A Tube-Dwelling Predator Documented by the Ichnofossil Lepidenteron Mortenseni N

Total Page:16

File Type:pdf, Size:1020Kb

A Tube-Dwelling Predator Documented by the Ichnofossil Lepidenteron Mortenseni N BULLETIN OF THE GEOLOGICAL SOCIETY OF DENMARK · VOL. 69 · 2021 A tale from the middle Paleocene of Denmark: A tube- dwelling predator documented by the ichnofossil Lepidenteron mortenseni n. isp. and its predominant prey, Bobbitichthys n. gen. rosenkrantzi (Macrouridae, Teleostei) WERNER SCHWARZHANS, JESPER MILÀN & GIORGIO CARNEVALE Schwarzhans, W., Milàn, J. & Carnevale, G. 2021. A tale from the middle Paleocene of Denmark: A tube-dwelling predator documented by the ichnofossil Lepidenteron mortenseni n. isp. and its predominant prey, Bobbitichthys n. gen. rosenkrantzi (Macroridae, Teleostei). Bulletin of the Geological Society of Denmark, vol. 69, pp. 35–52. ISSN 2245-7070. https://doi.org/10.37570/bgsd-2021-69-02 Geological Society of Denmark The ichnofossil Lepidenteron provides a unique taphonomic window into the life https://2dgf.dk habits of a tube-dwelling predator, probably an eunicid polychaete, and its fish prey. Here we describe a new tube-like ichnofossil Lepidenteron mortenseni n. isp. from the Received 2 November 2020 Kerteminde Marl (100–150 m palaeo-water depth) from the Gundstrup gravel pit Accepted in revised form near Odense, Fyn, Denmark. 110 individual tubes were examined which contain fish 27 January 2021 Published online remains, including a variety of disarticulated bones and otoliths, by far dominated 23 February 2021 by a single gadiform taxon referred herein to as Bobbitichthys n. gen. The isolated otoliths here associated with disarticulated gadiform bones have previously been © 2021 the authors. Re-use of material is described, from the time equivalent Lellinge Greensand exposed in the Copen- permitted, provided this work is cited. hagen area, as Hymenocephalus rosenkrantzi, a grenadier fish (family Macrouridae). Creative Commons License CC BY: The abundance of associated bones and otoliths in the examined tubes allowed us https://creativecommons.org/licenses/by/4.0/ to reconstruct part of the cranial configuration of Bobbitichthys rosenkrantzi and to tentatively interpret it as a stem macrourid. Bobbitichthys rosenkrantzi represents the earliest grenadier known in the fossil record. Additional, although considerably less abundant, skeletal remains and otoliths have been tentatively referred to a long-fin bonefish (family Pterothrissidae, Pterothrissus? conchaeformis), a viviparous brotula (family Bythitidae, Bidenichthys? lapierrei), a conger eel (family Congridae, possibly belonging to Rhynchoconger angulosus), and another unidentified gadiform. Keywords: Predatory polychaete; Macrouridae; Lepidenteron tube; otolith; osteology; Kerteminde Marl; Paleocene; Selandian. Werner Schwarzhans [[email protected]], Ahrensburger Weg 103, D-22359 Hamburg, Germany; also Natural History Museum of Denmark, Universitetsparken 15, DK-2100 Copenhagen Ø, Denmark. http://orcid.org/0000-0003-4842-7989. Jesper Milàn [jesperm@ oesm.dk], Geomuseum Faxe, Østsjællands Museum, Rådhusvej 2, DK-4640 Faxe, Den- mark. https://orcid.org/0000-0002-9556-3177. Giorgio Carnevale [giorgio.carnevale@ unito.it], Dipartimento di Scienze della Terra, Università degli Studi di Torino, Via Valperga Caluso 35, I-10125 Torino, Italy. http://orcid.org/0000-0002-3433-4127. Corresponding author: Jesper Milàn Skeletal elements documenting predator–prey inter- Lepidenteron from the middle Paleocene (Selandian) actions offer a unique opportunity to study specific Kerteminde Marl (Clemmensen & Thomsen 2005; palaeoecological relationships in deep time (McAl- Schnetler & Nielsen 2018), coming from the gravel lister 2003). Here we investigate fish skeletal remains pit at Gundstrup, north of Odense, Fyn, Denmark found in the