Theisolation,structure,andmembrane interactionsofbiologicallyactive Athesissubmittedforthedegreeofdoctorofphilosophy By PatrickJamesSherman B.Sc.(Hons.) fromthe DepartmentofChemistry TheUniversityofAdelaide

June,2012

Contents Acknowledgements viii Statementoforiginality x Abstract xi Abbreviations xiii Chapter1 Biologicallyactivepeptides 1 1.1Synopsis 1 1.2Biosynthesis 2 1.3Anuransecretions 4 1.3.1 Collectionofanuransecretion 5 1.3.2 Australiananuranpeptides 7 1.4 13 1.4.1 Collectionofscorpion 14 1.4.2 Scorpionpeptides 15 Chapter2 MethodologyI–MassSpectrometry 20 2.1MassSpectrometry 20 2.2TheQTOF2MassSpectrometer 21 2.2.1 TheQuadrupoleanalyser 22 2.2.2 TheHexapoleCollisionCell 23 2.2.3 TheTimeofFlightSector 24 2.3Electrosprayionisation 25 2.4Peptidesequencedetermination 26 2.4.1 HighPerformanceLiquidChromatography 27 2.4.2 Positiveionfragmentation 27 2.4.3 Negativeionfragmentation 28 2.4.4 EdmanSequencing 31

ii

Chapter3 MethodologyII–NuclearMagneticResonanceSpectroscopy 33 3.1Nuclearmagneticresonancespectroscopyofpeptidesinsolution 33 3.1.1 Principlesofnuclearmagneticresonancespectroscopy 34 3.1.2 OnedimensionalNMRspectroscopy 36 3.1.3 TwodimensionalNMRspectroscopy 40 3.1.3.1 CorrelationNMRspectroscopy 41 3.1.3.2 TotalcorrelationNMRspectroscopy 44 3.1.3.3 NuclearOverhausereffectNMRspectroscopy 45 3.1.4 ChemicalshiftAssignment 46 3.1.5 NOEConnectivities 48 3.1.6 Secondaryshifts 50 3.1.7 Couplingconstants 51 3.1.8 Peptidestructurecalculations 54 3.1.8.1 NOEderivedstructuralrestraints 54 3.1.8.2 AmbiguousNOEs 56 3.1.8.3 Stereospecificassignment 58 3.1.8.4 Restrainedmoleculardynamicsandsimulatedannealing 58 3.1.9 Structurequality 61 3.1.10 Solventselection 64 3.2SolidstateNMRspectroscopy 66 3.2.1 Chemicalshiftanisotropy 66 3.2.2 Quadrupolarinteractions 68 3.2.2 Dipolarinteractions 72 3.2.4 SolidstateNMRofphospholipidmembranes 73 3.2.4.1 31 PNMRofphospholipidmembranes 76 3.2.4.2 2HNMRofphospholipidmembranes 78 Chapter4 ThePeptideprofilesoftheAustralianbrowntree ewingii 82 4.1Introduction 82

iii

4.1.1 TheAustralianbrowntreefrog Litoriaewingii 82 4.1.2 PeptideprofilesofAustralian 83 4.1.3 Populationsandof Litoriaewingii 85 4.2ResultsandDiscussion 87 4.2.1 Isolationof Litoriaewingii skinpeptides 87 4.2.2 Sequencedeterminationof Litoriaewingii peptides 89 4.2.3 Biologicalactivitiesof Litoriaewingii skinpeptides 100 4.2.4 Morphologicaldifferencesin Litoriaewingii populations 100 4.3SummaryandConclusions 101 4.4Experimental 103 4.4.1 Collectionandpreparationoffrogskinsecretions 103 4.4.2 HPLCseparationofgranularsecretion 103 4.4.3 Sequencedeterminationofpeptidesbymassspectrometry 103 4.4.4 AutomatedEdmansequencing 104 4.4.5 Synthesisofpeptidesfrom Litoriaewingii 104 4.4.6 Biologicalactivitytesting 104 4.4.6.1 Smoothmuscleactivitytesting 104 4.4.6.2 Opiodactivitystudies 105 Chapter5 Solutionstructuresoftwoantimicrobialpeptidesfromthescorpion Mesobuthus eupeusmongolicus 107 5.1Introduction 107 5.1.1 Mesobuthuseupeusmongolicus 107 5.1.2 Thevenomcompositionof Mesobuthuseupeus 108 5.1.3 Antimicrobialmeucinpeptides 111 5.2Results 114 5.2.1 Chemicalshiftassignment 114 5.2.2 SecondaryChemicalShifts 119 5.2.3 NOEConnectivities 122 5.2.4 Couplingconstants 124

iv

5.2.5 Structurecalculations 124 5.3Discussion 130 5.4Experimental 133 5.4.1 Crosspeakassignmentandstructurecalculations 133 Chapter6 SolidstateNMRstudiesoftheantimicrobialpeptide,fallaxidin4.1a 134 6.1Introduction 134 6.1.1 Membraneactiveantimicrobialpeptides 134 6.1.2 Bacterialandcytoplasmicmembranes 136 6.1.3 Structureandbiologicalactivityoffallaxidin4.1a 137 6.2Results 141 6.2.1 31 PsolidstateNMRspectroscopy 141 6.2.2 2HsolidstateNMRspectroscopy 143 6.2.3 QuartzCrystalMicrobalance 146 6.3Discussion 149 6.3.1 SolidstateNMRspectroscopyandQCM 150 6.3.2 Mechanismofantimicrobialactivity 151 6.4Experimental 153 6.4.1 Samplepreparation 153 6.4.2 31 PsolidstateNMR 153 6.4.3 2HsolidstateNMR 154 6.4.4 QuartzCrystalMicrobalance 154 Chapter7 NMRstudiesofCCK2 153 7.1Introduction 153 7.1.1 Biologicalactivitiesofneuropeptides 153 7.1.2 Membranemediatedbindingofhormonepeptides 155 7.1.3 Cholecystokininreceptorligands 157 7.2Results 161

v

7.2.1 Solutionstructuresofrothein1.3androthein1.4 161 7.2.1.1 Chemicalshiftassignment 161 7.2.1.2 Secondarychemicalshifts 165 7.2.1.3 NOEconnectivities 167 7.2.1.4 Couplingconstants 169 7.2.1.5 Structurecalculations 169 7.2.2 SolidstateNMRofamphibianneuropeptideswithmembranes 174 7.2.2.1 31 PsolidstateNMR 174 7.2.2.2 2HsolidstateNMR 175 7.3Discussion 179 7.3.1 Structureanalysisofrotheinanalogues 179 7.3.2 SolidstateNMR 182 7.3.3 Additionalremarks 186 7.4Experimental 188 7.4.1 Preparationofsynthetisrothein1peptides 188 7.4.2 NMRSpectroscopy 188 7.4.3 Crosspeakassignmentandstructurecalculations 189 7.4.4 SamplePreparationofMLVsuspensions 189 7.4.5 31 PsolidstateNMR 190 7.4.6 2HsolidstateNMR 190 Chapter8 Summary 191 8.1Thepeptideprofilesoftwo Litoriaewingii populations 191 8.2Thesolutionstructuresmeucin13andmeucin18 192 8.3Membraneinteractionsoftheantimicrobialpeptidefallaxidin4.1a 193 8.4 The solutions structures of two analogues of rothein 1 and the membrane interactionsofCCK2activeamphibianneuropeptides 193 8.5Conclusion 196

vi

References 197 Appendices 237 Publications 242

vii

Acknowledgements FirstandforemostIwouldliketothankmysupervisorProf.JohnBowieforallowingme toundertakeavarietyofchallengingandexitingresearchprojects.Icherishhiswisdom, encouragement,patienceandguidanceoverthepastfewyears. Secondly I would like to thank previous and current members of the Bowie research group,Dr.TaraPukala,Dr.DanielBilusich,Dr.MargitSorrel,Dr.RebeccaBeumer,Dr. TianfangWang,Dr.PeterEichingerforgenerouslydonatingtheirtimetowardteaching me the techniques of 2D NMR, HPLC, and mass spectrometry. It has been a great experience to work with people who are so approachable, open, and happy to pass on theirknowledgetoguidemyself,andotherswithintheresearchteam.Iwouldalsoliketo thankfellowPh.D.studentsintheBowiegroupHayleyAndreazza,AntonioCalabrese, andMichealMaclean,forhelpingmethroughthechallengingtimes,andforallofthefun we’vehadthroughtheyearsatvariousevents.Ithas been great to work with such a groupofpeoplewhotakeprideintheirwork,haveagreatsenseofhumour,andknow howtohaveagoodtime. IwouldliketothankthetechnicalandacademicstaffmembersfromtheUniversityof Adelaide.FromtheDepartmentofChemistry,PhilClementsforhisgreatassistancewith NMR and mass spectrometry, also Gino Farese and Graham Bull for their help and advicewithHPLC.FromtheschoolofMolecularBiosciencesIwouldliketothankChris CursaroforoperatingtheEdmansequencerandCvetanStojkoskiforhisassistancewith moleculardynamics.IwouldalsoliketothankAssociateprofessorMikeJ.Tylerfrom theDepartmentofEnvironmentalBiologyforprovidingthefrogsformilkingamphibian skinsecretions.Igreatlyenjoyedthemonthlyvisitsandsharinginhisvastknowledgeof . Another group of people I would like to thank is those I have worked with in collaborativeresearchprojects.Firstly,IwanttothankProf.FrancesSeparovicandDr.

viii

JohnGhemanfromthetheUniversityofMelbourneforassistingwithsolidstateNMR experiments.AlsoProf.MibelAguilar,Dr.JohnLee,Assoc.Prof.LisaMartin,George McCubbin, Slavica Praporski and Adam Mechler from Monash University for conductingrealtimeexpermentswithlipidfilms(QCMandDPI).Additionalthanksto ProfessorShunyiZhuandBinGaofromtheChineseacademyofsciences,forproviding theNMRdataofthemeucinpeptides.Iwouldalsolike to thanks Assoc. Prof. Jenny Beck and Dr. Thitima Urathamakul from the University of Wollongong for their assistancewithmassspectrometryofpeptidecomplexes. IwouldliketothankallofthegreatfriendsI’vemadeduringthePh.D.largelymadeup of fellow students, Scott Buckley, Alex Gentleman, Danielle Williams, MeganGarvy, MarcusPietsche,DavidThorn,ChrisBrockwell,TomKoudelka,PeterValente,justto nameafew.Icherishthefriendshipsmade,thegoodtimes,andmostofallthelaughter. IwouldliketothankmembersoffamilyfortheresupportthoughoutthePh.D.journey. Thankyoutomyparents,BrianandJanemarieShermanforencouragment,supportand repeatedlyasking‘whenareyougoingtohandinthatthesis’.Iwouldalsoliketothank mybrothersandsisters(toomanytomention)fortheirsupportovertheyears. LastlyIwouldliketothankmylovelygirlfriendJenniferBarterforputtingupwithme throughoutthisjourney,andherparentsChrisandLaurieBarterforkeepingmewellfed duringthefinalstagesofwritingupthethesis. Thankseveryone.

ix

Statementoforiginality Thisthesiscontainsnomaterialthathasbeenacceptedfortheawardofanyotherdegree ordiplomainanyuniversityortertiaryinstitutionand,tothebestofmyknowledgeand belief, contains no material previously published or written by another person, except whereduereferencehasbeenmadeinthetext. Igiveconsenttothiscopyofmythesis,whendepositedtotheUniversityLibrary,being madeavailableforloanandphotocopying,subjecttotheprovisionsoftheCopyrightAct 1968. Ialsogivepermissionforthedigitalversionofmythesistobemadeavailableonthe web,viatheUniversity’sdigitalresearchrepository,theLibrarycatalogue,theAustralian Digital Theses Program (ATDP) and also through the web search engines, unless permissionhasbeengrantedbytheUniversitytorestrictaccessforaperiodoftime. ______ _____/_____/______ PatrickJamesSherman Date

x

Abstract Thehostdefencesecretionsofamphibiansandthevenomsofareanabundant source of biologically active peptides with a great potential for use in therapeutic pharmacology.Overmillionsofyearsofevolution,thechemicalarsenalsofamultitude of have produced a vast collection of peptides that have potent and selective activities. The research presented in this thesis details the isolation, structure determinationandmechanisticpathwaysofaselectionofbiologicallyactivepeptides.

