Genome Sequence of the Pink–Pigmented Marine
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Horizontal Operon Transfer, Plasmids, and the Evolution of Photosynthesis in Rhodobacteraceae
The ISME Journal (2018) 12:1994–2010 https://doi.org/10.1038/s41396-018-0150-9 ARTICLE Horizontal operon transfer, plasmids, and the evolution of photosynthesis in Rhodobacteraceae 1 2 3 4 1 Henner Brinkmann ● Markus Göker ● Michal Koblížek ● Irene Wagner-Döbler ● Jörn Petersen Received: 30 January 2018 / Revised: 23 April 2018 / Accepted: 26 April 2018 / Published online: 24 May 2018 © The Author(s) 2018. This article is published with open access Abstract The capacity for anoxygenic photosynthesis is scattered throughout the phylogeny of the Proteobacteria. Their photosynthesis genes are typically located in a so-called photosynthesis gene cluster (PGC). It is unclear (i) whether phototrophy is an ancestral trait that was frequently lost or (ii) whether it was acquired later by horizontal gene transfer. We investigated the evolution of phototrophy in 105 genome-sequenced Rhodobacteraceae and provide the first unequivocal evidence for the horizontal transfer of the PGC. The 33 concatenated core genes of the PGC formed a robust phylogenetic tree and the comparison with single-gene trees demonstrated the dominance of joint evolution. The PGC tree is, however, largely incongruent with the species tree and at least seven transfers of the PGC are required to reconcile both phylogenies. 1234567890();,: 1234567890();,: The origin of a derived branch containing the PGC of the model organism Rhodobacter capsulatus correlates with a diagnostic gene replacement of pufC by pufX. The PGC is located on plasmids in six of the analyzed genomes and its DnaA- like replication module was discovered at a conserved central position of the PGC. A scenario of plasmid-borne horizontal transfer of the PGC and its reintegration into the chromosome could explain the current distribution of phototrophy in Rhodobacteraceae. -
Insights Into Mutualism Mechanism and Versatile Metabolism Of
www.nature.com/scientificreports OPEN Insights into mutualism mechanism and versatile metabolism of Ketogulonicigenium vulgare Hbe602 Received: 20 January 2016 Accepted: 29 February 2016 based on comparative genomics Published: 16 March 2016 and metabolomics studies Nan Jia1,2, Ming-Zhu Ding1,2, Jin Du1,2, Cai-Hui Pan1,2, Geng Tian3, Ji-Dong Lang3, Jian-Huo Fang3, Feng Gao1,2,4 & Ying-Jin Yuan1,2 Ketogulonicigenium vulgare has been widely used in vitamin C two steps fermentation and requires companion strain for optimal growth. However, the understanding of K. vulgare as well as its companion strain is still preliminary. Here, the complete genome of K. vulgare Hbe602 was deciphered to provide insight into the symbiosis mechanism and the versatile metabolism. K. vulgare contains the LuxR family proteins, chemokine proteins, flagellar structure proteins, peptides and transporters for symbiosis consortium. Besides, the growth state and metabolite variation of K. vulgare were observed when five carbohydrates (D-sorbitol, L-sorbose, D-glucose, D-fructose and D-mannitol) were used as carbon source. The growth increased by 40.72% and 62.97% respectively when K. vulgare was cultured on D-mannitol/D-sorbitol than on L-sorbose. The insufficient metabolism of carbohydrates, amino acids and vitamins is the main reason for the slow growth of K. vulgare. The combined analysis of genomics and metabolomics indicated that TCA cycle, amino acid and nucleotide metabolism were significantly up-regulated when K. vulgare was cultured on the D-mannitol/D-sorbitol, which facilitated the better growth. The present study would be helpful to further understand its metabolic structure and guide the engineering transformation. -
Strain-Level Diversity Drives Alternative Community Types in Millimeter Scale
