D6.2 Report on Biodiversity Indicators, Trends

Total Page:16

File Type:pdf, Size:1020Kb

D6.2 Report on Biodiversity Indicators, Trends DEEPFISHMAN Management And Monitoring Of Deep-sea Fisheries And Stocks Project number: 227390 Small or medium scale focused research action Topic: FP7-KBBE-2008-1-4-02 (Deepsea fisheries management) DELIVERABLE D 6.2 Title: Report on biodiversity indicators, trends monitoring and evaluation of information pertinence for deep-water fish and invertebrates Due date of deliverable: M 24 (April 2011) Actual submission date: M 27 (July 2011 st Start date of the project: April 1 , 2009 Duration : 36 months Organization Name of lead coordinator: Ifremer Dissemination Level: PP (Restricted to programme participants) Date: 27 July 2011 1 2 CHAPTER 1 Data Review on the Distribution and Extent of Deep-Sea Macrobenthic Communities: Trends in Biomass and Abundance from the North East Atlantic Deep-Sea Benthic Data Review Data Review on the Distribution and Extent of Deep- Sea Macrobenthic Communities: Trends in Biomass and Abundance from the North East Atlantic. Prepared by A. Kenny and C. Barrio CEFAS 1 Deep-Sea Benthic Data Review March, 2011 Table of Contents Introduction............................................................................................................................ 3 Materials and Methods .......................................................................................................... 3 Results & Discussion ............................................................................................................... 7 References ............................................................................................................................ 11 Appendix 1. (to be provided) ............................................................................................... 12 2 Deep-Sea Benthic Data Review Data Review on the Distribution and Extent of Deep- Sea Macrobenthic Communities: Trends in Biomass and Abundance from the North East Atlantic. Introduction In a brief review of deep-sea ecology undertaken as part of the Deepfishman project (Kenny and Barrio, 2010) the importance of major physiographic habitat features was highlighted in defining broad scale trends in deep sea benthic community structure. In particular, it was noted that large mega-habitats defined as; i. continental slope, ii. seamounts, iii. hydrothermal vents (and other chemosynthetic primary producing habitats), iv. canyons, and v. trenches, were amongst the most important types of physiographic features in the deep-sea. It was also noted that within each of these features significant variations in benthic invertebrate diversity, biomass and abundance occur, largely attributed to variations in substrate type, local hydrodynamic processes and the supply of energy in the form of nutrients and organic carbon. Whilst a significant body of literature and information has been acquired on local deep sea diversity, trophic conditions and topographic characteristics from specific projects such as HERMES and the Atlantic Frontier Environmental Network (AFEN), there is still a need to synthesise the collective published knowledge to better understand and to define the general processes determining benthic diversity and function in the deep sea. In particular, there is a need to understand how these processes relate to populations of deep-sea commercial fish species. Only through a fundamental understanding of such processes can we ensure that the most appropriate management measures are identified and applied. In essence, a redefinition of the criteria for the identification and definition of “eco-regions” of the deep-sea environment is required. The aim of this study was to collate quantitative data on the status (diversity, biomass, abundance) of the main taxonomic groups of macrobenthic invertebrates in areas confined to the North East Atlantic deep-sea region (in depths >400m). Materials and Methods We used published literature as the primary source of data to compile a meta-data table of deep sea ecosystem observations. In total 56 scientific papers were reviewed (see Appendix 1), but of these only 6 of these contained data which could be directly compared between studies (or cases). However, of these 6 papers, several different studies were documented and therefore in total 17 separate mega-habitat cases were directly comparable, namely; Hughes and Gage (2004; 1 spur/ridge, 1 basin and 1 abyssal plain), Gage (2001; 1 abyssal plain), Henry and Roberts (2007; 1 carbonate mound), Bett (2001; 2 continental slope), Heip et al. (2001; 1 shelf break, 1 slope and 1 abyssal plain), Duineveld et al. (2000; 3 canyon and 3 spur) and finally the OECD (1989, 1 abyssal plain). All cases were 3 Deep-Sea Benthic Data Review included in a meta-data table for analysis, (Table1), with each case representing a large mega-habitat feature such as a canyon or continental slope etc. The approximate geographic locations of all these studies (used in this analysis) is presented in Figure 1. One of the problems we observed, which limited the amount of data we could include in this analysis, was the