The southern brown tree frog Litoria ewingi occupies areas of the southeastern coastofAustraliaandTasmania.Overatwelvemonthperiod,thepeptideskinprofileof a population of L. ewingii from Penola (South Australia) was determined using a combination of chromatography, tandem mass spectrometry and Edman degradation techniques.Thepeptideprofilesofa L.ewingi fromPenolashowsurprisingdifferences relativetoapopulationpreviouslystudiedfromtheAdelaidehills,despiteappearingto bemorphologicallyidentical.Atotalofsixskinpeptideswereidentified,fourofwhich were unique; showing peptide sequence homology with peptides from Adelaide hills population.Theevidenceshowedhowaspeciescanevolveseparatelyafterlongperiods ofgeographicalisolation,howpeptideprofilingcanbeusedtotracethemigrationofa species,andhownewpeptidescanbediscoveredfromdifferentpopulationsofaspecies. The antimicrobial meucin peptides were first identified using cDNA cloning of DNA from the venom gland of the ‘Lesser Asian scorpion’ Mesobuthus eupus mongolicus . Thesepeptidesexhibitcytolyticeffectsagainstanumberofeukaryoticandprokaryotic cells at micromolar concentrations, and their peptide sequences share similarities with other antimicrobial peptides from , and amphibian species. The secondary structures of the meucin peptides were determined using 2D NMR and moleculardynamics calculations. Both meucin peptides exhibit αhelical structure, and are amphipathic in nature. The study further shows how the length of the αhelical structurecanasanantibioticaffectthecytolyticactivityofthepeptide,sincemeucin18 ismorepotentthanmeucin13.

xi

The Cterminal amide analogue of the peptide fallaxidin 4.l (fallaxidin 4.1a) isolated fromthedermalsecretionsof Litoria fallax ,ispartially αhelicalinnature, and shows potentactivityagainstawiderangeofyeastandbacteria(bothGrampositiveandGram negative). This thesis uses solidstate NMR to detail the dynamic interactions of fallaxidin4.1awithartificiallipidbilayers,andtoexplorethesurfaceinteractionsofthe peptideswitheukaryotic(neutral)andprokaryotic(anionic)membranes.Thesolidstate NMRandanalysisusingaquartzcrystalmicrobalanceindicatedthatthepeptideactsvia asurfaceinteractionwithneutralmembranesandformsporeswithinanionicmembranes atmicromolarconcentrations,indicatingthespecificporeformingmechanismbywhich thepeptideinteractswithanionic(prokaryotic)membranes. Rothein1,an11residueneuropeptidefromthedermalsecretionsof Litoriarothii ,and two substituted analogues, rothein 1.4 and 1.5; show differing activities via bindingtoCCK2receptors.Thestructuresofrothein1.4and1.5weredeterminedusing 2D NMR and molecular dynamics calculations. Each peptide has a largely extended structure, with similarities to the structure of rothein 1. Two 10 residue, disulfide containingneuropeptidessigniferin1andriparin1fromdermalsecretionsoffrogsofthe Crinia genus,showpotentsmoothmuscleandsplenocyteactivities.Thedynamicsofthe interactionofsigniferin1,riparin1androthein1withartificialeukaryotic(neutral)lipid bilayersuspensionswereprobedusingsolidstateNMR,toemulatehowaneuropeptide interacts with a cellular membrane surface prior to receptor binding. Solidstate NMR showed that rothein 1 had little effect on the mobility and orientation of the lipids, signiferin1interactedlargelyatthesurfaceofthebilayers,andriparin1waspartially inserted into the membrane. Rothein 1 is significantly less active than the disulphide peptidesandmorehydrophilicinnature;thisisreflectedintheinteractionswithbilayers. The disulphide peptides are more hydrophobic in character and the solidstate NMR indicatedthattheyadheretomembranes.

xii

Abbreviations 1D Onedimensional 2D Twodimensional 3D Threedimensional ARIA Ambiguous Restraints for Iterative Assignment CCK Cholecystokinin CCK1R TypeIcholecystokininreceptor CCK2R TypeIIcholecystokininreceptor CID Collisioninduceddissociation

CL Lethalconcentration CNS CrystallographyandNMRsystem COSY Correlationspectroscopy CSA Chemicalshiftanisotropy DC Directcurrent DMPC Dimyristoylphosphatidylcholine DMPG Dimyristoylphosphatidylglycerole DNA Deoxyribonucleicacid DPC Dodecylphosphotydylcholine DPI Dualpolarisationinterferometry DQF Doublequantumfiltered ESI Electrosprayionisation ESMS Electrospraymassspectrometry ETD Electrontransferdissociation GUV Giantunilamellarvesicle HPLC Highperformanceliquidchromatography HSQC Heteronuclearsinglequantumcoherence HV Highvolume

IC 50 Halfmaximal(50%)inhibitoryconcentration IRMPD Infraredmultiphotondissociation

Lα Lamellarphase LNNA LNnitroarginine MCP MicrochannelPlate MIC Minimuminhibitoryconcentration MLV Multilamellarvesicle MOPS 3(Nmorpholino)propanesulfonicacid MPA 3mercaptopropionicacid

xiii mRNA Matureribonucleicacid MS Massspectrometry MS/MS Tandemmassspectrometry NMR Nuclearmagneticresonance nNOS Neuronalnitricoxidesynthase NOE Nuclearoverhausereffect NOESY Nuclearoverhausereffectspectroscopy PC Phosphatidylcholine PG Phosphatidylglycerole QCM Quartzcrystalmicrobalance QCMD Quartzcrystalmicrobalancewithdissipation monitoring RF Radiofrequency RMD Restrainedmoleculardynamics RMSD Routemeanstandarddeviation RNA Ribonucleicacid SA Simulatedannealing

SCD Carbondeuteriumorderparameter SES Surfaceelectricalstimulation SLB Supportedlipidbilayer TFE Trifluoroethanol TMS tetramethylsilane TOCSY Totalcorrelationspectroscopy TOF Timeofflight TQF Triplequantumfiltered VMD Visualmoleculardynamics YM022 (R)1[2,3dihydro1(2'methylphenacyl) 2oxo5phenyl1H1,4benzodiazepin3yl] 3(3methylphenyl)urea

xiv Chapter1–Biologicallyactivepeptides

Chapter1 Biologicallyactivepeptides 1.1 Synopsis Theevolutionoflifeonearthhasgeneratedmanycompetingmeansofsurvivalamongst avastarrayofspecies.Thishasledtoachemicalarmsraceforspeciestodefendfrom predators, infectious microbial organisms, viruses and other organisms competing for nutrients and habitat. There are many chemicals used for biological defence such as catecholsproducedfrompoisonivyandpoisonoak (Toxicodendronspp) species[1],to isolatedfrommanyseacreaturessuchastheinfamousblueringedoctopus (Hapalochlaena spp) and puffer (Tetraodontidae spp) [2, 3]. Alternatively some organismsarearmedwithchemicalsforoffense,such as the produced by manysnakes,spidersandscorpionsusedtoimmobilizetheirprey[46]. To this present day chemists have isolated an extensive body of biologically active chemicals produced in nature for a wide variety of pharmaceutical applications. The predominantmethodsinvolvescreeningforcompoundsusingpredictivestructureactivity relationshipsofbiologicallyactive,leadcompoundsfromnaturalsources.Usuallythese screenings havebeen tested forsmallbiologicallyactive molecules, however in recent times there is a growing interest toward the use of peptides and proteins for pharmaceuticalapplications[7,8]. Theuseofpeptidesandproteinsinthepharmaceuticalindustryposesmanydilemmas. Many peptides and proteins lack the physicochemical properties to perform a desired biological action. They may not have correct hydrophobicity for transport around the body, can be rapidly broken down by proteolytic enzymes, and many negative side effectsmayarisefromimmuneresponses[810].Despitetheseobstacles,developments inthefieldsofbiochemistry,geneticsandmolecularbiologyprovidenewandinnovative methodologiesformoleculardrugdesign.Anincreaseintheuseofpeptidesandproteins aspharmaceuticalsinthemodernmarketwouldbepredictedinyearstocome.

1 Chapter1–Biologicallyactivepeptides

Thisthesisdetailsastudyofthebiologicalaction, molecular structure,andmembrane interactionsofarangeofpeptidesisolatedfromanuransandaspeciesofscorpion.The purposeofthisstudyistofurtherexplorethebiologicalactivityofthesepeptides,their evolutionaryorigins,cellselectivity,andpharmaceuticalapplications. 1.2 PeptideBiosynthesis A peptide is made up of a series of αamino acids joined together via amide bonds betweentheαcarbonylandαaminogroupsofadjacentaminoacids(figure1.1).Proteins aremadeupoflinkedaminoacidsinthesameway,thoughtheydifferfrompeptidesas theyarelarger.Thereisagreatdealofdebateonhowtodefineapeptidefromaprotein; ingeneralpeptidesaremadeupof50orlessaminoacids[8].Themolecularweightsand structuresofthe20mostcommonlyoccurringaminoacidsaretabulatedinAppendixA.

Figure1.1Partialstructureofapeptide,aminoacidsidechaingroupsarelabelledasR 1andR 2,hydrogen atomsarerepresentedaslightbluespheres. Peptides are biosynthesised starting from the genes encoding the peptide within the deoxyribonucleic acid (DNA). When the gene encoding a peptide is transcribed, ribonucleicacids(RNA)areprocessed(toformmRNA)andtranslatedwithinribosomes

2 Chapter1–Biologicallyactivepeptides togenerateapeptideprecursor,knownasaprepropeptide.Aprepropeptideismadeupof asignalsegment,aspacer,andoneormoreactivepeptides.

Prepropeptide

SIGNAL SPACER PEPTIDE

Proteolyticcleavageof signalpeptide Propeptide

SPACER PEPTIDE

Proteolyticcleavageof spacerpeptide

Unmodifiedpeptide PEPTIDE

Enzymaticmodification Eg.dephosphorylation

Activepeptide

PEPTIDE Figure1.2 Biologicalsynthesisofapeptidefromtheprepropeptideprecursor. The signal segment of the prepropeptide allows for transport through biological membranes and the endoplasmic reticulum. Once the prepropeptide reaches a certain destinationproteolyticenzymescleavethesignalsequencetoyieldthepropeptide.The propeptide moves to the Golgi complex, where proteolytic cleavage of the spacer segment may occur and any other posttranslational modifications. These include phosphorylation, Cterminal amidation, acetylation, glycosylation, disulfide bond formation and the conversion of Nterminal glutamate residue to a pyroglutamate [11, 12].Thepeptideisstoredintheactiveformasgranules within the endocrine system ready to be released. In some cases the peptide may be stored as the propeptide and enzymaticallycleavedshortlybeforerelease[1114].