bioRxiv preprint doi: https://doi.org/10.1101/280271; this version posted March 11, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Strain-level diversity drives alternative community types in millime- ter scale granular biofilms Gabriel E. Leventhal,1 Carles Boix,1 Urs Kuechler,2 Tim N. Enke,1,2 Elzbieta Sliwerska,2 Christof Holliger,3 Otto X. Cordero1,2,y 1 Dept. of Civil and Environmental Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, U.S.A.; 2 Dept. of Environmental System Sciences, ETH Zurich, Zurich, Switzerland; 3 Laboratory for Environmental Biotechnology, École Polytechnique Fédéral de Lausanne (EPFL), Lausanne, Switzer- land [email protected] Keywords: Microbial communities; Strain diversity; Alternative states, Activated granular sludge; Accumulibac- ter; EBPR; Co-evolution; Microbial communities are often highly diverse in their composition, both at the level of coarse-grained taxa such as genera as well as at the level of strains within species. This variability can be driven by both extrinsic factors like temperature, pH, etc., as well as by intrinsic ones, such as demographic fluctuations or ecologi- cal interactions. The relative contributions of these factors and the taxonomic level at which they influence community structure remain poorly understood, in part because of the difficulty of identifying true com- munity replicates assembled under the same environmental parameters. Here, we address this problem using an activated granular sludge reactor in which millimeter scale biofilm granules represent true com- munity replicates whose differences in composition are expected to be driven primarily by biotic factors. -
Loktanella Spp. Gb03 As an Algicidal Bacterium, Isolated from the Culture of Dinoflagellate Gambierdiscus Belizeanus
Veterinary World, EISSN: 2231-0916 RESEARCH ARTICLE Available at www.veterinaryworld.org/Vol.9/February-2016/6.pdf Open Access Loktanella spp. Gb03 as an algicidal bacterium, isolated from the culture of Dinoflagellate Gambierdiscus belizeanus Anmar Hameed Bloh1, Gires Usup2 and Asmat Ahmad1 1. School of Bioscience and Biotechnology, Faculty of Science and Technology, University Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia; 2. School of Environmental and Natural Resources Sciences, Faculty of Science and Technology, University Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia. Corresponding author: Asmat Ahmad, e-mail: [email protected], AHB: [email protected], GU: [email protected] Received: 01-10-2015, Revised: 23-12-2015, Accepted: 29-12-2015, Published online: 12-02-2016 doi: 10.14202/vetworld.2016.142-146 How to cite this article: Bloh AH, Usup G, Ahmad A (2016) Loktanella spp. Gb03 as an algicidal bacterium, isolated from the culture of Dinoflagellate Gambierdiscus belizeanus, Veterinary World 9(2): 142-146. Abstract Aim: Bacteria associated with harmful algal blooms can play a crucial role in regulating algal blooms in the environment. This study aimed at isolating and identifying algicidal bacteria in Dinoflagellate culture and to determine the optimum growth requirement of the algicidal bacteria, Loktanella sp. Gb-03. Materials and Methods: The Dinoflagellate culture used in this study was supplied by Professor Gires Usup’s Laboratory, School of Environmental and Natural Resources Sciences, Faculty of Science and Technology, University Kebangsaan Malaysia, Malaysia. The culture was used for the isolation of Loktanella sp., using biochemical tests, API 20 ONE kits. The fatty acid content of the isolates and the algicidal activity were further evaluated, and the phenotype was determined through the phylogenetic tree. -
Compile.Xlsx
Silva OTU GS1A % PS1B % Taxonomy_Silva_132 otu0001 0 0 2 0.05 Bacteria;Acidobacteria;Acidobacteria_un;Acidobacteria_un;Acidobacteria_un;Acidobacteria_un; otu0002 0 0 1 0.02 Bacteria;Acidobacteria;Acidobacteriia;Solibacterales;Solibacteraceae_(Subgroup_3);PAUC26f; otu0003 49 0.82 5 0.12 Bacteria;Acidobacteria;Aminicenantia;Aminicenantales;Aminicenantales_fa;Aminicenantales_ge; otu0004 1 0.02 7 0.17 Bacteria;Acidobacteria;AT-s3-28;AT-s3-28_or;AT-s3-28_fa;AT-s3-28_ge; otu0005 1 0.02 0 0 Bacteria;Acidobacteria;Blastocatellia_(Subgroup_4);Blastocatellales;Blastocatellaceae;Blastocatella; otu0006 0 0 2 0.05 Bacteria;Acidobacteria;Holophagae;Subgroup_7;Subgroup_7_fa;Subgroup_7_ge; otu0007 1 0.02 0 0 Bacteria;Acidobacteria;ODP1230B23.02;ODP1230B23.02_or;ODP1230B23.02_fa;ODP1230B23.02_ge; otu0008 1 0.02 15 0.36 Bacteria;Acidobacteria;Subgroup_17;Subgroup_17_or;Subgroup_17_fa;Subgroup_17_ge; otu0009 9 0.15 41 0.99 Bacteria;Acidobacteria;Subgroup_21;Subgroup_21_or;Subgroup_21_fa;Subgroup_21_ge; otu0010 5 0.08 50 1.21 Bacteria;Acidobacteria;Subgroup_22;Subgroup_22_or;Subgroup_22_fa;Subgroup_22_ge; otu0011 2 0.03 11 0.27 Bacteria;Acidobacteria;Subgroup_26;Subgroup_26_or;Subgroup_26_fa;Subgroup_26_ge; otu0012 0 0 1 0.02 Bacteria;Acidobacteria;Subgroup_5;Subgroup_5_or;Subgroup_5_fa;Subgroup_5_ge; otu0013 1 0.02 13 0.32 Bacteria;Acidobacteria;Subgroup_6;Subgroup_6_or;Subgroup_6_fa;Subgroup_6_ge; otu0014 0 0 1 0.02 Bacteria;Acidobacteria;Subgroup_6;Subgroup_6_un;Subgroup_6_un;Subgroup_6_un; otu0015 8 0.13 30 0.73 Bacteria;Acidobacteria;Subgroup_9;Subgroup_9_or;Subgroup_9_fa;Subgroup_9_ge; -