tubular trace fossils of the ichnogenus (Fig. 1). The Lepidenteron tubes of the Kerteminde A tube-dwelling predator and its prey from the middle Paleocene of Denmark · 35 Marl, which represent a new ichnospecies described with the fossil bones, to test two alternative phylo- herein, are remarkable for their abundance (a total genetic attributions that have been discussed in past of 110 tubes have been retrieved) and the contained literature. Only a few other fish taxa were identified skeletal elements which mostly belong to a single from the Lepidenteron tubes of the Kerteminde Marl, gadiform species hitherto known only from isolated including (in order of abundance) the viviparous otoliths and originally referred to as Hymenocephalus brotula Bidenichthys? lappierrei, the longfin-bonefish rosenkrantzi Schwarzhans 2003, a grenadier fish, from Pterothrissus? conchaeformis, a second unidentifiable the time-equivalent Lellinge Greensand exposed in gadiform, a single otolith of a conger eel possibly the Copenhagen area. belonging to Rhynchoconger angulosus and, finally, The associated otoliths and bones of the fishes a single otolith of Centroberyx integer, which was found in the tubes of the new Lepidenteron ichnospe- found outside of a Lepidenteron tube. The majority cies from the Kerteminde Marl provide an oppor- of the otoliths of Bidenichthys? lappierrei were found tunity to review the systematic position of Hymeno- in two discrete tubes and their associated bones did cephalus rosenkrantzi, leading to the establishment of not yield any useful taxonomic information. In the the fossil genus Bobbitichthys n. gen. A specimen each case of Pterothrissus? conchaeformis a rare instance of of the extant Hymenocephalus italicus and Euclichthys a partially articulate oral jaw was found in a single polynemus were dissected for a direct comparison tube and a large maxilla in another. Middle Upper Miocene Deep Shallow Lower Miocene Oligocene Chrono- stratigraphy Eocene Middle Upper Paleocene Age Lithology and lithostratigraphy (Southeast Denmark) Lower Paleocene (Danian) Epoch W E Upper Cretaceous Æbelø Fm Sorgenfrei–Tornquist ZoneLower Cretaceous and older Kerteminde Marl Jylland Selandian DENMARK Copenhagen Ringkøbing–Fyn High Gundstrup Sjælland Lellinge Greensand Fyn Paleocene Danian limestone late Danian A B Fig. 1. A: Pre-Quaternary map of Denmark indicating the location of the Gundstrup gravel pit in the middle upper Paleocene deposits on the island of Fyn (55.56°N, 10.35°E). Modified from Håkansson & Pedersen (1992). B: Schematic representation of the Upper Danian – Selandian stratigraphy of south-eastern Denmark. Modified from Clemmensen & Thomsen (2005). 36 · Bulletin of the Geological Society of Denmark Geological setting and location gravel pit, have been examined together with two otoliths found outside of tubes. Overall, 529 otoliths The Paleocene sedimentation in the Danish Basin have been recognized, of which 361 are identifiable. started as carbonate dominated during the Danian. Of the identified otoliths, 320 belong to Bobbitichthys n. The carbonate deposition ended at the end of the gen. rosenkrantzi, the remainder to five different spe- Danian as a consequence of a major regression that cies (see below for details). Considering the abundance took place at about 61.6 Ma (Vandenberghe et al. 2012), of otoliths referred to a single species, it is reasonable resulting in an extensive erosional unconformity at to attribute a large part of the isolated fish bones to the boundary to the overlying Selandian deposits (e.g. the same taxon, i.e., Bobbitichthys rosenkrantzi. In fact, Thomsen & Heilmann-Clausen 1985; Clemmensen & many of the isolated identifiable fish bones are readily Thomsen 2005). The succeeding Selandian transgres- recognizable as belonging to a single gadiform spe- sion resulted in a different