3 Chapter1–Biologicallyactivepeptides

1.3 Anuransecretions Anuransarefascinatingamphibianswithavastvarietyofbiologicallyactivecompounds within their secretions. For thousands of years, anuran secretions have been used for huntingbynativesofSouthAmerica,andasancientChinesemedicine[1517].Tribesin Central and South America coated spears and huntingtoolswiththesecretionsofthe poison dart anuran, which contain highly neurotoxic alkaloids [18]. Peruvian Indians utilizedthestimulanteffectsofanuransecretionstoimprovealertnessandstaminawhilst hunting[19,20].InChinesemedicine,aproductpreparedfromtheparotidsecretionsof Bufobufogargarizans or Bufomelanostrictus toadsknownas‘ChanSu’,wasutilisedas atopicalanaesthetic,andtostimulatemyocardialcontraction.Theeffectsareduetothe presenceof‘steroidlike’bufadienolydecompoundswithinthetoadsecretions[16,17, 21]. The stagnant water of ponds and streams is an ideal breeding ground for infectious microbes;inordertosurviveanuranshaveevolvedvariousprotectivestrategiestoremain immune. Anurans secrete a diverse mixture of chemicals on their skin in response to environmentalstressessuchaspathogenicmicrobes.Inthe1960’s,theworkofVittorio Erspamerandcoworkerswerethefirsttoisolateandcharacterizecomponentsofanuran secretions[22,23].Forthefollowingfivedecades,manybioactivecompoundshavebeen identifiedfromanuransecretions,includingbiogenicamines[24],steroids[25],alkaloids [26]andpeptides[27,28]. Anumberofbioactivecompoundsfromamphibianshavebeendevelopedtotreatarange ofinfections,painandcancer[2931].Caerulein,apeptideisolatedfromtheAustralian treefrog Litoriacaerulea ,haspotentialtherapeuticuseasitcausescontractionofsmooth musclewithinthegastrointestinaltractandstimulatesthegallbladder.Thisistheresult of a hormonereceptor interaction, analogous to the human hormone peptides, cholecystokinin and gastrin [32, 33]. Another important discovery was that of epibetadine, an analgesic alkaloid isolated from the skin of an Ecuadorian poison dart frog Epipedobatestricolour, whichis200timesmorepotentthanmorphine[34].Alarge

4 Chapter1–Biologicallyactivepeptides collectionof antibioticpeptideshavebeenisolated from anurans,theearliestofwhich were the magainins isolated from the secretions of the African clawed frog Xenopus laevis.Themagaininsandtheirsyntheticanaloguesexhibitbroadspectrumofantibiotic activity [35, 36]. In addition to antibiotic activities, many anuran peptides exhibit antiviral,antifungalandanticanceractivities[28,37,38].Thesepeptidesplayavitalrole inthedevelopmentofnewantibioticsasbacteriamaynotevolveresistanceasrapidly with respect to current antibiotics [39]. Only a small portion of the world’s anuran specieshavebeenstudiedtothisdate,hencetherestillremainsalargereservoirofanuran bioactivecompoundsforfutureresearch. 1.3.1 Collectionofanuransecretion

A NOTE: This figure/table/image has been removed to comply with copyright regulations. It is included in the print copy of the thesis held by the University of Adelaide Library.

Figure1.3SchematicrepresentationofagranularglandinX.laevis.Adaptedfrom[40]. The dermal layer on frogs contains a mixture of secretions to protect, thermoregulate, regulatepH,maintainmoistureandallowforrespirationthroughtheskin.Twoprinciple secretory glands exist within the dermal layer, namely the mucal and granular glands. The mucal glands are abundant and produce an aqueous mixture of mucins and mucopolysaccharides. The granular glands are slightly larger; they produce the active alkaloids, enzymes and peptides involved in response to natural stress. The granular glandsaresyncytiawhichliejustbelowtheepidermis,andarecomprisedofcompacted secretor granules surrounded by multiple nuclei (within a network of complex

5 Chapter1–Biologicallyactivepeptides endoplasmicreticulumandGolgicomplexes)andoutermyoepithelialcells(figure1.3). In a stress response, the myoepithelial cells contract and force the secretory granules throughductsandontothedermalsurface[40,41]. Theoriginalmeansofcollectinganuransecretioninvolvedkillingthefrogs,followedby removalanddryingoftheskin.Theskinsecretionswerethenextractedfromthedried skin using solvents [33, 42, 43]. Another method of collecting secretion is to inject solution containing adrenalin andnoradrenalin to induce a stress response [40]. A less invasivemethodwasdevelopedin1992,surfaceelectricalstimulation(SES),bywhicha small voltage is applied across the dorsal surface of the , inducing glandular secretion, similar to a natural stress response (figure 1.4). Activation of the granular glands via the SES method does cause them to become almost depleted of secretion. However,itisreplenishedoveranumberofdaysorweeks[13,40].

Figure1.4Thesurfaceelectricalstimulation(SES)methodformilkinganuransecretion[44]. TheSESmethodfirstlyinvolvesholdingafrogspecimenbyitshindlegsandapplyingan electricalstimulusuntilasecretioncanbeobservedonitsdorsalsurface.Someofthe peptidessecretedarecytotoxictotheanuranitself,andtheyaredeactivatedbyenzymes that cleave the peptides [45]. For this reason, the skin secretion is washed off of the anuranwithdeionisedwater,andanequalvolumeofmethanolisaddedtodenatureand precipitate any enzymes which may cleave a peptide of interest [46]. The SES can be performed on as little as one anuran and repeated on a monthly basis to monitor any seasonalchangesinthepeptideprofiles.TheSESmethodisidealforanalysingpeptide profilesasitdoesnotkillthefrogsorrequirehormoneinjections.

6 Chapter1–Biologicallyactivepeptides

1.3.2 Australiananuranpeptides There are 5891 described anuran species worldwide to this date, 228 (4%) which are Australian [47]. Hence, Australian anurans are an abundant resource for the study of biologicallyactivepeptides.VittoriaErspamerpioneeredtheresearchofpeptidesfrom Australian anurans by surveying dried anuran skins from one hundred specimens of Australia and Papua New Guinea in the period 19641978 [43]. The peptides were assayedfortheirsmoothmuscleactivitiesandeffectonsystemicbloodpressure,andthe mostabundantpeptideswereofthecaerulein,bombesinandtachykininpeptidefamilies. Forthepasttwodecades,theBowieresearchgrouphasisolatedasignificantcollection ofpeptidesfromAustraliananurans.Themajoritystudyhasbeenperformedonanuran species within the Litoria genus; though species from the Lymnodynastes, Crinia and Uperoleia generahavealsobeeninvestigated.Thepeptideshaveshownawidearrayof biological activities; such as antimicrobial, anticancer, antifungal, antimalarial, and smoothmuscleactivities,aswellasinhibitorsofneuronalnitricoxidesynthase[28,48 50].Manyspeciesofanurans,inparticularoftheLitoria genus;containaneuropeptide and a potent wide spectrum antimicrobial peptide within their secretion. In addition to hostdefencepeptides,asexpheromonehasalsobeenisolatedfromananuransecretion [48,51].Thearrayofbiologicalactivitiesshowanuranpeptidesareasignificantresource forresearchanddevelopmentofpharmaceuticals.Aselectionofpeptidesisolatedfrom Australiananuransissummarizedintable1.1.

7 Chapter1–Biologicallyactivepeptides

Table1.1: SelectedpeptidesisolatedfromAustraliananuranskinsecretions.Adaptedfrom[48]. Peptide Sequence Species 1 Activity 2

Aurein1.1 GLFDIIKKIAESI-NH 2 a 1,2 Aurein1.2 GLFDIIKKIAESF-NH 2 a 1,2 Aurein2.1 GLLDIVKKVVGAFGSL-NH 2 a,b 1,2 Aurein2.2 GLFDIVKKVVGALGSL-NH 2 b 13 Aurein3.1 GLFDIVKKIAGHIAGSI-NH 2 a,b 1,2 Aurein4.1 GLIQTIKEKLKELAGGLVTGIQS-OH b 1,2 Aurein5.2 GLMSSIGKALGGLIVDVLKPKTPAS-OH a,b 1,2 Caeridin1.1 GLL αDGLLGTGL -NH 2 c,d,e,f,g

Caeridin1.2 GLL βDGLLGTGL-NH 2 e Caeridin2 GLLDVVGNLLGGLGL-NH 2 d,e Caeridin3 GLFDAIGNLLGGLGL-NH 2 d,e Caeridin4 GLLDVVGNVLHSGL-NH 2 d Caerin1.1 GLLSVLGSVAKHVLPHVVPVIAEHL-NH 2 c,d,e 15 Caerin1.3 GLLSVLGSVAQHVLPHVVPVIAEHL-NH 2 d 1,2 Caerin1.4 GLLSSLGSVAKHVLPHVVPVIAEHL-NH 2 d,e 1 Caerin1.8 GLFKVLGSVAKHLLPHVVPVIAEKL-NH 2 g 13,5 Caerin1.9 GLFGVLGSIAKHVLPHVVPVIAEKL-NH 2 g 15 Caerin2.1 GLVSSIGRALGGLLADVVKSKGQPA-OH c 1,5 Caerin2.2 GLVSSIGRALGGLLADVVKSKEQPA-OH d 1,5 Caerin3.1 GLWQKIKDKASELVSGIVEQVK-NH 2 c,d 1 Caerin3.2 GLWEKIKEKASELVSGIVEGVK-NH 2 d 1 Caerin4.1 GLWQKIKSAAGDLASGIVEGIKS-NH 2 d 1 Caerin4.2 GLWQKIKSAAGDLASGIVEAIKS-NH 2 d 1 Caerulein1.1 pEQDY(SO 3)TGWMDF-NH 2 h 6 Caerulein1.2 pEQDY(SO 3)TGWFDF-NH 2 c,i 6 Citropin1.1 GLFDVIKKVASVIGGL-NH 2 i 13,5 Citropin1.2 GLFDIIKKVASVVGGL-NH 2 i 13,5 Citropin1.3 GLFDIIKKVASVIGGL-NH 2 i 13,5 Dahlein1.1 GLFDIIKNIVSTL-NH 2 j 1 Dahlein1.2 GLFDIIKNIFSGL-NH 2 j 1 Dahlein4.1 GLWQLIKDKIKDAATGLVTGIQS-NH 2 j Dahlein5.1 GLLGSIGNAIGAFIANKLKP-OH j 5 Ewingiin1 GWFDVVKIASAV-NH 2 k Ewingiin1.1 FDVVKHIASAV-NH 2 k Ewingiin2.1 GLLDMVTGLLGNL-NH 2 k Ewingiin2.2 GLLDMVTGLLGGL-NH 2 k Ewingiin2.3 GLLDVVTSLLGNL-NH 2 k Ewingiin2.4 GLLDVVTAVLGNLGL-NH 2 k