Interactions in Self-Assembled Microbial Communities Saturate with Diversity
bioRxiv preprint doi: https://doi.org/10.1101/347948; this version posted June 16, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Interactions in self-assembled microbial communities saturate with diversity Xiaoqian Yu1, Martin F. Polz2*, Eric J. Alm2,3,4,5* 1. Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA 2. Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA 3. Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA 4. Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA 5. Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA *Correspondence should be addressed to: E.J.A. ([email protected]) or M.F.P. ([email protected]) Abstract How the diversity of organisms competing for or sharing resources influences community production is an important question in ecology but has rarely been explored in natural microbial communities. These generally contain large numbers of species making it difficult to disentangle how the effects of different interactions scale with diversity. Here, we show that changing diversity affects measures of community function in relatively simple communities but that increasing richness beyond a threshold has little detectable effect. We generated self-assembled communities with a wide range of diversity by growth of cells from serially diluted seawater on brown algal leachate. We subsequently isolated the most abundant taxa from these communities via dilution-to-extinction in order to compare productivity functions of the entire community to those of individual taxa. -
A059p283.Pdf
Vol. 59: 283–293, 2010 AQUATIC MICROBIAL ECOLOGY Published online April 21 doi: 10.3354/ame01398 Aquat Microb Ecol High diversity of Rhodobacterales in the subarctic North Atlantic Ocean and gene transfer agent protein expression in isolated strains Yunyun Fu1,*, Dawne M. MacLeod1,*, Richard B. Rivkin2, Feng Chen3, Alison Buchan4, Andrew S. Lang1,** 1Department of Biology, Memorial University of Newfoundland, 232 Elizabeth Ave., St. John’s, Newfoundland A1B 3X9, Canada 2Ocean Sciences Centre, Memorial University of Newfoundland, Marine Lab Road, St. John’s, Newfoundland A1C 5S7, Canada 3Center of Marine Biotechnology, University of Maryland Biotechnology Institute, 236-701 East Pratt St., Baltimore, Maryland 21202, USA 4Department of Microbiology, University of Tennessee, M409 Walters Life Sciences, Knoxville, Tennessee 37914, USA ABSTRACT: Genes encoding gene transfer agent (GTA) particles are well conserved in bacteria of the order Rhodobacterales. Members of this order are abundant in diverse marine environments, fre- quently accounting for as much as 25% of the total bacterial community. Conservation of the genes encoding GTAs allows their use as diagnostic markers of Rhodobacterales in biogeographical stud- ies. The first survey of the diversity of Rhodobacterales based on the GTA major capsid gene was con- ducted in a warm temperate estuarine ecosystem, the Chesapeake Bay, but the biogeography of Rhodobacterales has not been explored extensively. This study investigates Rhodobacterales diver- sity in the cold subarctic water near Newfoundland, Canada. Our results suggest that the subarctic region of the North Atlantic contains diverse Rhodobacterales communities in both winter and sum- mer, and that the diversity of the Rhodobacterales community in the summer Newfoundland coastal water is higher than that found in the Chesapeake Bay, in either the summer or winter. -
Taxonomic Hierarchy of the Phylum Proteobacteria and Korean Indigenous Novel Proteobacteria Species