diverse way in which deep sea benthic samples are processed. Some researchers would describe only the mega-epifauna, whereas others would use different sieve sizes to sort different fractions of fauna from sediment samples. In addition, in all cases the identification of species was incomplete and hence comparisons between the studies in terms of species richness and diversity was not possible. The consistent identification and recording of species in the deep sea is clearly a problem and guidance (including taxonomic keys) on deep sea taxonomy suitable for routine comparative assessment studies, is urgently needed. Figure 1. Approximate location of reported studies in the literature used in this analysis The meta-data presented in Table 1 was further reduced to provide two matrices of cases vs. variables each being slightly different in their dimensions (Table 2 and Table 3). Each data matrix was then analysed using Principal Components Analysis to examine similarities between cases (i.e. mega-habitat types) in terms of their variable attributes (e.g. total biomass, abundance, latitude, depth etc.). The data in both matrices were first transformed using; log (X + 1) and then standardised by applying: Where is the mean of the variable values is the variable value and is the standard deviation of variable values. All cases were assigned to their appropriate large mega-habitat type. 4 Deep-Sea Benthic Data Review 5 Deep-Sea Benthic Data Review Table 1. Meta-data values extracted from a review of 56 published papers from which 6 papers provided sufficiently directly comparable data covering a total of 17 cases of large mega-habitats. Column header code: C = Case Table 2. Matrix used for PCA comprising 13 cases representing 6 different mega-habitat features and 4 Table 3. Matrix used for PCA comprising 8 cases representing 5 different mega-habitat ecosystem level variables. Column header codes: S = continental slope, AP = abyssal plain, C = canyon. features and 7 ecosystem level variables. 6 Deep-Sea Benthic Data Review Results & Discussion A total of 6 different large mega-habitat features were included in this analysis, although not all types were represented in equal numbers, namely; i. deep sea basin (1), ii. shelf break (1), iii. continental slope (3), iv. deep sea spurs (3), v. canyons (3) and vi. abyssal plain (3). The univariate plot of total macrobenthic biomass against depth using the reduced case matrix (which excludes canyons – see Table 3) reveals a reasonably significant trend with depth (see Figure 2). In general, biomass declines with increasing depth (which has been well documented), with some of the lowest values of biomass observed in the abyssal plain which occur at depths between 3,500 m and 4,000 m. The highest values of biomass were observed in 2 of the continental slope cases and one case of a deep sea basin, all occurring between 750 m and 1,500 m in depth. There is also an indication that biomass initially rises from the shelf break (at approximately 500 m) down to depths of about 1,500 m, but this may simply be an artefact of the small data set. There is also some indication that biomass varies according to mega-habitat type, in addition to depth. For example, by examining the relationship between biomass and depth for the complete matrix (Table 2) it is apparent that it is a combination of depth and mega-habitat feature which determine levels of biomass. Figure 2. Biomass plotted against depth with cases labelled according to their mega-habitat type. (note this data corresponds to Table 2 and excludes a number of cases of spur and all cases of canyon. Figure 3, at first reveals no obvious trend between total biomass and depth, but if mega-habitat type is also considered a pattern of variation is revealed. For example, all cases of canyon have relatively high macrobenthic biomass, despite being among the deepest habitats sampled. This is also true for the cases of spur studied, e.g. of the 4 cases studied, 2 have high biomass values, again despite the spur cases being among the deepest habitats studied. It appears that beyond a depth of about 2000 m (accepting that this is 7 Deep-Sea Benthic Data Review only a small data set) the best predictor of total biomass appears to be the type of mega- habitat feature despite the depth varying between 2,500m and 4,500 m for all the canyon, spur and abyssal plain cases. This is perhaps not so surprising since the pathway which directly couples the relatively rich supply of organic carbon in
Recommended publications
  • A Classification of Living and Fossil Genera of Decapod Crustaceans