8 Chapter1–Biologicallyactivepeptides

Table1 .1 Continued Peptide Sequence Species 1 Activity 2

Frenatin1 GLLDALSGILGL-NH 2 m Frenatin2 GLLGTGNLLNGLGL-NH 2 m Frenatin3 GLMSVLGHAVGNVLGGLFKPKS-OH m 5 Maculatin1.1 GLFGVLAKVAAHVVPAIAEHF-NH 2 s 13,5 Maculatin1.3 GLLGLLGSVVSHVVPAIVGHF-NH 2 t 1,2 Maculatin2.1 GFVDFLKKVAGTIANVVT-NH 2 t 1,2 Maculatin3.1 GLLQTIKEKLESLAKGIVSGIQA-NH 2 s Riparin1.1 RLCIPVIFPC -OH u 6 Riparin2.1 IIEKLVNTALGLLSGL-NH 2 u 1 Rothein1 SVSNIPESIGF-OH v 6 Rothein2.1 AGGLDDLLEPVLNSADNLVHGL-NH2 v Rothein3.1 ASAAGAVRAGGLDDLLEPVLNSADNLVHGL-NH 2 v Rubellidin4.1 GLGDILGLLGL-NH 2 w Rubellidin4.2 AGLLDILGL-NH 2 w Signiferin1 RLCIPYIIPC -OH x 6 Signiferin2.1 IIGHLIKTALGMLGL-NH 2 x 1 Signiferin3.1 GIAEFLNYIKSKA-NH 2 u,x 5 Splendipherin GLVSSIGKALGGLLADVVKSKGQPA-OH c,d 7 TryptophyllinL1.1 PWL-NH 2 w TryptophyllinL1.2 FPWL-NH 2 k,w TryptophyllinL1.3 pEFPWL-NH 2 w 6 TryptophyllinL1.4 FPFPWL-NH 2 w Tryptophyllin6.1 LFFWG-NH 2 l Tryptophyllin6.2 IFFFP-NH 2 l Tryptophyllin6.3 IVFFP-NH 2 l 1Species: a. Litoriaraniformis[52]; b. Litoriaaurea[52]; c. Litoriasplendida[53]; d. Litoria caerulea [54]; e. Litoria gilleni [55]; f. Litoria xanthomera [56]; g. Litoria chloris [57]; h. various species from genus Litoria, Xenopus laevis [33, 58], Leptodactylus labyrinthicus; i. Litoriacitropa[46]; j. Litoriadahlii[59]; k. Litoriaewingi[60]; l. Limnodynastesfletcheri [61]; m. Litoria infrafrenata [62], n. Litoria lesueuri [63]; s. Litoria genimaculata [64]; t. Litoriaeucnemis[65]; u. Criniariparia[66]; v.Litoriarothii[67]; w. Litoriarubella[68]; x. Criniasignifera[69]; y. Uperoleiainundata[70]. 2Activity: 1. antimicrobial agent; 2. anticancer agent; 3. fungicide; 4. antiviral; 5. nNOS inhibitor; 6. neuropeptide (displaying activities such as smooth muscle contraction, immunomodulation, hormone, and opioid activity; 7. pheromone.

9 Chapter1–Biologicallyactivepeptides

To this day, bacterial strains continue to emerge which are resistant to therapeutic antibioticssuchaspenicillin,streptomycin,andvancomycin.Antimicrobialpeptidesare ofgreatimportanceastheyprovideanalternativetomodernantibioticstowhichbacteria have evolved resistance. Some good examples of antibiotic peptides isolated from Australiananuransareaurein1.2,caerin1.1andmaculatin1.1[54,64,71]. Tothisdate,manyanuranantimicrobialpeptideshavebeendescribedandtestedagainsta range of microbes, but few have undergone clinical trials for human use. A synthetic derivative of the frog skin peptide magainin II (from Xenopus laevis ), known as pexigananacetate (MSI 98), reached stage IIIclinical trials for therapeuticuseagainst impetigo,apolymicrobicskininfection.However,thesetrialsendedasitwasshownthat simply washing the site tended to clear the infection in 75% of cases [7274]. Further clinical trials of pexiganan acetate for the treatment ofinfectedfootulcers indiabetic patients showed thatwhena cream containingthepeptidewas applied, the footulcers closedin1830%ofthecases.However,theFoodandDrugadministrationhadinformed MagaininPharmaceuticalsInc.thattheirnondisclosureagreementhadbeendeemednot approvable,andnofurthertrialshavebeenundertakensince[73]. Many anuran antimicrobial peptides adopt a linear αhelical structure and exert their action via two proposed mechanisms leading to the disruption of bacterial membranes (figure1.5).Thebarrelstavemodel,wherepeptidesaggregate,insertthemselvesintothe bacterial cell membrane and form transmembrane pores that cause leaking of cellular contents,andcelldeath[75,76].Thecarpetmodel,wherepeptidesaggregateandcoat thebacterialmembraneparalleltothesurfaceinacarpetlikemanner.Onceathreshold concentrationisreached,curvatureofthemembraneoccursfollowedbydestructionof the membrane via mixed micelle formation [77, 78]. An additional model exists, the toroidal pore model, which is similar to the barrel stave model, where phospholipid headgroups,aswellasthepeptideslinetheinnerlumenofatransmembranepore[79]. These mechanisms of membrane disruption appear to be nonspecific with respect to

10 Chapter1–Biologicallyactivepeptides bacterial species, and consequently bacteria may not evolve resistance as rapidly compared to the current antibiotics [80]. Many antimicrobial peptides show additional antiviralandanticanceractivities.Thisislikelyduethesamemechanismofmembrane destruction,uponinteractionwithcancerouscellsandlipidenvelopedviruses.

A NOTE: This figure/table/image has been removed to comply with copyright regulations. It is included in the print copy of the thesis held by the University of Adelaide Library.

Figure1.5(a)Barrelstavemodel:thehelicalpeptidesaggregateonthemembranesurfacepriortoforming transmembranepores,and(b)carpetmodel:thepeptidesalignparalleltothemembranesurface,whena threshold concentration is reached membrane dissociation and mixed micelle formation occurs. The peptides are represented by cylinders with hydrophilic and hydrophobic regions shown in blue and red respectively.Basedonafigurefrom[81]. Anantimicrobialpeptideisoftenmembraneselective,inthatitisdestructivetobacterial cell membranes whilst leaving eukaryotic (mammalian) cell membranes intact. The investigationofanamidemodifiedantimicrobialpeptide,fallaxidin4.1a,isolatedfrom Litoriafallax,withbacterialandeukaryoticmodelmembranesisdetailedinChapter6.

11 Chapter1–Biologicallyactivepeptides

Thechapterdetailsthedynamicsofthepeptidemembraneinteractionusing 31Pand 2H solidstateNMR.TheNMRderivedsolutionstructureoffallaxidin4.1a(performedby RebeccaJackway)andaQuartzCrystalMicrobalance(QCM)experiments(performedby Dr.LisaMartin’sresearchgroup)arealsoincludedaspartofthestudy[82]. Anuranexcretionshavebeenfoundtocontainanumberofhormonesandneuropeptides. Studies have lead to the discovery of many peptides which effect smooth muscle contraction[27,33,50]andinhibittheenzymeneuronalnitricoxide(nNOS)synthase [49].Twodisulfidepeptidesisolatedfrom Crinia species,riparin1andsigniferin1,anda linear peptide isolated from Litoria rothii , rothein 1; bind to type 2 cholecystokinin (CCK) receptors [50,83]. CCK receptorsareGproteincoupled receptors that exist as twosubtypes,CCK1RandCCK2R;whichdifferintheirbiologicalactionandlocality withinthebody.IntheileumCCK1Ractsdirectlyonsmoothmuscle,whilstCCK2Racts by binding to cholinergenic nerves in the myenteric plexus, resulting in the release of . Acetylcholine binds to muscarinic receptors inducing smooth muscle contraction.Conversely,theproliferationoflymphocytesisknowntoinitiateexclusively via peptide binding to CCK2R [84]. Riparin 1, signiferin 1 and rothein 1 have been showntoinitiatelymphocyteproliferation,yetonlythedisulfidepeptidesinducemuscle contraction[50,83]. Both typesof tissue containthe same receptor,whichbringsinto questionwhyapeptidewouldshowoneactivitywithonetypeoftissue,yetnoactivity foranother. One model for the mode of action of a hormone peptidedepicts:(i)adirectpeptide receptor association, and (ii) a conformational change of the peptidereceptor complex requiredforactivationofthereceptor[9].However,riparin1,signiferin1androthein1 appear to bind to CCK2R on lymphocytes and smooth muscle cells with differing affinities.Onedistinctdifferencebetweenthecelltypesisthelipidcompositionofthe cellularmembranes.Also,hormonereceptorsonlymakeupasmallpercentageofacell surface,soitismoreprobablethatapeptidewouldassociatewithlipidsonamembrane surfacepriortoreceptorbinding,ratherthandirectlyfromtheextracellularfluid.Itisfor these reasons that an alternative model should be considered: (i) an association of the

12 Chapter1–Biologicallyactivepeptides hormone peptide and the cellular membrane, (ii) binding of the membrane associated peptidetothereceptorand,(iii)aconformationalchangeofthepeptidereceptorcomplex requiredforactivationofthereceptor.Thisproposedmodel,whichhasbeenthesubject ofmanystudies,isknownasmembranemediatedpeptidereceptorbinding[8590]. It is important to study the structure of a hormone peptide in a solvent system which mimicsamembranesurface.Thesolutionstructuresofthehormonepeptides,rothein1, rothein 1.3 and rothein 1.4 in 1:1 TFE/H 2O, are discussed in Chapter 7. Also an investigation of the peptidemembrane interactions of the hormone peptides riparin 1, signiferin1androthein1usingsolidstateNMRisdiscussedinChapter7. Each species possessesaunique spectrum ofskinpeptides (thepeptide profile)within their skin secretions. Differences in peptide profiles are useful in classification and studying evolutionary traits of anurans. The method is so sensitive that it may alsobe usedtodifferentiatedifferentgeographicpopulationsofthesamespeciesofanuran.This haspreviouslybeenshownwithcloselyrelated Litoriacaerulea and Litoriagilleni ;each species exhibited a unique peptide profile, confirming that they are different species; putting an end to any further dispute [54, 55]. Further studies of major L. caerulea populations from the Northern Territory, Queensland and Melville Island also show differencesintheirpeptideprofiles,presumablyaresultofgeographicalisolation[55,91, 92].AdetailedcomparisonofthepeptideprofilesofAustralianBrownTreefrog Litoria ewingi ; taken from populations in the Adelaide hills and Penola regions of South Australia,isdiscussedinChapter4. 1.4 Scorpionvenoms There areapproximately2000described speciesof scorpiondistributedthroughout the world,whicharedividedinto14families(thatarefoundalivetoday)[93].Theyinhabit allpartsoftheworldexceptNewZealandandAntarctica,andtendtooccupywarmer regionswithtemperaturerangesof2037°C.Scorpionsareancientarachnidsandhave fossilrecordsdatingbackthebeginningofthepaleozoiceraover400millionyearsago. They are descendants of Eurypteryds , more commonly known as sea scorpions, the

13 Chapter1–Biologicallyactivepeptides largestofknownarthropodseverrecorded.Oneancientspecies, Jaekelopterusrhenaniae wasestimatedtobeanimpressive2.5minbodylength[94].Itisbelievedthatscorpion ancestors existed as marine arthropods, which later evolved into aquatic arthropods, whichlaterbecameterrestrial.Afterthecarboniferousperiod,asoxygenlevelsintheair decreased, scorpions evolved into much smaller landarthropods. Little change in their morphologicaltraitshaveoccurredoverthepast300millionyears[6]. Scorpions are nocturnal , which hibernate from predators during the day and come out at night to feed predominantly on spiders, insects and other scorpions. Scorpionsarerenownedfortheirvenom,thoughonlyasmallnumberofspeciescarry venomwhichistoxictohumans[6].Themajorityofpotentiallyfatalscorpionsarefrom thegenera Androctonus,Centruroides,Hottentotta,Leiurus, and Tityus ,all withinthe family,thelargestofthedescribedscorpionfamilies[93]. Scorpionvenomisrichinneurotoxinswhichitusestosubdueitspreyanddefendfrom predation.Scorpionvenomiscomposedofamixtureofalkaloids,steroidalcompounds, proteolyticenzymes,lipolyticenzymes,proteinsandpeptides[6].Thekeyneurotoxins withinscorpionvenomarelowmolecularweight(14kDa)disulfiderichpeptideswhich interactwithionchannelsoncellmembranes.Thelipolyticandproteolyticenzymesaid indigestionofpreyandmayamplifytheeffectivenessoftheneurotoxins[6]. 1.4.1 Collectionofscorpionvenom Scorpionvenomisbiologicallysynthesisedwithinapairofvenomglandsinthetelson (stinger), situated at the anterior end of the tail (figure 1.4). The venom glands are surrounded by compressor muscles, and when they contract, the venom is compressed againstthesurroundingcuticleandforcedoutapairofexitductswhichallowthevenom tobeexpelledthroughtheaculeus.Theinteriorofthevenomglandhasafoldednetwork of secretory epithelia, the extent of folding of this epithelia differs greatly between differentfamiliesofscorpions[6].Scorpionswithinthe Chactidae familyhaveverylittle foldingintheirsecretorepithelia,scorpionsfromthe Buthidae familyhaveahighdegree offolding.