Journal of Species Research 8(2):197-214, 2019 Taxonomic hierarchy of the phylum Proteobacteria and Korean indigenous novel Proteobacteria species Chi Nam Seong1,*, Mi Sun Kim1, Joo Won Kang1 and Hee-Moon Park2 1Department of Biology, College of Life Science and Natural Resources, Sunchon National University, Suncheon 57922, Republic of Korea 2Department of Microbiology & Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea *Correspondent: [email protected] The taxonomic hierarchy of the phylum Proteobacteria was assessed, after which the isolation and classification state of Proteobacteria species with valid names for Korean indigenous isolates were studied. The hierarchical taxonomic system of the phylum Proteobacteria began in 1809 when the genus Polyangium was first reported and has been generally adopted from 2001 based on the road map of Bergey’s Manual of Systematic Bacteriology. Until February 2018, the phylum Proteobacteria consisted of eight classes, 44 orders, 120 families, and more than 1,000 genera. Proteobacteria species isolated from various environments in Korea have been reported since 1999, and 644 species have been approved as of February 2018. In this study, all novel Proteobacteria species from Korean environments were affiliated with four classes, 25 orders, 65 families, and 261 genera. A total of 304 species belonged to the class Alphaproteobacteria, 257 species to the class Gammaproteobacteria, 82 species to the class Betaproteobacteria, and one species to the class Epsilonproteobacteria. The predominant orders were Rhodobacterales, Sphingomonadales, Burkholderiales, Lysobacterales and Alteromonadales. The most diverse and greatest number of novel Proteobacteria species were isolated from marine environments. Proteobacteria species were isolated from the whole territory of Korea, with especially large numbers from the regions of Chungnam/Daejeon, Gyeonggi/Seoul/Incheon, and Jeonnam/Gwangju. -
CHAPTER 1 Bacterial Diversity In
miii UNIVERSITEIT GENT Faculteit Wetenschappen Laboratorium voor Microbiologie Biodiversity of bacterial isolates from Antarctic lakes and polar seas Stefanie Van Trappen Scriptie voorgelegd tot het behalen van de graad van Doctor in de Wetenschappen (Biotechnologie) Promotor: Prof. Dr. ir. J. Swings Academiejaar 2003-2004 ‘If Antarctica were music it would be Mozart. Art, and it would be Michelangelo. Literature, and it would be Shakespeare. And yet it is something even greater; the only place on earth that is still as it should be. May we never tame it.’ Andrew Denton Dankwoord Doctoreren doe je niet alleen en in dit deel wens ik dan ook de vele mensen te bedanken die dit onvergetelÿke avontuur mogelÿk hebben gemaakt. Al van in de 2 de licentie werd ik tijdens het practicum gebeten door de 'microbiologie microbe' en Joris & Ben maakten mij wegwijs in de wondere wereld van petriplaten, autoclaveren, enten en schuine agarbuizen. Het kwaad was geschied en ik besloot dan ook mijn thesis te doen op het labo microbiologie. Met de steun van Paul, Peter & Tom worstelde ik mij door de uitgebreide literatuur over Burkholderia en aanverwanten en er kon een nieuw species beschreven worden, Burkholderia ambifaria. Nu had ik de smaak pas goed te pakken en toen Joris met een voorstel om te doctoreren op de proppen kwam, moest ik niet lang nadenken. En in de voetsporen tredend van A. de Gerlache, kon ik aan de ontdekkingstocht van ijskoude poolzeeën en Antarctische meren beginnen... Jean was hierbij een uitstekende gids: bedankt voor je vertrouwen en steun. Naast de kritische opmerkingen en verbeteringen, gafje mij ook voldoende vrijheid om deze reis tot een goed einde te brengen. -
CGM-18-001 Perseus Report Update Bacterial Taxonomy Final Errata
report Update of the bacterial taxonomy in the classification lists of COGEM July 2018 COGEM Report CGM 2018-04 Patrick L.J. RÜDELSHEIM & Pascale VAN ROOIJ PERSEUS BVBA Ordering information COGEM report No CGM 2018-04 E-mail: [email protected] Phone: +31-30-274 2777 Postal address: Netherlands Commission on Genetic Modification (COGEM), P.O. Box 578, 3720 AN Bilthoven, The Netherlands Internet Download as pdf-file: http://www.cogem.net → publications → research reports When ordering this report (free of charge), please mention title and number. Advisory Committee The authors gratefully acknowledge the members of the Advisory Committee for the valuable discussions and patience. Chair: Prof. dr. J.P.M. van Putten (Chair of the Medical Veterinary subcommittee of COGEM, Utrecht University) Members: Prof. dr. J.E. Degener (Member of the Medical Veterinary subcommittee of COGEM, University Medical Centre Groningen) Prof. dr. ir. J.D. van Elsas (Member of the Agriculture subcommittee of COGEM, University of Groningen) Dr. Lisette van der Knaap (COGEM-secretariat) Astrid Schulting (COGEM-secretariat) Disclaimer This report was commissioned by COGEM. The contents of this publication are the sole responsibility of the authors and may in no way be taken to represent the views of COGEM. Dit rapport is samengesteld in opdracht van de COGEM. De meningen die in het rapport worden weergegeven, zijn die van de auteurs en weerspiegelen niet noodzakelijkerwijs de mening van de COGEM. 