    RAFFLES BULLETIN OF ZOOLOGY 2009 Supplement No. 21: 1–109 Date of Publication: 15 Sep.2009 © National University of Singapore A CLASSIFICATION OF LIVING AND FOSSIL GENERA OF DECAPOD CRUSTACEANS Sammy De Grave1, N. Dean Pentcheff 2, Shane T. Ahyong3, Tin-Yam Chan4, Keith A. Crandall5, Peter C. Dworschak6, Darryl L. Felder7, Rodney M. Feldmann8, Charles H. J. M. Fransen9, Laura Y. D. Goulding1, Rafael Lemaitre10, Martyn E. Y. Low11, Joel W. Martin2, Peter K. L. Ng11, Carrie E. Schweitzer12, S. H. Tan11, Dale Tshudy13, Regina Wetzer2 1Oxford University Museum of Natural History, Parks Road, Oxford, OX1 3PW, United Kingdom [email protected] [email protected] 2Natural History Museum of Los Angeles County, 900 Exposition Blvd., Los Angeles, CA 90007 United States of America [email protected] [email protected] [email protected] 3Marine Biodiversity and Biosecurity, NIWA, Private Bag 14901, Kilbirnie Wellington, New Zealand [email protected] 4Institute of Marine Biology, National Taiwan Ocean University, Keelung 20224, Taiwan, Republic of China [email protected] 5Department of Biology and Monte L. Bean Life Science Museum, Brigham Young University, Provo, UT 84602 United States of America [email protected] 6Dritte Zoologische Abteilung, Naturhistorisches Museum, Wien, Austria [email protected] 7Department of Biology, University of Louisiana, Lafayette, LA 70504 United States of America [email protected] 8Department of Geology, Kent State University, Kent, OH 44242 United States of America [email protected] 9Nationaal Natuurhistorisch Museum, P. O. Box 9517, 2300 RA Leiden, The Netherlands [email protected] 10Invertebrate Zoology, Smithsonian Institution, National Museum of Natural History, 10th and Constitution Avenue, Washington, DC 20560 United States of America [email protected] 11Department of Biological Sciences, National University of Singapore, Science Drive 4, Singapore 117543 [email protected] [email protected] [email protected] 12Department of Geology, Kent State University Stark Campus, 6000 Frank Ave.
    [Show full text]
  • High Level Environmental Screening Study for Offshore Wind Farm Developments – Marine Habitats and Species Project
    High Level Environmental Screening Study for Offshore Wind Farm Developments – Marine Habitats and Species Project AEA Technology, Environment Contract: W/35/00632/00/00 For: The Department of Trade and Industry New & Renewable Energy Programme Report issued 30 August 2002 (Version with minor corrections 16 September 2002) Keith Hiscock, Harvey Tyler-Walters and Hugh Jones Reference: Hiscock, K., Tyler-Walters, H. & Jones, H. 2002. High Level Environmental Screening Study for Offshore Wind Farm Developments – Marine Habitats and Species Project. Report from the Marine Biological Association to The Department of Trade and Industry New & Renewable Energy Programme. (AEA Technology, Environment Contract: W/35/00632/00/00.) Correspondence: Dr. K. Hiscock, The Laboratory, Citadel Hill, Plymouth, PL1 2PB. [email protected] High level environmental screening study for offshore wind farm developments – marine habitats and species ii High level environmental screening study for offshore wind farm developments – marine habitats and species Title: High Level Environmental Screening Study for Offshore Wind Farm Developments – Marine Habitats and Species Project. Contract Report: W/35/00632/00/00. Client: Department of Trade and Industry (New & Renewable Energy Programme) Contract management: AEA Technology, Environment. Date of contract issue: 22/07/2002 Level of report issue: Final Confidentiality: Distribution at discretion of DTI before Consultation report published then no restriction. Distribution: Two copies and electronic file to DTI (Mr S. Payne, Offshore Renewables Planning). One copy to MBA library. Prepared by: Dr. K. Hiscock, Dr. H. Tyler-Walters & Hugh Jones Authorization: Project Director: Dr. Keith Hiscock Date: Signature: MBA Director: Prof. S. Hawkins Date: Signature: This report can be referred to as follows: Hiscock, K., Tyler-Walters, H.
    [Show full text]
  • Skates and Rays Diversity, Exploration and Conservation – Case-Study of the Thornback Ray, Raja Clavata
    UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ANIMAL SKATES AND RAYS DIVERSITY, EXPLORATION AND CONSERVATION – CASE-STUDY OF THE THORNBACK RAY, RAJA CLAVATA Bárbara Marques Serra Pereira Doutoramento em Ciências do Mar 2010 UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ANIMAL SKATES AND RAYS DIVERSITY, EXPLORATION AND CONSERVATION – CASE-STUDY OF THE THORNBACK RAY, RAJA CLAVATA Bárbara Marques Serra Pereira Tese orientada por Professor Auxiliar com Agregação Leonel Serrano Gordo e Investigadora Auxiliar Ivone Figueiredo Doutoramento em Ciências do Mar 2010 The research reported in this thesis was carried out at the Instituto de Investigação das Pescas e do Mar (IPIMAR - INRB), Unidade de Recursos Marinhos e Sustentabilidade. This research was funded by Fundação para a Ciência e a Tecnologia (FCT) through a PhD grant (SFRH/BD/23777/2005) and the research project EU Data Collection/DCR (PNAB). Skates and rays diversity, exploration and conservation | Table of Contents Table of Contents List of Figures ............................................................................................................................. i List of Tables ............................................................................................................................. v List of Abbreviations ............................................................................................................. viii Agradecimentos ........................................................................................................................