depositional regime domi- cies. Also, a quantitative evaluation of the measured nated by siliciclastic sedimentation, as documented otoliths shows that most of the fish remains located by the Kerteminde Marl and its lateral equivalent the in the tubes are derived from specimens of similar Lellinge Greensand (Clemmensen & Thomsen 2005). size. Based on these observations we felt able to reli- While the Danian carbonates were deposited in a ably reconstruct an idealized portion of the skull of subtidal shelf palaeoenvironment situated at a depth Bobbitichthys rosenkrantzi from the individual bones. down to a few hundred metres, the Selandian Kerte- The specimens were studied and drawn with a minde Marl is interpreted as being deposited in an stereo-microscope equipped with a camera lucida offshore shelf environment at about 100–150 m depth drawing tube. Photographs were taken with a digital (Clemmensen & Thomsen 2005; Heilmann-Clausen camera adapted to a Wild M400 photomacroscope and & Surlyk 2006). The overlying Selandian – Thanetian remotely controlled from a computer. Sets of photo- Æbelø Formation is predominantly clay and repre- graphs of differing fields of depth of individual speci- sents a progressively deeper depositional environ- mens were stacked using the HeliconFocus software ment (Clemmensen & Thomsen 2005). The thickness of HeliconSoft and were then digitally retouched with of the Kerteminde Marl is up to 150 m, thinnest over Adobe Photoshop for sand grains or minor inconsist- the Ringkøbing–Fyn High and thickest northward encies, as far as doing so did not alter the morphol- towards the Sorgenfrei–Tornquist Zone (Sorgenfrei ogy of the photographed specimens. Mirror imaged & Buch 1964; Clausen & Huuse 1999; Clemmensen figures are indicated in the captions as ‘reversed’. All & Thomsen 2005). The Selandian depocentre of the the investigated and figured specimens are housed Kerteminde Marl is located on western Sjælland at the collection of Geomuseum Faxe, Østsjællands (Clemmensen & Thomsen 2005). Museum (OESM)
Recommended publications
  • Dedication Donald Perrin De Sylva
    Dedication The Proceedings of the First International Symposium on Mangroves as Fish Habitat are dedicated to the memory of University of Miami Professors Samuel C. Snedaker and Donald Perrin de Sylva. Samuel C. Snedaker Donald Perrin de Sylva (1938–2005) (1929–2004) Professor Samuel Curry Snedaker Our longtime collaborator and dear passed away on March 21, 2005 in friend, University of Miami Professor Yakima, Washington, after an eminent Donald P. de Sylva, passed away in career on the faculty of the University Brooksville, Florida on January 28, of Florida and the University of Miami. 2004. Over the course of his diverse A world authority on mangrove eco- and productive career, he worked systems, he authored numerous books closely with mangrove expert and and publications on topics as diverse colleague Professor Samuel Snedaker as tropical ecology, global climate on relationships between mangrove change, and wetlands and fish communities. Don pollutants made major scientific contributions in marine to this area of research close to home organisms in south and sedi- Florida ments. One and as far of his most afield as enduring Southeast contributions Asia. He to marine sci- was the ences was the world’s publication leading authority on one of the most in 1974 of ecologically important inhabitants of “The ecology coastal mangrove habitats—the great of mangroves” (coauthored with Ariel barracuda. His 1963 book Systematics Lugo), a paper that set the high stan- and Life History of the Great Barracuda dard by which contemporary mangrove continues to be an essential reference ecology continues to be measured. for those interested in the taxonomy, Sam’s studies laid the scientific bases biology, and ecology of this species.