2 | 24 Foreword COGEM advises the Dutch government on classifications of bacteria, and publishes listings of pathogenic and non-pathogenic bacteria that are updated regularly. These lists of bacteria originate from 2011, when COGEM petitioned a research project to evaluate the classifications of bacteria in the former GMO regulation and to supplement this list with bacteria that have been classified by other governmental organizations. -
Appendix 1. Validly Published Names, Conserved and Rejected Names, And
Appendix 1. Validly published names, conserved and rejected names, and taxonomic opinions cited in the International Journal of Systematic and Evolutionary Microbiology since publication of Volume 2 of the Second Edition of the Systematics* JEAN P. EUZÉBY New phyla Alteromonadales Bowman and McMeekin 2005, 2235VP – Valid publication: Validation List no. 106 – Effective publication: Names above the rank of class are not covered by the Rules of Bowman and McMeekin (2005) the Bacteriological Code (1990 Revision), and the names of phyla are not to be regarded as having been validly published. These Anaerolineales Yamada et al. 2006, 1338VP names are listed for completeness. Bdellovibrionales Garrity et al. 2006, 1VP – Valid publication: Lentisphaerae Cho et al. 2004 – Valid publication: Validation List Validation List no. 107 – Effective publication: Garrity et al. no. 98 – Effective publication: J.C. Cho et al. (2004) (2005xxxvi) Proteobacteria Garrity et al. 2005 – Valid publication: Validation Burkholderiales Garrity et al. 2006, 1VP – Valid publication: Vali- List no. 106 – Effective publication: Garrity et al. (2005i) dation List no. 107 – Effective publication: Garrity et al. (2005xxiii) New classes Caldilineales Yamada et al. 2006, 1339VP VP Alphaproteobacteria Garrity et al. 2006, 1 – Valid publication: Campylobacterales Garrity et al. 2006, 1VP – Valid publication: Validation List no. 107 – Effective publication: Garrity et al. Validation List no. 107 – Effective publication: Garrity et al. (2005xv) (2005xxxixi) VP Anaerolineae Yamada et al. 2006, 1336 Cardiobacteriales Garrity et al. 2005, 2235VP – Valid publica- Betaproteobacteria Garrity et al. 2006, 1VP – Valid publication: tion: Validation List no. 106 – Effective publication: Garrity Validation List no. 107 – Effective publication: Garrity et al. -
(ST). the Table
1 SUPPLEMENTAL MATERIALS Growth Media Modern Condition Seawater Freshwater Light T°C Atmosphere AMCONA medium BG11 medium – Synechococcus – – Synechocystis – [C] in PAL [C] in the [C] in the Gas Nutrients Modern Nutrients (ppm) Medium Medium Ocean NaNO3 CO2 ~407.8 Na2SO4 25.0mM 29mM Nitrogen 50 Standard (17.65mM) μmol (ST) NaNO NaNO 20°C O ~209’460 Nitrogen 3 3 MgSO 0.304mM photon 2 (549µM) (13.7µM) 4 /m2s FeCl3 6.56µM 2nM Ammonium 0.6g/L ZnSO 254nM 0.5nM ferric stock N ~780’790 4 2 citrate (10ml NaMoO 105nM 105nM 4 green stock/1L) 2 Table S 1 Description of the experimental condition defined as Standard Condition (ST). The table 3 shows the concentrations of fundamental elements, such as C, N, S, and Fe used for the AMCONA 4 seawater medium (Fanesi et al., 2014) and BG11 freshwater medium (Stanier et al., 1971) flushing air 5 with using air pump (KEDSUM-310 8W pump; Xiolan, China) Growth Media Possible Proterozoic T° Condition Modified Seawater Modified Freshwater Light Atmosphere AMCONA medium BG11 medium C – Synechococcus – – Synechocystis – [C] in [C] in PPr Nutrients PPr Nutrients Medium Gas ppm Medium NH Cl Na SO 3mM Nitrogen 4 3 2 4 (0.0035mM) CO 2 10’000ppm (20%) NH Cl Possible (~ 2’450% Nitrogen 4 3 MgSO 0.035mM 50 with 20ml/ (100µM) 4 Proterozoic PAL) μmol 20° min (PPr) photon C O2 20’000ppm /m2s (in Air) (~ 10% FeCl 200nM with 5ml/ 3 PAL) Ammonium 0.6g/L stock min ferric 10ml N ZnSO 0.0nM 2 4 citrate green stock/1L (100%) Base gas with NaMoO4 10.5nM 200ml/min 6 Table S 2 Description of the experimental condition defined as Possible Proterozoic Condition (PPr).