14 Chapter1–Biologicallyactivepeptides

Figure1.6(a) Thetailofanemperorscorpion,thevenomisstoredinthetelsonandinjectedthroughathin hollow tube in the aculeus (sting). (b) A cross section of the venom gland of a scorpion, the venom is storedwithinthefoldsofthesecretoryepithelia.Figureadaptedfrom[95]. The collection of scorpion venom is generally performed by one of two methods, the telson(stinger)ofthescorpiontailpiercesavesselcontainingathinmembrane,orthe secretioniscollectedvialowvoltageelectricalstimulationofthetelson.Scorpionsare subdued via putting them above a bed of dry ice prior to extracting the venom. Once collected,thevenomsampleisusuallylyophilisedandstoredforfurtheranalysis[96]. 1.4.2 Scorpionpeptides TheearlieststudiesofscorpionpeptideswerebyLissittzkiandCoworkersinthe1950s. They isolatedtheneurotoxic componentsof twonorth African scorpions Androctonus australis Hector and Buthusoccitanus [97100].Afterchromatographicseparation,itwas determined that each scorpion appeared to have two neurotoxic peptide (or protein) fractions. The precise biological actions and sequences of the peptides were not determineduntilsomeyearslater,andadvancesinchromatographytechniquesallowed fortheisolationandidentificationofadditionalpeptideswithinthevenoms[101104]. As years progressed a growing number of neurotoxic scorpion peptides from many scorpionspecieswereisolated.Theytypicallycontain15disulfidebridges,withahigh degreeofspecificityforsodium,potassium,calciumandchlorideionchannelsoncellular

15 Chapter1–Biologicallyactivepeptides membranes [105, 106]. Some show specificity for insect ion channels, and others for ion channels; in some cases they bind to the channels depending on the membranecompositionof the cell.Onepeptide, Androctonusaustralis insectselective (AaIT1), has potential for use as an insecticide [107]. Generally these peptides either block activation or slow the inactivation of ion channels [106]. The venom mixtures tend to contain peptides that target multiple ion channels simultaneously, enhancingtheiroverallneurotoxicity.Inadditiontoneurotoxicpeptides,anewclassof scorpionpeptideshasemergedandgainedinterestoverrecentyears.Thesepeptidesdo not contain disulfide bridges. Selected peptides isolated from scorpion venoms are summarisedintable1.2. Tothisdate,veryfewnondisulfidebridgedpeptidesfromscorpionvenomshavebeen characterised. These peptides show immunemodulating, haemolytic and antimicrobial activities [108]. Many of these peptides are cationic and exhibit helical secondary structures,similartomanyanuran,beeandspiderantimicrobialpeptides[109112].Zhu andhiscolleagespreviouslyfoundtheantimicrobialpeptide,BmKb1,isolatedfromthe scorpion ButhusmartensiKarsch wasupregulatedinresponsetoexposureofthevenom gland to bacteria [96]. This demonstrated that the venom gland itself produces antimicrobialpeptidestoinhibitinfection.Chapter5ofthisstudyincludesthesolution structure determination of two novel antimicrobial peptides from the ‘Lesser Asian Scorpion’ Methobuthus eupus mongolicus , using 2DNMR. The chapter details the analysisofthe2DNMRspectra,thesamplepreparation,acquisitionoftheNMRspectra, andantimicrobialtestswereperformedbyProfessorShunyiZhu’sresearchgroup[113].

16 Chapter1–Biologicallyactivepeptides

Table1.2 Selectedpeptidesfromscorpionvenoms.Tableadaptedfrom[106,108]. Peptide Sequence 1 Disulfide Species 2 Activity 3 motif AaHI KRDGYIVYPNNCVYHCVPPCDGLCKKNGGSSGSCSF 1261,1634, a 1 LVPSGLACWCKDLPDNVPIKDTSRKCT-NH 2 2044,2446 AaHII VKDGYIVDDVNCTYFCGRNAYCNEECTKLKGESGYC 1262,1636, a 1 QWASPYGNACYCYKLPDHVRTKGPGRCH-NH 2 2246,2648 AaHIII VRDGYIVNSKNCVYHCVPPCDGLCKKNGAKSGSCGF 1261,1634, a 1 LIPSGLACWCVALPDNVPIKDPSYKCHS-NH 2 2044,2446 Be12 ADGVKGKSGCKISCFLDNDLCNADCKYYGGKNLSWC 1060,1436, b 1 IPDKSGYCWCPNKGWNSIKSETNTC-OH 2144,2546 BeM9 ARDAYIAKPHNCVYECYNPKGSYCNDLCTENGAESG 1264,1638, b 1 YCQILGKYGNACWCIQLPDNVPIRIPGKCH-OH 2448,2850 BeM10 VRDGYIADDKDCAYFCGRNAYCDEECKKGAESGKCW 1263,1635, b 1 YAGQYGNACWCYKLPDWVPIKQKVSGKCN-OH 2245,2647 BmKI VRDAYIAKPHNCVYECARNEYCNDLCTKDGAKSGYC 1262,1636, c 1 2246,2648 QWVGKYGNGCWCIELPDNVPIRVPGKCH-NH 2 BmKII VRDAYIAKPHNCVYECARNEYCNDLCTKDGAKSGYC 1262,1636, c 1 QWVGKYGNGCWCIELPDNVPIRIPGNCH-NH 2 2246,2648 BomIII GRDGYIAQPENCVYHCFPGSSGCDTLCTKEKGATSG 1265,1638, d 1 HCGFLPGSGVACWCDNLPNKVPIVVGGEKCHF-NH 2 2348,2750 BomIV GRDAYIAQPENCVYECAKNSYCNDLCTKNGAKSGYC 1262,1636, d 1 QWLGKYGNACWCEDLPDNVPIRIPGKCHF-NH 2 2246,2648 BotI GRDAYIAQPENCVYECAQNSYCNDLCTKNGATSGYC 1262,1636, e 1 QWLGKYGNACWCKDLPDNVPIRIPGKCHF-NH 2 2246,2648 BotII GRDAYIAQPENCVYECAKSSYCNDLCTKNGAKSGYC 1262,1636, e 1 QWLGRWGNACYCIDLPDKVPIRIEGKCHF-NH 2 2246,2648 Bukatoxin VRDGYIADDKNCAYFCGRNAYCDEECIINGAESGYC 1262,1636, c 1 QQAGVYGNACWCYKLPDKVPIRVSGECQQ-OH 2246,2648 Kurtoxin KIDGYPVDYWNCKRICWYNNKYCNDLCKGLKADSGY 1260,1637, f 1,3 CWGWTLSCYCQGLPDNARIKRSGRCRA-NH 2 2344,2746 LqhII IKDGYIVDDVNCTYFCGRNAYCNEECTKLKGESGYC 1262,1636, g 1 2246,2648 QWASPYGNA CYCYKLPDHVRTKGPGR CR-NH 2 LqhIII VRDGYIAQPENCVYHCFPGSSGCDTLCKEKGGTSGH 1263,1637, g 1 CGFKVGHGLACWCNALPNDVGIIVEGEKCHS-NH 2 2347,2749 Ts1 KKDGYPVEYDNCAYICWNYDNAYCDKLCKDKKADSG 1260,1638, h 1 YCYWVHILCYCYGLPDSEPTKTNGKCKS-OH 2445,2847 Ts2 GREGYPADSKGCKITCFLTAAGYCNTECTLKKGSSG 1260,1638, h 1 YCAWPACYCYGLPESVKIWTSETNKC-OH 2443,2845

17 Chapter1–Biologicallyactivepeptides

Table1.2continued Peptide Sequence 1 Disulfide Species 2 Activity 3 motif Agitotoxin1 GVPINVKCTGSPQCLKPCKDAGMRFGKCINGKCHCT 828,1433, g 2 PK-0H 1835 Agitotoxin2 GVPINVSCTGSPQCIKPCKDAGMRFGKCMNRKCHCT 828,1433, g 2 PK -OH 1835 BmTx1 QFTDVKCTGSKQCWPVCKQMFGKPNGKCMNGKCRCY 728,1333, c 2 S-OH 1735 BmTx2 QFTNVSCSASSQCWPVCKKLFGTYRGKCMNSKCRCY 728,1333, c 2 S-OH 1735 GVEINVKCSGSPQCLKPCKDAGMRFGKCMNRKCHCT 828,1433, i 2 P-NH 2 1835 Kaliotoxin2 VRIPVSCKHSGQCLKPCKDAGMRFGKCMNGKCDCTP 727,1332, a 2 K-OH 1734 TIINVKCTSPKQCLPPCKAQFGQSAGAKCMNGKCKC 729,1334, j 2 YPH-OH 1736 TIINVKCTSPKQCSKPCKELTGSSAGAKKCMNGKCK 730,1335, k 2 CYNN-NH 2 1737 OsK1 GVIINVKCKISRQCLEPCKKAGMRFGKCMNGKCHCT 828,1433, l 2 PK-OH 1835 Tc1 ACGSCRKKCKGSGKCINGRCKCY-OH 215,520,9 m 2 22 BmCa1 GCNRLNKKCNSDGDCC RYGERCISTGVNYYCRPDFG 216,922, c 3 P-OH 1531 ImperatoxinA GDCLPHLKRCKADNDCC GKKCKRRGTNAEKRCR-OH 317,1021, n 3 1632 Maurocalcine GDCLPHLKLCKENKDCC SKKCKRRGTNIEKRCR-OH 317,1021, o 3 16 32 Opicalcine1 GDCLPHLKRCKENNDCC SKKCKRRGTNPEKRCR-OH 317,1021, p 3 1632 Opicalcine2 GDCLPHLKRCKENNDCC SKKCKRRGANPEKRCR-OH 317,1021, p 3 1632 Chlorotoxin MCMPCFTTDHQMARKCDDCC GGKGRGKCYGPQCLCR 235,520, g 4 -OH 1628,1933 Meucin13 IFGAIAGLLKNIF-NH 2 q 5 Meucin18 FFGHLFKLATKIIPSLFQ-NH 2 q 5

BmKb1 FLFSLIPSAISGLISAFK-NH 2 c 5 BmKn2 FIGAIANLLSKIF-NH 2 c 5

18 Chapter1–Biologicallyactivepeptides

Table1.2continued Peptide Sequence 1 Disulfide Species 2 Activity 3 motif Imcroporin MKFQYLLAVFLIVLVVTDHCQAFFSLLPSLIGGLVS r 5 AIKGR-OH IsCT1 ILGKIWEGIKSLF-NH 2 s 5,6 IsCT2 IFGAIWNGIKSLF-NH 2 s 5,6 Pandanin1 GKVWDWIKSTAKKIWSSEPVSQLKGQVLNAAKNYVA n 5,6 EKIGATPT-OH Pandanin2 FWGALAKGALKLIPSLFSSFSKKD-OH n 5,6 Opistoporin1 GKVWDWIKSTAKKLWNSEPVKELKNTALNAAKNLVA p 5,6,7 EKIGATPS-OH Opistoporin2 GKVWDWIKSTAKKLWNSEPVKELKNTALNAAKNFVA p 5 EKIGATPS-OH Hadrurin GILGTIKSIASKVWNSKTVQDLKRKGINWVANKLGV t 5,6 SPQAA-OH 1Disulfidebridgingcystineresiduesareunderlined,andthedisulfidebridgingmotifdefined. 2Species: a. AdroctonusaustralisHector[101103,114]; b. Mesobuthuseupeuseupeus[115, 116]; c. Mesobuthusmartensikarsch[117121]; d. Mesobuthusoccitanusmardochei[122,123]; e. Mesobuthusoccitanustunetanus[104]; f. Parabuthustransvaalicus[124]; g. Leiurus quinquestriatushebraeus[125129]; h. Tityusserrulatus[130,131]; i. Androctonus mauretanicusmauretanicus[132]; j. Centruroidesmargaritatus[133]; k. Centruroidesnoxius [134,135]; l. Orthochirusscrobiculosus[136]; m. Tityuscambridgei[137,138];n. Pandinus imperator[139,140]; o. Scorpiomaurus[141]; p. Opistophtalmuscarinatus[142,143]; q. Mesobuthuseupeusmongolicous[113]; r. Opisthacanthusmadagascariensis[144]; s. Isometrus maculates[145]; t. Hadrurusaztecus[146]. 3Activity: 1.Na +channelbinding; 2. K+channelbinding; 3. Ca 2+ channelbinding; 4. Cl channelbinding; 5. Antimicrobialagent; 6. Haemolyticactivity; 7. Immunomodularactivity. Oftheapproximate2000describedspeciesofscorpions,itisestimatedthattheyproduce 100000uniquepeptides.Onlysome30scorpionsspecieshavebeenstudiedtothisdate, hencescorpionvenomscouldbeoneofthemostabundantresourcesforthediscoveryof biologicallyactivepeptides[147].