    [Show full text]
  • View/Download
    OPHIDIIFORMES (part 2) · 1 The ETYFish Project © Christopher Scharpf and Kenneth J. Lazara COMMENTS: v. 9.0 - 24 Aug. 2020 Order OPHIDIIFORMES (part 2 of 2) Suborder BYTHITOIDEI Family BYTHITIDAE Viviparous (or Livebearing) Brotulas 34 genera · 125 species · Taxonomic note: includes taxa sometimes placed in Aphyonidae. Acarobythites Machida 2000 acaro, small, referring to its small size (up to 25.2 mm SL); Bythites, type genus of family Acarobythites larsonae Machida 2000 in honor of Helen Larson, Curator of Fishes, Museum and Art Gallery of the Northern Territory (Darwin, Australia), who kindly sent bythitid and ophidiid specimens to Machida for study Anacanthobythites Anderson 2008 an-, not and acanthus, thorn or prickle, referring to lack of developed gill rakers on first branchial arch; Bythites, type genus of family Anacanthobythites platycephalus Anderson 2008 platys, broad; cephalus, head, referring to its depressed head Anacanthobythites tasmaniensis Anderson 2008 -ensis, suffix denoting place: Tasmania, Australia, type locality Aphyonus Günther 1878 aphya, anchovy or small, translucent fish, referring to its transparent, colorless skin; onus, presumably a latinization of onos, a name dating to Aristotle, originally referring to Phycis blennoides (Gadiformes: Gadidae) but often mistakenly applied to Merluccius merluccius (Gadiformes: Merlucciidae) and hence used several times by Günther as a suffix for a hake-like fish Aphyonus gelatinosus Günther 1878 gelatinous or jelly-like, referring to “thin, scaleless, loose” skin, forming
    [Show full text]
  • Page 1 Page 2 [=Fiordichthys] Species Bidenichthys Beeblebroxi
    FAMILY Bythitidae Gill, 1863 - viviparous brotulas [=Brosmophycinae, Lucifugae, Pteridiidae, Protulina, Hephthocarinae] GENUS Acarobythites Machida, 2000 - viviparous brotulas Species Acarobythites larsonae Machida, 2000 - Larson's cusk GENUS Anacanthobythites Anderson, 2008 - viviparous brotulas Species Acanthobythites platycephalus Anderson, 2008 - Lucky Bay brotula Species Acanthobythites tasmaniensis Anderson, 2008 - Tasmanian brotula GENUS Aphyonus Gunther, 1878 - brotulas Species Aphyonus gelatinosus Gunther, 1878 - brotulas [=mollis] GENUS Barathronus Goode & Bean, 1886 - brotulas [=Alexeterion] Species Barathronus affinis Brauer, 1906 - Chagos brotula Species Barathronus bicolor Goode and Bean, 1886 - Guadeloupe Island brotula Species Barathronus bruuni Nielsen, 1969 - Bruun's brotula Species Barathronus diaphanus Brauer, 1906 - Valdivia brotula Species Barathronus linsi Nielsen et al., 2015 - Potiguar brotula Species Barathronus maculatus Shcherbachev, 1976 - Mozambique brotula Species Barathronus multidens Nielsen, 1984 - multidens brotula Species Barathronus pacificus Nielsen & Eagle, 1974 - Pacific brotula Species Barathronus parfaiti (Vaillant, 1888) - Parfait's brotula Species Barathronus unicolor Nielsen, 1984 - unicolor brotula GENUS Bellottia Giglioli, 1883 - viviparous brotulas [=Xenobythites] Species Bellottia apoda Giglioli, 1883 - apoda brotula Species Bellottia armiger (Smith & Radcliffe, in Radcliffe, 1913) - Macajalar Bay brotula Species Bellottia cryptica Nielson et al., 2009 - cryptic brotula Species Bellottia
    [Show full text]
  • DEEP SEA LEBANON RESULTS of the 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project
    DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project March 2018 DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project Citation: Aguilar, R., García, S., Perry, A.L., Alvarez, H., Blanco, J., Bitar, G. 2018. 2016 Deep-sea Lebanon Expedition: Exploring Submarine Canyons. Oceana, Madrid. 94 p. DOI: 10.31230/osf.io/34cb9 Based on an official request from Lebanon’s Ministry of Environment back in 2013, Oceana has planned and carried out an expedition to survey Lebanese deep-sea canyons and escarpments. Cover: Cerianthus membranaceus © OCEANA All photos are © OCEANA Index 06 Introduction 11 Methods 16 Results 44 Areas 12 Rov surveys 16 Habitat types 44 Tarablus/Batroun 14 Infaunal surveys 16 Coralligenous habitat 44 Jounieh 14 Oceanographic and rhodolith/maërl 45 St. George beds measurements 46 Beirut 19 Sandy bottoms 15 Data analyses 46 Sayniq 15 Collaborations 20 Sandy-muddy bottoms 20 Rocky bottoms 22 Canyon heads 22 Bathyal muds 24 Species 27 Fishes 29 Crustaceans 30 Echinoderms 31 Cnidarians 36 Sponges 38 Molluscs 40 Bryozoans 40 Brachiopods 42 Tunicates 42 Annelids 42 Foraminifera 42 Algae | Deep sea Lebanon OCEANA 47 Human 50 Discussion and 68 Annex 1 85 Annex 2 impacts conclusions 68 Table A1. List of 85 Methodology for 47 Marine litter 51 Main expedition species identified assesing relative 49 Fisheries findings 84 Table A2. List conservation interest of 49 Other observations 52 Key community of threatened types and their species identified survey areas ecological importanc 84 Figure A1.
