitted without written consent of the publisher INTRODUCTION strong 1995, Pile et al. -
Cephalopod Species Captured by Deep-Water Exploratory Trawling in the Eastern Ionian Sea By
NOT TO BE CITED WITHOUT PRIOR REFERENCE TO THE AUTHOR(S) Northwest Atlantic Fisheries Organization Serial No. N4526 NAFO SCR Doc. 01/131 SCIENTIFIC COUNCIL MEETING – SEPTEMBER 2001 (Deep-sea Fisheries Symposium – Poster) Cephalopod Species Captured by Deep-water Exploratory Trawling in the Eastern Ionian Sea by E. Lefkaditou1, P. Maiorano2 and Ch. Mytilineou1 1National Centre for Marine Research, Aghios Kosmas, Helliniko, 16604 Athens, Greece. E-mail: [email protected] 2Department of Zoology, University of Bari, via E.Orabona 4, 70125 Bari, Italy. E-mail: [email protected] Abstract The intensive exploitation of the continental shelf has lead to a search of new fisheries resources in deeper waters. Four seasonal experimental surveys were carried out on the deep-waters of the Eastern Ionian Sea by Greek and Italian commercial trawlers from September 1999 to September 2000.Potential targets included deepwater species of fishes, shrimps and cephalopods. During the 4 cruises, a total of 26 species of cephalopods in 10 families were recorded, including 10 oegopsid squids, 3 myopsid squids, 5 octopods, 2 cuttlefishes and 6 sepiolids. Deep-water trawling resulted in the finding of some uncommon species such as Ancistroteuthis lichtensteini, Ctenopteryx sicula and Galiteuthis armata, which were recorded for the first time in the study area. Extensions of depth range were recorded for several species. The results of multivariate analyses, based on Bray-Curtis similarity indices, showed the presence of two clear associations: one consisting of hauls carried out at depths 300-550 m, where Sepietta oweniana, Todaropsis eblanae and Loligo forbesi are the most abundant species, and another with deeper hauls (up to 770 m depth) dominated by Neorossia caroli, Pteroctopus tetracirrhus and Todarodes sagittatus. -
11" 12" 13" 14&Qu
1" Sepiolid paralarval diversity in a regional upwelling area of the NE Atlantic 2" Lorena Olmos-Pérez1, Álvaro Roura1,2, Graham J. Pierce3,4, Ángel F. González1 3" 1Instituto de Investigaciones Marinas, CSIC, Eduardo Cabello 6, 36208 Vigo, Spain. 2La Trobe University, 4" Bundoora, Melbourne, Australia. 3, Oceanlab, University of Aberdeen, Main Street, Newburgh, Aberdeenshire, AB41 5" 6AA, UK. 4CESAM & Departamento de Biologia, Universidade de Aveiro 3810-193 Aveiro, Portugal. 6" Correspondence: L. Olmos-Pérez: tel: +34 986 231930; fax: +34 986 292762; e-mail: [email protected] 7" Abstract 8" Sepiolid paralarvae are poorly studied, at least in part, because of the difficulty of accurate identification 9" using morphological analysis. To unravel the biodiversity of sepiolid paralarvae collected in the Ría de Vigo during 10" the upwelling season (2012-2014), and to overcome the difficulties of traditional identification, sepiolid paralarvae 11" were identified by amplifying the barcoding gene cytochrome c oxidase subunit I (COI). In addition, morphometric 12" analysis (Generalised Lineal Models, GLM and Discriminant Analysis, DA) was used to identify morphometric 13" patterns useful for paralarval species identification. Genetic barcoding successfully identified 34 Sepiola pfefferi, 31 14" Rondeletiola minor, 30 Sepiola tridens, 4 Sepiola atlantica, 2 Sepietta neglecta and 1 Sepiola ligulata. COI analysis 15" also allowed us to infer that the paralarvae of the three most abundant species belonged to the same populations 16" independently of the year sampled. GLM suggested that total length (statistically different among the three species) 17" and tentacle length (statistically larger in S. pfefferi from the other two species) were good variables to distinguish 18" among species. -
Addition of Fossil Evidence to a Robust Morphological Cladistic Data Set