19 Chapter2–Massspectrometry

Chapter2 MethodologyI–MassSpectrometry 2.1 MassSpectrometry OneofthefirstofthepioneersformassspectrometrywasphysicistsJ.J.Thomson,who in1913,publishedhisstudiesofcanalrays(beamsofpositiveions)deflectedabeamof ionised neon through a magnetic field onto a photographic plate under low pressure; discovering two patches of light. He concluded these were isotopes of neon 20Ne and 22 Nebasedontheirmasstochargeratio[148].Thisprovidedatemplateforearlymass spectrometers which consisted of a single magneticsector to separate ions [149, 150]. Suchinstrumentsweresupersededbytandemmassspectrometerswhichcontainedboth electric and magnetic sectors: these greatly improved the sensitivity and resolution of massspectra[149,151]. Sincethenmanyadvanceshavebeenmadeinthefieldofmassspectrometry.Timeof flight[152154],quadrupoleandiontrapmassspectrometersemergedinthemidtolate 20 th century[155,156].Thesemassspectrometersaremuchsmallerandcheaperthanthe magnetic deflection instruments and are among the most commonly used today for proteinandpeptidestudies.Manyalternativemethodstogenerateionsareavailable,such aselectronimpactionization[150,157,158]andchemicalionization[159,160].More temperate ‘soft ionization’ methods such as matrix assisted laser desorption ionization [161163]andelectrosprayionization[164166](Seesection2.3)methodshaveallowed great advances in the field of biomolecules: these are ideal for the analysis of larger, thermallyunstablebiologicalmoleculessuchaspeptides,proteinsandDNA. Advances in tandem mass spectrometry (MS/MS) and the emergence of hybrid mass spectrometersallowfortheselectionandfragmentationofionswithaspecific m/z value fromamixture.Selectionoftheion,usuallybyaquadrupoleanalyser(section2.2.2)and further ion fragmentation via collision induced dissociation (CID) [167169], electron transfer dissociation (ETD) [170, 171], or infrared multiphoton dissociation (IRMPD) [172] yields ‘daughter ions’ (section 2.2.2). Further analysis of daughter ions is

20 Chapter2–Massspectrometry commonly undertaken using a time of flight sector; yielding accurate characteristic MS/MSspectraofaparentionand/ordaughterionsofinterest. Mass spectrometry allows for highly sensitive, rapid analysis of a wide range of compoundssuchaspeptides,proteinsandDNA.Itremainsaprevalenttoolinchemistry andmolecularbiologyfortheanalysisofbiologicalmedia. 2.2 TheQTOF2MassSpectrometer ThemassspectrometrycomponentofthisresearchwasprimarilyperformedonaQTOF 2hybridquadrupoletimeofflightmassspectrometerfittedwithanelectrospraysource. A schematic diagramofthekey componentsoftheQTOF 2 instrument is shown in figure2.1. Quadrupole MS TOF MS Pusher MCPDetector Probe Zspray IonSource Dynolite PointDetector Quadrupole Hexapole Analyser TransferLens RFLens Hexapole CollisionCell Reflectron Figure2.2 SchematicdiagramoftheQTOF2massspectrometer[173]. The ionisation method accomplished within the Zspray ion source is electrospay ionisation (Section 2.3). Once injected into the Zspray ion source; desolvation occurs andtheresidualchargedparticlesmovethroughasampleconeapertureduetoanapplied electric potential (cone voltage). The electric potential applied can be adjusted for a particularionwithinarangeofmasstochargeratios(m/z ).Generallyahighervoltageis

21 Chapter2–Massspectrometry applied for larger ions such as proteins [174]. Then the ions are analysed using a quadrupole mass analyser and an orthogonal reflectron TOF sector, separated by a hexapolecollisioncell. 2.2.1 TheQuadrupoleAnalyser The quadrupole analyser is comprised of four fixed parallel rods. An electric field is created via applying a fixed direct current (DC) and variable radiofrequency (RF) potentials(figure2.2).

Figure2.2 Massselectionbyalinearquadrupoleanalyser.Fourparallelrodslabelledinblue,adjacentrods arealternatingincharge.TheionsaretransmittedalongtheaxisoftherodsintheRFfield,ionswithan unstabletrajectoryareejectedfromthequadrupole. Theionsareintroducedintothequadrupoleinacontinuousbeamaboutthecentralaxis oftherods.Thetrajectoryofanionthroughthequadrupoleanalyserwilldependonthe appliedelectricfield:onlyionsofaspecificm/z willhaveastabletrajectoryandthus passthroughtothedetector[155,175,176].Ionsoutsidetherangeofthespecified m/z aredeflectedanddonotpassthroughtheanalyser.ByalteringtheappliedDCandRF potentialsbetweentheadjacentrodpairs,ionsofdifferentspecified m/z arefocusedonto thedetector, creatingamass spectrum [176]. Whentheinstrumentis inMSmode,all ionsareabletopassthroughthequadrupoleanalyser.Intandem(MS/MS)mode,ion(s)

22 Chapter2–Massspectrometry withadiscreteselected m/z areabletopassthroughthequadrupoleanalyserandthrough tothehexapolecollisioncellandTOFsector[177,178]. 2.2.2 TheHexapoleCollisionCell Withinthehexapolecollisioncellionsareenergisedviacollisionswithanoblegassuch asHeorAr.Thesecollisionsinducefragmentationoftheparention,producingdaughter ionswhichretainpartialcharacteristicsoftheparention[167,169,179].Thedaughter ionscanundergoadditionalfragmentationproducingfurthergenerationsofdaughterions (figure2.3).

Collisiongas Neutralloss

Precursor Activated Fragmenting Daughterions Productions ion ion ion Figure 2.3 A schematic diagram of CID fragmentation. Precursor ions (purple) enter the collision cell, become activated via colliding with an inert gas (green) followed by fragmentation, producing daughter ionsandneutralparticles(blue).Theproductionsproceedtoadetector. InMSmode,alloftheionsareabletopassthroughthequadrupoleanalyser,hexapole collisioncellandontoapusher,whichappliestranslationalenergytootherionspriorto enteringthetimeofflightsector.Intandemmassspectrometry(MS/MS)thequadrupole selectsforaparticular m/z ,whichthenpassesthroughthehexapolecollisioncell.Inthe collisioncell,theion(s)selectedcomeintocontactwithanoblegas,inthiscaseargon, which transfers energy to the ions leading to fragmentation. This process, known as collisioninduceddissociation(CID),leadstotheformationofdaughterions,whichretain partialstructuralcharacteristicsoftheparention[167169,179,180].Asionsexitthe

23 Chapter2–Massspectrometry hexapole collision cell, they are accelerated via the pusher into the TOF sector for subsequentmassdetermination. 2.2.3 TheTimeofFlightSector WhenionsofchargezentertheTOFsectortheyareacceleratedbyanappliedelectric potential V,suchthattheirkineticenergy zV isgivenby mv 2 zV = 2 where mand varethemassandvelocityoftheion,respectively.Thevelocityoftheion isgivenasthedistancetravelled d,perunittime t,andthusthe m/z ofandionisdefined as 2Vt 2 m / z = d 2 Theionstravelafixeddistancetothedetector,andthelarger m/z havealongertimeof flightpriortoreachingthedetector.Hencethedetector measures the array of time of flightdurationsandthisisinterpretedasamassspectrum[152,154].Ionsareaccelerated intheTOFtubeviaanappliedelectricfieldtowardareflectron,wheretheyarereflected backtowardthedetector.ThereflectronenhancestheresolutionofTOFmassspectraby correcting the distributionof velocities (kinetic energies)of the ions prior todetection [181,182]. IonsaredetectedbyaMicrochannelPlate(MCP)whichcanrecordaspectrum(scan)at 50 sintervals.Apossible20,000scanscanbetakenpersecondandcombinedtogive theresultantspectrumforanalysis[183].TheQTOFinstrumentcanrecordan m/z range upto4000Daanddetectionsatnanomolarconcentrations.

24 Chapter2–Massspectrometry

2.3 Electrosprayionisation Techniquessuchaschemicalionisationandelectronimpactionisationarenotidealfor massspectrometryofpeptides,astheyplacealimitonthesizeoftheanalyteandare often restricted to analysis of volatile analytes. The advent of electrospray ionisation allowedforgreatadvancesinthemassspectrometryofbiologicalmoleculesasitallowed for the analysisofnonvolatilecompoundsdirectlyfrom solutionbyevaporating them into the gas phase. The first ESI experiments reported were by Dole et al. in 1968 involvingdetectionofmacroionsproducedfrompolystyrene.ESItechniquesusedforthe analysisofbiologicalmoleculesemergedinthe1980’slargelyduetothedevelopmentof thetechniquebyFennandhiscolleagues[164,184,185].

Electrosprayionisationinvolvesinjectingadissolvedanalytethroughacapillaryneedle athighpressureintoaZsprayionsource.Insolution,theanalyteformsbothpositiveand negativeionstoanextent.Thedissolvedionsarepassedthroughaheatedcapillarytube at a flow rate within the L/min to nL/min range and are subjected to a potential differencefromthecapillarytiptotheelectrode.Astheliquidreachesthecapillarytip theelectricfieldcausesadistortionatthesurfaceoftheliquidasitleavesthecapillary, formingaconelikeshapeknownasa‘Taylorcone’[186](figure2.4).

A NOTE: This figure/table/image has been removed to comply with copyright regulations. It is included in the print copy of the thesis held by the University of Adelaide Library.

Figure2.4:TheformationofaTaylorconeinthepresenceofanelectricfield[186]. ThetipoftheTaylorconeformsanelongatedliquidjet.Oncethesurfacechargedensity reachespastthethresholdmaintainingtheliquidjet,chargeddropletsareformed.Once

25 Chapter2–Massspectrometry the analyte solution in injected into the Zspray source the liquid forms a fine spray, consisting of highly charged liquid droplets. Evaporation of the solvent from sample moleculesoccursbypassingadrygasacrossthesprayathightemperatures≈100200°C. As the solvent is evaporated, the droplets shrink to a critical size where repulsive Coulombicforcesovercomethecohesiveforcesofthedroplet,resultinginthegeneration ofgasphasemolecularions(figure1.9)whichpassthroughthesourceforfurthermass determination[184].