    [Show full text]
  • An Annotated Checklist of the Shorefishes of the Canary Islands
    AMERICAN MUSEUM Novitates PUBLISHED BY THE AMERICAN MUSEUM OF NATURAL HISTORY CENTRAL PARK WEST AT 79TH STREET, NEW YORK, N.Y. 10024 Number 2824, pp. 1-49, figs. 1-5 August 7, 1985 An Annotated Checklist of the Shorefishes of the Canary Islands JAMES K. DOOLEY,' JAMES VAN TASSELL,2 AND ALBERTO BRITO3 ABSTRACT The inshore canarian fish fauna includes 217 The fish fauna contains elements from the Med- species from 67 families. Fifteen new records (in- iterranean-Atlantic and West African areas, but cluding two undescribed species) and numerous does not exhibit any clear transition. Three en- rare species have been included. The number of demic species of fishes have been confirmed. The fishes documented from the Canary Islands and families with the greatest diversification include: nearby waters total approximately 400 species. Sparidae (21 species), Scorpaenidae (1 1), Gobiidae This figure includes some 200 pelagic, deepwater, (1 1), Blenniidae (10), Serranidae (9), Carangidae and elasmobranch species not treated in this study. (9), Muraenidae (7), and Labridae (7). RESUMEN La fauna ictiologica de las aguas costeras se las en el presente trabajo. La fauna contiene elemen- Islas Canarias comprende 217 especies de 67 fa- tos de las regiones Atlantico-Mediterranea y Oeste milias. Se incluyen quince citas nuevas (incluyen Africana, pero no muestra una clara transicion. dos especies no describen) y numerosas especies Tres especie endemica existe. Las familias con ma- raras. El nu'mero de peces de las aguas canarias se yor diversificacion son: Sparidae (21 especies), eleva aproximadamente a 400 especies. Este nui- Scorpaenidae (1 1), Gobiidae (1 1), Blenniidae (10), mero incluye casi 200 especies pelagicas, de aguas Serranidae (9), Carangidae (9), Muraenidae (7), y profundas y elasmobranquios que no se discuten Labridae (7).
    [Show full text]
  • Part I. an Annotated Checklist of Extant Brachyuran Crabs of the World
    THE RAFFLES BULLETIN OF ZOOLOGY 2008 17: 1–286 Date of Publication: 31 Jan.2008 © National University of Singapore SYSTEMA BRACHYURORUM: PART I. AN ANNOTATED CHECKLIST OF EXTANT BRACHYURAN CRABS OF THE WORLD Peter K. L. Ng Raffles Museum of Biodiversity Research, Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 119260, Republic of Singapore Email: [email protected] Danièle Guinot Muséum national d'Histoire naturelle, Département Milieux et peuplements aquatiques, 61 rue Buffon, 75005 Paris, France Email: [email protected] Peter J. F. Davie Queensland Museum, PO Box 3300, South Brisbane, Queensland, Australia Email: [email protected] ABSTRACT. – An annotated checklist of the extant brachyuran crabs of the world is presented for the first time. Over 10,500 names are treated including 6,793 valid species and subspecies (with 1,907 primary synonyms), 1,271 genera and subgenera (with 393 primary synonyms), 93 families and 38 superfamilies. Nomenclatural and taxonomic problems are reviewed in detail, and many resolved. Detailed notes and references are provided where necessary. The constitution of a large number of families and superfamilies is discussed in detail, with the positions of some taxa rearranged in an attempt to form a stable base for future taxonomic studies. This is the first time the nomenclature of any large group of decapod crustaceans has been examined in such detail. KEY WORDS. – Annotated checklist, crabs of the world, Brachyura, systematics, nomenclature. CONTENTS Preamble .................................................................................. 3 Family Cymonomidae .......................................... 32 Caveats and acknowledgements ............................................... 5 Family Phyllotymolinidae .................................... 32 Introduction .............................................................................. 6 Superfamily DROMIOIDEA ..................................... 33 The higher classification of the Brachyura ........................