    [Show full text]
  • Updated Checklist of Marine Fishes (Chordata: Craniata) from Portugal and the Proposed Extension of the Portuguese Continental Shelf
    European Journal of Taxonomy 73: 1-73 ISSN 2118-9773 http://dx.doi.org/10.5852/ejt.2014.73 www.europeanjournaloftaxonomy.eu 2014 · Carneiro M. et al. This work is licensed under a Creative Commons Attribution 3.0 License. Monograph urn:lsid:zoobank.org:pub:9A5F217D-8E7B-448A-9CAB-2CCC9CC6F857 Updated checklist of marine fishes (Chordata: Craniata) from Portugal and the proposed extension of the Portuguese continental shelf Miguel CARNEIRO1,5, Rogélia MARTINS2,6, Monica LANDI*,3,7 & Filipe O. COSTA4,8 1,2 DIV-RP (Modelling and Management Fishery Resources Division), Instituto Português do Mar e da Atmosfera, Av. Brasilia 1449-006 Lisboa, Portugal. E-mail: [email protected], [email protected] 3,4 CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal. E-mail: [email protected], [email protected] * corresponding author: [email protected] 5 urn:lsid:zoobank.org:author:90A98A50-327E-4648-9DCE-75709C7A2472 6 urn:lsid:zoobank.org:author:1EB6DE00-9E91-407C-B7C4-34F31F29FD88 7 urn:lsid:zoobank.org:author:6D3AC760-77F2-4CFA-B5C7-665CB07F4CEB 8 urn:lsid:zoobank.org:author:48E53CF3-71C8-403C-BECD-10B20B3C15B4 Abstract. The study of the Portuguese marine ichthyofauna has a long historical tradition, rooted back in the 18th Century. Here we present an annotated checklist of the marine fishes from Portuguese waters, including the area encompassed by the proposed extension of the Portuguese continental shelf and the Economic Exclusive Zone (EEZ). The list is based on historical literature records and taxon occurrence data obtained from natural history collections, together with new revisions and occurrences.