A NOTE: This figure/table/image has been removed to comply with copyright regulations. It is included in the print copy of the thesis held by the University of Adelaide Library. Figure2.5:Schematicrepresentationoftheproductionofpositiveionsinelectrospraymassspectrometry [184]. Thepolarity of the appliedpotential differencebetweenthe capillary and sample cone can be altered to select for positive or negative ions. The advantage of ESMS is that MnH+ and (M+nH+) ions be generated, where n is a given number of protons. This allows for the measurement of high molecular weight compounds as they can form multiplychargedionsresultinginalowerm/zvalue,hencearemorelikelytobewithin them/zrangeofthespectrometer[187].(MH+)and(MmH+)mcanalsobeproduced andstudiedinnegativeionmode. 2.4 Peptidesequencedetermination Massspectrometryisanadvantageousmethodforpeptidesequencedetermination,often fromverysmallquantitiesofpeptide.Thepeptidesamplesneednotbepuresincetandem massspectrometry(eg.theMS/MSmethod)allowsfortheselectionandanalysisofan ionofinterest.Incaseswherethepeptidesampleiscomplex,highperformanceliquid chromatography (HPLC) can also be employed to achieve further separation of components. In circumstances where mass spectrometry cannot distinguish between

26 Chapter2–Massspectrometry aminoacidsofequalmasswithinapeptidesequence,Edmansequencingisused(Section 2.4.4). 2.4.1 HighPerformanceLiquidChromatography Incomplexpeptidemixtures,manypeptideanalytescontendforchargeduringtheESI process.Thiscanproducemanyionssimultaneouslywithvaryingintensitiesdepending onhowionisableeachanalyteis.Thisoftenproducesmassspectrawithahighdegreeof complexity where only most ionisable analytes are observed [174, 188]. To allow for easier elucidation of peptide sequence from a biological mixture, prior separation via methodssuchashighperformanceliquidchromatographyHPLCisoftenrequired.HPLC provides rapid, highresolution separations using high pressure to force the solvent through narrow columns packed with fine particles. Reversed phase HPLC is a commonly used method for separation of biological peptide mixtures. Using this techniquethepeptidesexistinequilibriumbetweenahydrophobicstationaryphaseanda hydrophilicmobilephase.Whenagradientelutionprofileisapplied,thepercentageof organicsolventisalteredovertime.Elutionofacomponentoccurswhenthepercentage of the organic solvent is enough to shift the equilibrium to the mobile phase. The equilibriabetweenthetwophasesisdependentonthehydrophobicityandconformation of the analyte, hence the rate at which a peptide moves through a HPLC column is predominantlydependanttheaminoacidsequence[174,189192]. 2.4.2 Positiveionfragmentation Positive ion mass spectrometry has been the predominant method used to elucidate peptide primary structure. In positive mode, peptides fragment at the amide bonds yielding band yfragmentions.Thisallowssequencedeterminationfromthemassofthe fragments(figure2.6). R H N N H R' b O R O R'' O H H N N O N N H O R' H H O R''' R'' O H Cleavage& N y H+transfer H3N O R'''

27 Chapter2–Massspectrometry

Figure2.6: Cleavageoftheamidebondofpeptidesyielding b and yfragmentionsinthepositiveionmode [193196]. The bfragmentationsprovidethepeptidesequencefromtheCterminusofthepeptide, whilst the y fragmentations provide the peptide sequence from the Nterminus. An exampleoftheuseofbandyfragmentationtosequenceapeptide(caerin1.7)isshown infigure2.7.

Figure 2.7: Electrospray positive ion MS/MS data for the (MH) + ion from caerin 1.17 [197]. b and y cleavagesareshownaboveandbelowthespectrumrespectively. 2.4.3 Negativeionfragmentation Mass spectrometry of peptides in the negative mode is performed less often than in positive mode because of the complexity of the spectra produced, and the MS/MS of peptidesisseldomobserveddirectlyfromthe(MH)ion.Innegativeionmode,peptides

28 Chapter2–Massspectrometry

fragmentattheamidebondsyielding αand βfragmentions,whichareanalogoustotheb andyionsobservedinthepositiveionmode[198,199]. O R' O NH NH2 R O ααα N C OH O R'' R'' R' H O R' O H R N R NH N C OH N OH O H R'' H O R'' R' H O Ionneutralcomplex R NH2 βββ N C OH O H R'' Figure2.8: Proposedmechanismofamidebondcleavageofpeptidesyielding α and βfragmentionsinthe negativeionmode[198]. The α fragmentations provide sequence information from the Nterminal end of the peptide, βfragmentationsfromtheCterminalend.Thisprovidessequenceinformation, which is complementary to the positive ion fragmentations, as shown in negative ion ESMSofapeptide(caerin1.7)infigure2.9.

29 Chapter2–Massspectrometry

Figure2.9:ElectrospraynegativeionMS/MSdataforthe[(MH)2CH 2O] ionfromcaerin1.17[197].α andβcleavagesareshownaboveandbelowthespectrumrespectively.G *referstoSerineconvertedtoa 23 viathefacilesidechainlossofCH 2O.TheγE referstotheγbackbonecleavageionproducedby tothesidechaininducedcleavageoftheglutamicacidresidue. Negativeionmassspectracanoccasionallyprovideadditionalsequencedataassome backbonecleavagesmaybeobservedatpartsofthepeptidewhicharenotobservedinthe positiveionmode.Inadditiontothebackbonecleavages,sidechaincleavages(suchas thelossofCH 2Ofromserineresidues)andsidechaininducedbackbonecleavages (producingγandδions)canoccur,andareoftenobservedatamuchgreaterintensity thantheαandβbackbonecleavages[68,200,201].

30 Chapter2–Massspectrometry

2.4.4 EdmanSequencing Sequencing peptides from amide cleavages using mass spectrometry can be limited wheretheaminoacidresiduesareisobaric:namelyLeucineandIsoleucine(113Da)or and Glutamine (128 Da). These isobaric amino acids can, however, be differentiated by instruments that can perform high resolution MS/MS analysis [202, 203]. Alternatively, Edman sequencing provides complementary peptide sequential informationtosupportthemassspectrometrydataandidentifyanyisobaricresidues.The technique uses cycles of reactions between phenylisothiocyanate and a free terminal amine group on a peptide bound to a solid support. This causes the formation of a phenylthiocarbamoyl peptide derivative, further treatment with strong acid affords the phenylthiohydantoin derivative of the Nterminal amino acid which is loaded onto a HPLCcolumn.TheaminoacidissubsequentlyidentifiedfromitsknownHPLCretention time.Thefreeterminalamineoftheremainingpeptideundergoesfurtherreactionswith phenylisothiocyanate in a stepwise cycle (figure 2.10); removal and identification of aminoacidsoccurssequentiallyfromtheNterminus[204206].

N R1 O S R1 O H H N C S N N H2N N N Coupling H H O R2 O R2

Cleavage CF3COOH

S O

H2N NH N

R2 R1 O

HPLC Figure2.10:SchematicrepresentationofEdmandegradationofapeptide. Edmansequencingisaverysensitivetechnique(samplescanbeaslowasthepicomolar concentrations)whichcanberaninanautomatedfashiontoaffordefficientelucidation

31 Chapter2–Massspectrometry oftheprimarystructureofapeptide.Edmansequencinghoweverisseldomsolelyused to sequence peptides, as for each cycle the reaction may not run to completion and contaminantsareproducedineachcycle.TheHPLCtracesproducedcansometimesbe difficult to conclusively identify the amino acid removed in each step. Also, Edman sequencingcannotbeutilisedwhentheNterminalamideisblockedorderivatised(such aswhentheNterminalresidueispyroglutamate)[199,207].

32 Chapter3–NuclearMagneticResonance

Chapter3 MethodologyII–NuclearMagneticResonanceSpectroscopy 3.1 Nuclearmagneticresonancespectroscopyofpeptidesinsolution Tounderstandthebiologicalfunctionofpeptides,itisoftennecessarytoidentifytheir threedimensional (3D) structures. Xray crystallography is a principle technique of determiningthe3Dstructureofapeptideorprotein,withatomicresolution[208,209]. Thisrequiresthesampleofinteresttobecrystallized,whichinmanycasesisarduousor not feasible. Also, Xray structures may not insure a correct representation of the moleculein physiological conditions, dueto crystalpacking.NMR Spectroscopy is an alternativetechniqueusedtodeterminepeptidestructureinsolutionatanatomiclevel.It is a highly successful technique and is favourable to Xray crystallography as it can provideabetterrepresentationofpeptidestructuresintheirnativestate,thatis,where theyarebiologicallyactiveinsolution. NuclearMagneticResonance(NMR)spectroscopywasfirstdescribedbyIsabelRabiin 1938, when measuring the resonance of a gaseous lithium chloride beam placed in a variable magnetic field [210]. The technique was later refined and described by Felix BlochandEdwardMillsPurcellin1946,forsolutionandsolidstatesamples[211,212]. TheysharedtheNobelprizeinPhysicsin1952fortheirwork.ThefirstreportofNMR spectroscopy of biological media was in 1954 by Jacobson et al. [213], measuring the hydrationlevelsofdeoxyribonucleicacid(DNA)inwaterusing 1HNMR.Threeyears laterMasatamiTakedaandOlegJardetzkyperformedNMRstudiesofaminoacidsand simplepeptides[214].FurtherNMRstudiesbyFrancisBoveyandKurtWüthrichinthe late1950’sthroughtothe1970’spioneeredtheprogressionofbiologicalNMRstudies; from simple amino acids, to peptides and proteins [215, 216]. Advances in NMR techniques and technology, such as high field spectrometers, Fourier transform NMR, multidimensionalNMRexperiments,andhighperformancecomputingfacilitieshaslead togreatadvancesinthestructuralstudiesofproteinsandpeptides[217220].

33 Chapter3–NuclearMagneticResonance

In recent years NMR has become an effective technique for determining peptide and protein molecular structure. The technique can also be used to probe the dynamics, molecular folding, conformational equilibria, as well as intra and intermolecular interactions [221]. Additionally solidstate NMR techniques provide information on peptide structureandorientation inbiologicalmedia such as phospholipid membranes (seeChapters6and8).ThischapteroutlinesthefundamentalsofNMRspectroscopy,and how it is utilized in conjunction with computational techniques to elucidate peptide structure. 3.1.1 Principlesofnuclearmagneticresonancespectroscopy TheprinciplesofNMRarebasedonthefactthatnucleons(protonsandneutrons)possess an intrinsic angular momentum, referred to as ‘spin’, and are represented by a spin quantum number, I. Inmanynuclei (such as 12 C, 16 O and 24 Mg) eachproton ispaired withanotherproton,andlikewiseforneutrons;thetotalgivenIforthesenucleiiszero. Onlynucleiwithunpairednucleons(suchas 1H, 2Hand 13 C),whereI≠0,aresaidtobe NMRactive.AlistofnucleicommonlyusedinbiologicalNMRisgiveninTable3.1. Table3.1: NucleicommonlyusedinbiologicalNMR. Nucleus UnpairedProtons UnpairedNeutrons Nuclearspin(I) 1H 1 0 ½ 2H 1 1 1 13 C 0 1 ½ 15 N 1 0 ½ 19 F 1 0 ½ 31 P 1 0 ½ Intheabsenceofanexternalmagneticfield,allnucleiareequivalentinenergy.However, inthepresenceofanexternalfield,nucleicanexistin(2I+1)orientations(figure3.1). 1 Thusanucleussuchas H(I=½)canexistintwospinstates:alowspinstate(N α– parallel to the external magnetic field), or a high spin state (N β – antiparallel to the

34 Chapter3–NuclearMagneticResonance externalmagneticfield).Thesmallamountofenergybetweenthetwostatesisgivenby theequation; hγ B E = 0 2π where h is Planck’s constant, γ is the gyromagnetic ratio (the ratio of the magnetic momenttotheintrinsicangularmomentumofaspinningparticle,uniqueforeachtypeof nucleus)and B0isthestrengthoftheappliedmagneticfieldinTesla.