    [Show full text]
  • Crustacean Diversity of Ildırı Bay (Izmir, Turkey)
    DOI: 10.22120/jwb.2020.131461.1164 Special issue 41-49 (2020) Challenges for Biodiversity and Conservation in the Mediterranean Region (http://www.wildlife-biodiversity.com/) Research Article Crustacean diversity of Ildırı Bay (Izmir, Turkey) Introduction Murat Ozaydinli1*, Kemal Can Bizsel2 1Ordu University, Fatsa Faculty of Marine Crustaceans are a critical element of the marine Science, Department of Fisheries Technology benthic ecosystem in terms of macrofauna Engineering, 52400, Ordu, Turkey, diversity and impact assessment. Many studies 2 Dokuz Eylül University, Institute of Marine have been conducted on crustacean species in Sciences and Technology, 35340, Izmir, Turkey the Aegean Sea (Geldiay and Kocataş 1970, Geldiay and Kocataş 1973, Katağan 1982, *Email: [email protected] Ergen et al. 1988, Kırkım 1998, Katağan et al. Received: 22 July 2020 / Revised: 16 September 2020 / Accepted: 2001, Koçak et al. 2001, Ateş 2003, Sezgin 22 September 2020 / Published online: 21 October 2020. Ministry 2003, Yokeş et al. 2007, Anastasiadou et al. of Sciences, Research, and Technology, Arak University, Iran. 2020). These studies and more have been Abstract compiled by Bakır et al. (2014), who has given In this study, the crustacean diversity in Ildırı a checklist. A total of 1028 Crustacean species Bay, which is characterized by a high density of was reported along the Aegean Sea coast of aquaculture activity and tourism, was Turkey Bakır et al. (2014). investigated. Sampling was carried out by box- The Ildırı Bay is characterized by a high corer during four seasonal cruises (April, July, intensity of aquaculture and tourism activities November 2010, and February 2011) at eight (Demirel 2010, Bengil and Bizsel 2014).
    [Show full text]
  • The Mediterranean Decapod and Stomatopod Crustacea in A
    ANNALES DU MUSEUM D'HISTOIRE NATURELLE DE NICE Tome V, 1977, pp. 37-88. THE MEDITERRANEAN DECAPOD AND STOMATOPOD CRUSTACEA IN A. RISSO'S PUBLISHED WORKS AND MANUSCRIPTS by L. B. HOLTHUIS Rijksmuseum van Natuurlijke Historie, Leiden, Netherlands CONTENTS Risso's 1841 and 1844 guides, which contain a simple unannotated list of Crustacea found near Nice. 1. Introduction 37 Most of Risso's descriptions are quite satisfactory 2. The importance and quality of Risso's carcino- and several species were figured by him. This caused logical work 38 that most of his names were immediately accepted by 3. List of Decapod and Stomatopod species in Risso's his contemporaries and a great number of them is dealt publications and manuscripts 40 with in handbooks like H. Milne Edwards (1834-1840) Penaeidea 40 "Histoire naturelle des Crustaces", and Heller's (1863) Stenopodidea 46 "Die Crustaceen des siidlichen Europa". This made that Caridea 46 Risso's names at present are widely accepted, and that Macrura Reptantia 55 his works are fundamental for a study of Mediterranean Anomura 58 Brachyura 62 Decapods. Stomatopoda 76 Although most of Risso's descriptions are readily 4. New genera proposed by Risso (published and recognizable, there is a number that have caused later unpublished) 76 authors much difficulty. In these cases the descriptions 5. List of Risso's manuscripts dealing with Decapod were not sufficiently complete or partly erroneous, and Stomatopod Crustacea 77 the names given by Risso were either interpreted in 6. Literature 7S different ways and so caused confusion, or were entirely ignored. It is a very fortunate circumstance that many of 1.