    [Show full text]
  • Aves 207 Introducción 209 Hojas De Datos
    LIBRO ROJO DE LOS VERTEBRADOS DE CUBA EDITORES Hiram González Alonso Lourdes Rodríguez Schettino Ariel Rodríguez Carlos A. Mancina Ignacio Ramos García INSTITUTO DE ECOLOGÍA Y SISTEMÁTICA 2012 Editores Hiram González Alonso Lourdes Rodríguez Schettino Ariel Rodríguez Carlos A. Mancina Ignacio Ramos García Cartografía y análisis del Sistema de Información Geográfica Arturo Hernández Marrero Ángel Daniel Álvarez Ariel Rodríguez Gómez Diseño Pepe Nieto Selección de imágenes y © 2012, Instituto de Ecología y Sistemática, CITMA procesamiento digital © 2012, Hiram González Alonso Hiram González Alonso © 2012, Lourdes Rodríguez Schettino Ariel Rodríguez Gómez © 2012, Ariel Rodríguez Julio A. Larramendi Joa © 2012, Carlos A. Mancina © 2012, Ignacio Ramos García Ilustraciones Nils Navarro Pacheco Reservados todos los derechos. Raimundo López Silvero Prohibida® la reproducción parcial o total de esta obra, así como su transmisión por cualquier medio o mediante cualquier soporte, Dirección Editorial sin la autorización escrita del Instituto de Ecología y Sistemática Hiram González Alonso (CITMA, República de Cuba) y de sus editores. ISBN 978-959-270-234-9 Forma de cita recomendada: González Alonso, H., L. Rodríguez Schettino, A. Rodríguez, Impreso por C. A. Mancina e I. Ramos García. 2012. Libro Rojo de los ARG Impresores, S. L. Vertebrados de Cuba. Editorial Academia, La Habana, 304 pp. Madrid, España Forma de cita recomendada para Hoja de Datos del taxón: Autor(es) de la hoja de datos del taxón. 2012. “Nombre científico de la especie”. En González Alonso, H., L. Rodríguez Schettino, A. Rodríguez, C. A. Mancina e I. Ramos García (eds.). Libro Rojo de los Vertebrados de Cuba. Editorial Academia, La Habana, pp.
    [Show full text]
  • Branchiostegal Rays 7; Retia Mi- Rabilia and Gas Glands 2
    Japanese Journal of Ichthyology 魚 類 学 雑 誌 Vol.39, No.3 1992 39巻3号1992年 A Rare Macrourid Alevin of the Genus first arch 0+7/0+8; branchiostegal rays 7; retia mi- Hymenocephalus from the Pacific Ocean rabilia and gas glands 2; abdominal vertebrae 12. Measurements in mm: body depth 3.88; predorsal Hiromitsu Endo, Mamoru Yabe and Kunio Amaoka 4.30; preanal 5.48; first dorsal fin base 1.58; long- itudinal length of light organ 2.34. Laboratory of Marine Zoology, Faculty of Fisheries, Hokkaido University, 3-1-1 Minato-cho, Head and body compressed. Head partly dam- Hakodate 041, Japan aged, both eyes lost. Pectoral fin stalked and discoid in shape. Pelvic fin well developed. Presence of serra- tions on second spine of first dorsal fin uncertain During the midwater trawl survey of the T/V because of loss of spine. Anal fin rays much longer Oshoro-Maru of Hokkaido University, a rare macro- than second dorsal rays. First gill slit restricted. Gill urid larva was collected at 0-400m depth in the rakers differentiated and tubercle in shape. Mouth southeast of the Ryukyu Islands in November 1988. oblique. Premaxilla provided laterally with a band of The larva has a discoid pectoral fin with long, stalked needle-like teeth (Fig. 2). Mandibular dentition com- base, a feature that identifies it as a macrourid alevin posed of one row of small, widely spaced, conical (Merrett, 1989). The structure of the light organ and teeth. Small mental barbel differentiated. Light organ the presence of seven branchiostegal rays further on abdomen having two rounded lens-like bodies identifies the specimen as a species of Hymenocepha- connected by a secondary duct; large anterior lens lus.