Bulletin of the Mizunami Fossil Museum, no. 31 (2004), p. 1-19, 7 figs., 1 table. c 2004, Mizunami Fossil Museum Decapod phylogeny: addition of fossil evidence to a robust morphological cladistic data set Frederick R. Schram 1 and Christopher J. Dixon 2 1 Zoological Museum, University of Amsterdam, Mauritskade 57, NL-1092 AD Amsterdam, The Netherlands <[email protected]> 2 Institut für Botanik, University of Vienna, Rennweg 14, A-1030 Vienna, Austria Abstract Incorporating fossils into schemes for the phylogenetic relationships of decapod crustaceans has been difficult because of the generally incomplete nature of the fossil record. Now a fairly robust data matrix of characters and taxa relevant to the phylogeny of decapods has been derived from consideration of living forms. We chose several taxa from the fossil record to test whether the robustness of the matrix can withstand insertion of fossils with various degrees of incomplete information. The essential structure of the original tree survives, and reasonable hypotheses about the affinities of selected fossils emerge. Sometimes we detected singular positions on our trees that indicate a high certainty about where certain taxa fit, while under other conditions there are alternative positions to choose from. Definitive answers are not to be expected. Rather, what is important is the demonstration of the usefulness of a method that can entertain and specifically document multiple alternative hypotheses. Key words: Decapoda, phylogeny, cladistics clades, viz., groups they termed Fractosternalia [Astacida Introduction + Thalassinida + Anomala + Brachyura], and Meiura [Anomala + Brachyura]. Schram (2001) later computerized Taxonomies of Decapoda have typically been constructed their analysis, allowing a more objective view of similar either with almost no regard to the fossil record, or, in a data. -
Abundance and Diversity of Decapod Crustaceans in the Deep-Catalan Sea (Western Mediterranean)
JOURNAL OF NATURAL HISTORY, 1992, 26, 1305-1323 Abundance and diversity of decapod crustaceans in the deep-Catalan Sea (Western Mediterranean) J. E. CARTES and F. SARDA Institut de Ciencies del Mar, Passeig National s/n, 08039 Barcelona, Spain (Accepted 7 August 1992) The deep-slope decapod fauna of the Catalan Sea was extensively sampled with an OTSB-14 bottom trawl. A total of 67 bottom tows were taken from 1985 to 1989 at bottom depths ranging from 552 to 2261 m. Species in which abundance decreased with depth were Plesionika acanthonotus, Polycheles typhlops, Calocaris macandreae and Geryon longipes. Highest densities of Acanthephyra eximia, Stereomastis sculpta, and Nematocarcinus exilis were attained at the great est depths studied. Total abundance, biomass and species richness for decapod crustaceans as a whole decreased with depth. Maximum decapod biomass and diversity occurred on the upper-middle slope on soft bottoms in the .Catalan Sea and in all regions for which data were available. In the Catalan Sea, an oligotrophic area, the abundance of decapods as a group seemed to be higher than in north- Atlantic eutrophic regions. In these latter areas, other deep-sea benthic invertebrate groups, particularly ophiuroids, predominate. KEYWORDS: Decapod crustaceans, Mediterranean, abundance, biomass, diversity. Introduction The deep-sea decapod crustacean fauna in the Mediterranean has been only quali tatively studied (Carpine, 1970a; Reyss, 1971; Fredj and Laubier, 1985; Peres, 1985; Abello and Valladares, 1988; Cartes, 1992 and references cited). Data on abundance, biomass and on the dominant species along the deep slope are particularly scarce. The structure of bathyal decapod crustacean populations on the upper slope in the northwestern Mediterranean is relatively well known (Zariquiey Alvarez, 1968; Sarda and Palomera, 1981; Abello et al., 1988) down to a depth of 800 m, with data on species abundance and biomass also available.