    [Show full text]
  • DEEP SEA LEBANON RESULTS of the 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project
    DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project March 2018 DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project Citation: Aguilar, R., García, S., Perry, A.L., Alvarez, H., Blanco, J., Bitar, G. 2018. 2016 Deep-sea Lebanon Expedition: Exploring Submarine Canyons. Oceana, Madrid. 94 p. DOI: 10.31230/osf.io/34cb9 Based on an official request from Lebanon’s Ministry of Environment back in 2013, Oceana has planned and carried out an expedition to survey Lebanese deep-sea canyons and escarpments. Cover: Cerianthus membranaceus © OCEANA All photos are © OCEANA Index 06 Introduction 11 Methods 16 Results 44 Areas 12 Rov surveys 16 Habitat types 44 Tarablus/Batroun 14 Infaunal surveys 16 Coralligenous habitat 44 Jounieh 14 Oceanographic and rhodolith/maërl 45 St. George beds measurements 46 Beirut 19 Sandy bottoms 15 Data analyses 46 Sayniq 15 Collaborations 20 Sandy-muddy bottoms 20 Rocky bottoms 22 Canyon heads 22 Bathyal muds 24 Species 27 Fishes 29 Crustaceans 30 Echinoderms 31 Cnidarians 36 Sponges 38 Molluscs 40 Bryozoans 40 Brachiopods 42 Tunicates 42 Annelids 42 Foraminifera 42 Algae | Deep sea Lebanon OCEANA 47 Human 50 Discussion and 68 Annex 1 85 Annex 2 impacts conclusions 68 Table A1. List of 85 Methodology for 47 Marine litter 51 Main expedition species identified assesing relative 49 Fisheries findings 84 Table A2. List conservation interest of 49 Other observations 52 Key community of threatened types and their species identified survey areas ecological importanc 84 Figure A1.
    [Show full text]
  • Inferred from Mitochondrial 16S Rdna Sequence and Morphological Data
    J. Black Sea/Mediterranean Environment Vol. 17(1): 14-31 (2011) The systematic status of the Mediterranean Spicara species (Centracanthidae) inferred from mitochondrial 16S rDNA sequence and morphological data Cemal Turan* Fisheries Genetics Laboratory, Faculty of Fisheries, Mustafa Kemal University, Iskenderun, Hatay, Turkey. * Corresponding author: [email protected] Abstract The mitochondrial 16S ribosomal DNA together with morphological data were used to elucidate monophyly of the family Centracanthidae and interrelationships of Spicara and Centracanthus genera, including four species, Spicara maena, Spicara flexuosa, Spicara smaris and Centracanthus cirrus. Examination of the gene revealed a moderate amount of thymine and abundance of adenine. The 16S rDNA dataset contained 92 variable and 69 parsimony informative sites with a mean nucleotide diversity of 0.099. Haplotype diversity was found to be 0.71. No genetic differences were observed between S. maena and S. smaris, and the genetic divergence between S. flexuosa and both S. maena and S. smaris was found to be 0.005. The intergeneric divergence was found to be very high (0.237) between S. alta and C. cirrus. For the other Spicara species, intergeneric divergence ranged from 0.170 between C. cirrus and both S. maena and S. smaris to 0.176 between C. cirrus and S. flexuosa. Minumum evolution, neighbor joining and parsimony trees revealed same tree topologies, and the monophyly of the genus Spicara was not supported. S. maena and S. smaris clustered together and showed close relationship and S. flexuosa was nodded with this group. Therefore S. maena was found to be more closely related to S. smaris rather than S.
    [Show full text]
  • (Marmara Sea) and Ecological Characteristics of Their Habitats
    RESEARCH ARTICLE Eur J Biol 2017; 76(1): 20-5 Decapod Crustaceans in the Marmara Island (Marmara Sea) and Ecological Characteristics of Their Habitats Begum Ayfer, Husamettin Balkis, Aysegul Mulayim* Istanbul University, Faculty of Science, Department of Biology, Istanbul, Turkey Please cite this article as: Ayfer B, Balkis H, Mulayim A. Decapod Crustaceans in the Marmara Island (Marmara Sea) and Ecological Characteristics of Their Habitats. Eur J Biol 2017; 76(1): 20-5. ABSTRACT We have performed series of analyses to identify decapod crustaceans inhabiting the littoral zone of the Marmara Island and to study specific ecological characteristics of the habitat. Samples of decapod crustaceans species were collected from 12 stations (6 onshore, 6 offshore) on May 12-17, 2008 and November 17-22, 2008. A total of 17 species and 1199 specimens of decapod crustaceans were recorded. Eigth species (A. lacazei, N. norvegicus, P. bluteli, P. longimana, P. platycheles, D. pugilator, D. personata and L. vernalis) have been reported in the littoral zone of Marmara Island for the first time in this study. Also our study also sheds light on some ecological properties (temperature, salinity, dissolved oxygen) of the habitats of the species from the littoral zone of the Marmara Island. Keywords: Ecology, decapoda, crustacea, Marmara Island, The Sea of Marmara INTRODUCTION The first study at the island was carried out by Ostrou- moff (3,4) followed by studies by Okuş (5), Yüksek (6) The Archipelago in the Sea of Marmara consisting of and Balkıs (7). small and large islands located southwest of the Sea of Marmara and the northwest of the Kapıdağ Peninsula MATERIALS AND METHODS are referred to as the Islands of Marmara.