    [Show full text]
  • 399 4. Bibliography
    click for previous page 399 4. BIBLIOGRAPHY Alcock, A., 1889. Natural history notes from H.M. Indian Marine Survey Steamer “Investigator”, Commander Alfred Carpenter, R.N., D.S.O., commanding No. 13. On the bathybial fishes of the Bay of Bengal and neighboring waters, obtained during the seasons 1885-1889. Ann.Mag.Nat.Hist., ser. 6,6(23):376-399 .................., 1891. On the deep-sea fishes collected by the “Investigator” in 1890-1891. Ann.Mag.Nat.Hist., ser. 6,8:16-34; 119-138, pls vii-viii .................., 1899. A descriptive catalogue of the Indian deep-sea fishes in the Indian Museum. Being a revised account of the deep-sea fishes collected by the Royal Indian Marine Survey ship Investigator. Calcutta, Indian Museum, 211 pp. Allen, M.J. & G.8. Smith, 1988. Atlas and zoogeography of common fishes in the Bering Sea and Northeastern Pacific. NOAA Tech.Rep. NMFS, 66: 151 pp. Altukhov, K.A., 1979. O razmnozheznii i razvitii saiki Boreogadus saida (Lepechin) v Belom More. (The reproduction and development of the Arctic cod, Boreogadus saida, in the White Sea.) Vopr.lkhtiol.. 19(5):874-82 (J.Ichthyol., 19(5):93-101) Amaoka, K. et al. (eds), 1983. Fishes from the north-eastern Sea of Japan and the Okhotsk Sea off Hokkaido. Japan Fisheries Resource Conservation Association. Tokyo. 371 pp. Andriashev, A.P., 1954. Fishes of the northern seas of the USSR. Keys to the fauna of the USSR. Zool.lnst.USSR Acad.Sci., 53. Moscow-Leningrad, 617 p. (Transl. for Smithsonian Inst. and Nat.Sci.Found., by Israel Program for Sci.Transl., 1964) ...................., 1965.
    [Show full text]
  • Fauna Assessment of Arrowsmith North Mine Area.PDF
    Fauna Assessment of Arrowsmith North Extensive Kwongan in the VRX Arrowsmith North project area (M. Bamford) Prepared for: VRX Silica Ltd 6 Thelma St West Perth WA 6005 Prepared by: Mike Bamford, Katherine Chuk, Andy McCreery and Barry Shepherd M.J. & A.R. Bamford Consulting Ecologists 23 Plover Way Kingsley, WA 6026 2nd March 2021 VRX Silica Arrowsmith North Fauna Assessment Executive Summary VRX Silica Ltd is proposing to develop a silica sand mine (the Proposal) in its Arrowsmith North project area (Project Area), and has commissioned Bamford Consulting Ecologists (BCE) to conduct a Level 1 fauna assessment and targeted surveys for conservation significant fauna. This assessment provides information on the fauna values of this area, particularly for conservation significant species, and provides discussion on the interaction of the proposal with these fauna values and functions. BCE uses a ‘values and impacts’ assessment process with the following components: • The identification of fauna values: o Assemblage characteristics: uniqueness, completeness and richness; o Species of conservation significance; o Recognition of ecotypes or vegetation/substrate associations (VSAs) that provide habitat for fauna, particularly those that are rare, unusual and/or support significant fauna; o Patterns of biodiversity across the landscape; o Ecological processes upon which the fauna depend. • The review of impacting processes such as: o Habitat loss leading to population decline; o Habitat loss leading to population fragmentation; o Degradation of habitat due to weed invasion leading to population decline; o Ongoing mortality from operations; o Species interactions including feral and overabundant native species; o Hydrological change; o Altered fire regimes; and o Disturbance (dust, light, noise).
    [Show full text]
  • D6.2 Report on Biodiversity Indicators, Trends
    DEEPFISHMAN Management And Monitoring Of Deep-sea Fisheries And Stocks Project number: 227390 Small or medium scale focused research action Topic: FP7-KBBE-2008-1-4-02 (Deepsea fisheries management) DELIVERABLE D 6.2 Title: Report on biodiversity indicators, trends monitoring and evaluation of information pertinence for deep-water fish and invertebrates Due date of deliverable: M 24 (April 2011) Actual submission date: M 27 (July 2011 st Start date of the project: April 1 , 2009 Duration : 36 months Organization Name of lead coordinator: Ifremer Dissemination Level: PP (Restricted to programme participants) Date: 27 July 2011 1 2 CHAPTER 1 Data Review on the Distribution and Extent of Deep-Sea Macrobenthic Communities: Trends in Biomass and Abundance from the North East Atlantic Deep-Sea Benthic Data Review Data Review on the Distribution and Extent of Deep- Sea Macrobenthic Communities: Trends in Biomass and Abundance from the North East Atlantic. Prepared by A. Kenny and C. Barrio CEFAS 1 Deep-Sea Benthic Data Review March, 2011 Table of Contents Introduction............................................................................................................................ 3 Materials and Methods .......................................................................................................... 3 Results & Discussion ............................................................................................................... 7 References ...........................................................................................................................