    [Show full text]
  • Updated Checklist of Marine Fishes (Chordata: Craniata) from Portugal and the Proposed Extension of the Portuguese Continental Shelf
    European Journal of Taxonomy 73: 1-73 ISSN 2118-9773 http://dx.doi.org/10.5852/ejt.2014.73 www.europeanjournaloftaxonomy.eu 2014 · Carneiro M. et al. This work is licensed under a Creative Commons Attribution 3.0 License. Monograph urn:lsid:zoobank.org:pub:9A5F217D-8E7B-448A-9CAB-2CCC9CC6F857 Updated checklist of marine fishes (Chordata: Craniata) from Portugal and the proposed extension of the Portuguese continental shelf Miguel CARNEIRO1,5, Rogélia MARTINS2,6, Monica LANDI*,3,7 & Filipe O. COSTA4,8 1,2 DIV-RP (Modelling and Management Fishery Resources Division), Instituto Português do Mar e da Atmosfera, Av. Brasilia 1449-006 Lisboa, Portugal. E-mail: [email protected], [email protected] 3,4 CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal. E-mail: [email protected], [email protected] * corresponding author: [email protected] 5 urn:lsid:zoobank.org:author:90A98A50-327E-4648-9DCE-75709C7A2472 6 urn:lsid:zoobank.org:author:1EB6DE00-9E91-407C-B7C4-34F31F29FD88 7 urn:lsid:zoobank.org:author:6D3AC760-77F2-4CFA-B5C7-665CB07F4CEB 8 urn:lsid:zoobank.org:author:48E53CF3-71C8-403C-BECD-10B20B3C15B4 Abstract. The study of the Portuguese marine ichthyofauna has a long historical tradition, rooted back in the 18th Century. Here we present an annotated checklist of the marine fishes from Portuguese waters, including the area encompassed by the proposed extension of the Portuguese continental shelf and the Economic Exclusive Zone (EEZ). The list is based on historical literature records and taxon occurrence data obtained from natural history collections, together with new revisions and occurrences.
    [Show full text]
  • Morphology and Mathematics. by D'arcy Wentworth Thompson. The
    ( 857 ) XXVII.—Morphology and Mathematics. By D'Arcy Wentworth Thompson. (Read December 7, 1914. MS. received February 1, 1915. Issued separately June 22, 1915.) The study of Organic Form, which we call by GOETHE'S name of Morphology, is but a portion of that wider Science of Form which deals with the forms assumed by matter under all aspects and conditions, and, in a still wider sense, with Forms which are theoretically imaginable. The study of Form may be descriptive merely, or it may become analytical. We begin by describing the shape of an object in the simple words of common speech : we end by denning it in the precise language of mathematics ; and the one method tends to follow the other in strict scientific order and historical continuity. Thus, fer instance, the form of the earth, of a raindrop or a rainbow, the shape of the hanging chain, or the path of a stone thrown up into the air, may all be described, however inadequately, in common words ; but when we have learned to comprehend and to define the sphere, the catenary, or the parabola, we have made a wonderful and perhaps a manifold advance. The mathematical definition of a "form" has a quality of precision which was quite lacking in our earlier stage of mere description ; it is expressed in few words, or in still briefer symbols, and these words or symbols are so pregnant with meaning that thought itself is economised ; we are brought by means of it in touch with GALILEO'S aphorism, that " the Book of Nature is written in characters of Geometry." Next, we soon reach through mathematical analysis to mathematical synthesis ; we discover homologies or identities which were not obvious before, and which our descriptions obscured rather than revealed : as, for instance, when we learn that, however we hold our chain, or however we fire our bullet, the contour of the one or the path of the other is always mathematically homologous.
    [Show full text]