    [Show full text]
  • Head and Otolith Morphology of the Genera Hymenocephalus, Hymenogadus and Spicomacrurus (Macrouridae), with the Description of Three New Species
    Zootaxa 3888 (1): 001–073 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Monograph ZOOTAXA Copyright © 2014 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3888.1.1 http://zoobank.org/urn:lsid:zoobank.org:pub:1B437AE1-CF28-4C1B-95B6-C31A295905A0 ZOOTAXA 3888 Head and otolith morphology of the genera Hymenocephalus, Hymenogadus and Spicomacrurus (Macrouridae), with the description of three new species WERNER SCHWARZHANS Ahrensburger Weg 103, D-22359 Hamburg, and Natural History Museum of Denmark, Copenhagen E-mail: [email protected] Magnolia Press Auckland, New Zealand Accepted by W. Holleman: 7 Aug. 2014; published: 28 Nov. 2014 Licensed under a Creative Commons Attribution License http://creativecommons.org/licenses/by/3.0 WERNER SCHWARZHANS Head and otolith morphology of the genera Hymenocephalus, Hymenogadus and Spicomacrurus (Macrouridae), with the description of three new species (Zootaxa 3888) 73 pp.; 30 cm. 28 Nov. 2014 ISBN 978-1-77557-583-2 (paperback) ISBN 978-1-77557-584-9 (Online edition) FIRST PUBLISHED IN 2014 BY Magnolia Press P.O. Box 41-383 Auckland 1346 New Zealand e-mail: [email protected] http://www.mapress.com/zootaxa/ © 2014 Magnolia Press All rights reserved. No part of this publication may be reproduced, stored, transmitted or disseminated, in any form, or by any means, without prior written permission from the publisher, to whom all requests to reproduce copyright material should be directed in writing. This authorization does not extend to any other kind of copying, by any means, in any form, and for any purpose other than private research use.
    [Show full text]
  • Ophidiiformes, Bythitidae), from Eastern Cuba
    ZooKeys 946: 17–35 (2020) A peer-reviewed open-access journal doi: 10.3897/zookeys.946.51373 RESEARCH ARTICLE https://zookeys.pensoft.net Launched to accelerate biodiversity research A new species of the cave-fish genus Lucifuga (Ophidiiformes, Bythitidae), from eastern Cuba Damir Hernández1, Peter Rask Møller2, Didier Casane3,4, Erik García-Machado1,5 1 Centro de Investigaciones Marinas, Universidad de La Habana, Calle 16, No. 114 entre 1ra y 3ra, Miramar, Playa, Ciudad Habana 11300, Cuba 2 Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen Ø, Denmark 3 Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198, Gif-sur-Yvette, France 4 Université Paris Diderot, Sorbonne Paris Cité, 5 rue Thomas-Mann, 75205 Paris, France 5 Institut de Biologie Intégrative et des Sys- tèmes, Université Laval, Québec, QC, G1V 0A6, Canada Corresponding author: Peter Rask Møller ([email protected]) Academic editor: K. Piller | Received 22 February 2020 | Accepted 3 April 2020 | Published 6 July 2020 http://zoobank.org/6A134ED0-2FAC-483F-940B-6413D600FE55 Citation: Hernández D, Møller PR, Casane D, García-Machado E (2020) A new species of the cave-fish genusLucifuga (Ophidiiformes, Bythitidae), from eastern Cuba. ZooKeys 946: 17–35. https://doi.org/10.3897/zookeys.946.51373 Abstract Recently, a barcoding study and a molecular phylogenetic analysis of the Cuban species of the cave-fish genus Lucifuga Poey, 1858 revealed the existence of different evolutionary lineages that were previously unknown or passed unnoticed by morphological scrutiny (i.e., cryptic candidate species). In the present study, Lucifuga gibarensis is described as a new species restricted to anchialine caves in the northeastern karst region of the main island.
    [Show full text]