Nofield Appliedmagnetic field B0

Nβ E E

Nα Figure 3.1 The energy states of populations of nuclei with spin (I = ½) in the presence of an applied magneticfieldB 0. Theprimarypopulationsofenergylevelsofnucleisuchas 1H(I=½)inthepresenceof anexternalmagneticfieldaredescribedbytheBoltzmanndistribution[187]:

N −E α kT = e N β wherekistheBoltzmannconstantandTistheabsolutetemperature.Aslightlygreater populationofnucleiwillbeintheN αstaterelativetotheN βstate,thoughthedifference

35 Chapter3–NuclearMagneticResonance isveryminuteat298K(~0.01%),evenwhenastrongmagneticfieldisapplied.Hence NMRisarelativelyinsensitivetechnique[187,222]. The difference in energy between spin states is quite small, corresponding to energies within the radio frequency ( rf ) range. The applicationof electromagnetic radiation can promote populations of nuclei with spins aligned with the external magnetic field Bo

(lower energy spin state, N α) to spins opposed the external magnetic field (a higher energy spin state, N β) altering the total magnetic moment of the nuclei. The energy between spin states is equivalent to the frequency at which the nuclei precess in the applied magnetic field. This frequency is known as the Larmor frequency v, which is definedas:

γB0 v = 2π Foramagneticfieldof14.1Tesla,theLarmorfrequencycorrespondsto600MHzfor 1H nuclei[187]. 3.1.2 OnedimensionalNMRspectroscopy To understand how an NMR spectrum is acquired, firstly one should understand the schematicsofanNMRprobe,asillustratedinfigure3.2.Twomagneticpolescreatea strong magnetic field B0 (zaxis) orthogonal to the axis of a spinning sample tube (y axis). The strength of the magnetic field is moderatedby sweep coils in order to scan overasmallrangeofmagneticfieldstrengths.Aradiofrequencytransmitteremitsthe rf pulsestoexcitethenucleiofinterest,andtheprecessionofthesenucleiisdetectedbya receivercoilmountedaroundthesampletube[222,223].

36 Chapter3–NuclearMagneticResonance

Figure3.2 GeneralschematicofNMRprobe.Thenorthandsouthmagneticpolesarerepresentedby N and S,respectively.Basedonfiguresfrom[222,223]. The effect of applying an rf pulse on nuclei precessing in a magnetic field B0 is best represented using vectors, as illustrated in figure 3.3. The rotational axis about which nuclei precess in a magnetic field B0 (zaxis) has a slightly higher population aligned paralleltothefield B0.Theresultisabulkmagnetisationinthedirectionoftheapplied magneticfield,representedbythevector M0.

37 Chapter3–NuclearMagneticResonance

Figure 3.3 Vector Representation of the 1D NMR experiment. The vector diagrams representing the precessionofnuclearresonancesfollowingtheapplicationofa90 °rf pulse.TheacquiredFIDsignalis convertedtoa1DNMRspectrumviaaFouriertransformation.Adaptedfrom[224]. AcquisitionofanNMRspectrum,occursasfollows:astrong rf pulseisapplied,fora short duration of time t p (usually in the order of microseconds). The rf pulsedoesnot needtobemonochromaticandcancoverarangeoffrequencies,dependingonthenuclei ofinterest.Asthenucleiprecess,anoscillatingmagneticfield B1isproducedinthex axis.Theresultantnetmagnetisation M0isrotatedintothexyplanethroughsomeangle

θ;inmostNMRexperiments,t pisselectedsuchthatθis90°.Once M0isinthexyplane, itprecessesabouttheappliedmagneticfield B0.As M0relaxesbacktotheequilibrium state,aninducedelectricalcurrentisdetectedbyareceivercoilmountedorthogonalto themagneticfield,thatisaffectedbyoscillationsoftheyaxialcomponentof M0[187, 222, 225]. The induced oscillating current reduces with time, as an exponentially decaying cosine signal. The signal produced by the relaxation of M0 is called free induction decay (FID). The FID signal can be acquired over a number of cycles to

38 Chapter3–NuclearMagneticResonance improvesignaltonoiseratio.Followingacquisition,theFIDisconvertedfromthetime domaintothefrequencydomainviaapplyingaFouriertransformfunction.Theresultant 1DNMRspectrumdisplaysthegivenLarmorfrequenciesofthenucleiofinterest[221, 222,225]. If all of the nuclei observed in a NMR spectrum were identical, the energy difference betweentheirspinstatesandthecorrespondingLarmorfrequencieswouldbethesame. ThiswouldresultinanNMRspectrumwithonepeak.However,inmostinstances,thisis not the case. Fortunately in an NMR experiment, small magnetic fields induced by movingelectronsperturbthemagneticfieldexperiencedbyeachnucleus.Thislocalised electroniceffectisknownasnuclearshielding[226]. Nuclearshieldingalterstheenergydifferencebetweenthehighandlowspinstatesofa given nucleus, altering the Larmor frequency as it precesses in the xyplane. The magnitude of a magnetic field generated from moving electrons about a nucleus, is dependent on the local chemical structure and geometry. Hence upon Fourier transformationofanacquiredFID,uniquepeakswillbeobservedforeachnucleusina distinct chemical environment [226]. This phenomenon is commonly employed by chemiststodifferentiatemolecularconstituentsusingNMR. Inorder to eliminate the effect ofan external magnetic field on the range of Larmor frequencies observed in an NMR spectrum, they are normalised to a given standard compound,andconvertedtothechemicalshiftscaleasfollows: v − v sample reference δ = ×106 operatingfrequency whereδisthechemicalshiftinpartspermillion(ppm)andtheoperatingfrequencyisin MHz.Larmorfrequenciesaredependentontheoperatingfrequency(andtheapplied magneticfieldstrength).ThechemicalshiftscaleisadvantageousasitnormalizesNMR signals,producingachemicalshiftvaluethatisindependentoftheoperatingfrequency

39 Chapter3–NuclearMagneticResonance

[227].Themostcommonreferencecompoundusedin 1Hand 13 CNMRis tetramethylsilane(TMS),(CH 3)4Si. 3.1.3 TwodimensionalNMRspectroscopy Biopolymerssuchaspeptidescontainalargenumberofmagneticallyinequivalentnuclei, thoughmanyhaveclosechemicalshiftvalues.Thismakesassigningaconventional1 dimensionalNMRspectrumverydifficultduetothesheernumberofresonancesanda highdegreeofsignaloverlap.Theadditionofaseconddimensionisofagreatadvantage as additional correlations between nuclei can be observed on a 2dimensional contour spectrum, and the chemical shifts of nuclei can be assigned that would otherwise be unresolvedina1dimensionalNMRspectrum.Alargeportionofthisstudyinvolvesthe assignment of peptide resonances and solution structure determination using a combinationof2dimensionalNMRmethods. Thepulsesequencesofall2dimensionalNMRexperimentsshareacharacteristicseries of steps: a preparation period, where the net magnetisation M0 is altered from the equilibriumstate;anevolutionperiod(t 1),anincrementaldelayoftimewherethenuclear spins are allowed to precess freely without any rf pulses; a mixing period (τ m), where spinsarecorrelatedtooneanother;andadetectionperiod(t 2)[224,227].Thepreparation period works in a similar way to a 1D NMR experiment, where nuclear spins are established such that the nuclei can be labelled by their chemical shifts. 2D NMR experimentsaregenerallyrecordedusingvariableincrementsoftheevolutionperiodt 1

[228].AFouriertransformationofbotht 1andt 2intothefrequencydomain,followedby normalization,yieldsa2DchemicalshiftspectrumS( δ1,δ2)[229].Avisualrepresentation ofageneralized2DNMRexperimentisshowninfigure3.4. The assignment of resonances of a peptide is possible through a combination of 2D experiments,asdetailedinfurthersections.TheinformationderivedfromtheNMRdata providesthefoundationforpeptidesecondarystructuredetermination.

40 Chapter3–NuclearMagneticResonance

Figure 3.4 The 2dimensional NMR experiment. Generalised pulse sequence, and separate Fourier transformationsoft 1andt 2producesa2dimensionalcontourplot.Figureadaptedfrom[230]. 3.1.3.1 CorrelationNMRspectroscopy The simplest of the homonuclear 2D NMR methods is the Correlation spectroscopy (COSY) experiment. 1H COSY NMR spectra indicate protons which are spinspin coupled to one another; that is, connected by up to three covalent bonds. This is very usefulinidentifyingcloselyconnectedprotonswithinapeptide.Theexperimentinvolves twoapplied90° rf pulses,separatedbyavariabledurationt 1,followedbyacquisitionof theFIDsignalduringt 2[224](figure3.5).

Figure3.5 ThepulsesequenceofaCOSYexperiment.

41 Chapter3–NuclearMagneticResonance

Theinitial90°pulsepushesmagnetisationintothexyplanewhichevolvesoverthet 1 period.Thesecond90°pulserotatestheyaxismagneticconstituentintothezaxis,this magneticconstituentcannotbeobservedbythereceivercoil.However,theredistribution ofthemagnetisationthroughscalarspinspincoupled(correlated)nucleiviacoherence transfer,producesanobservableeffect[224,231,232].FollowingFouriertransformation ineachdimension,theresultantspectrumdisplayscrosspeaksthataresymmetricalabout thediagonal,revealingspinspincoupledprotons,twoorthreebondsapart.HenceCOSY spectraareusedtoindicatecouplingsbetweenresonancesofthesameaminoacidresidue withinapeptide. One limitation within COSY spectra is the presence of peakswith the same chemical shiftinbothdimensions:theresultofspinswhichareunaffectedbythesecond90°pulse [224].Thesespinsappearonthediagonalofthespectrum,areinphase,andyieldthe sameinformationasthe1DNMRspectrum.Theaccumulationofsignalintensity(and linebroadening) on the diagonal results in a much larger intensity than that of other significant crosspeaks, which appear as antiphase multiplets. The antiphase multiplets can have complex contour shapes as a result of (i) same phase coupling causing absorptiveintensitiesand(ii)mixedphase(positiveandnegative)intensitiescancelling eachotherout.ManycrosspeakscanbeobscuredbythediagonalwhenphasingaCOSY spectrum,ortheymaynotbeobservableduetolackofsensitivity[224,233]. Numerous alterations to the COSY experiment have been developed to improve assignment of proton resonances. For example, double quantum filtered COSY (DQF

COSY)experimentsinvolveuseofanadditional90degreepulseaftert 1withinthepulse sequence.Quantumfiltrationinvolvesselectingforspecificcoherencetransferpathways. These coherences of magnetisation are denoted by the coherence order p, which is an integer,wherezeroquantumcoherenceisdenotedby p=0,singlequantumcoherence p = ± 1, double quantum coherence p = ± 2, and so forth. For all coherence transfer pathways, initially p = 0, where M0 is in the zaxis and the only observable signal is where p=±1,andthenetmagnetisation M0is±y(seefigure3.3).Intheconventional

42 Chapter3–NuclearMagneticResonance cosy experiment pulse sequence is set up such that all coherences where p = ± 1 are observedintheFID.InthecaseofDQFCOSY,thepulsesequenceissetupsuchan additional90degreepulseaftert 1andphaseswitchingdelayisinsertedintothesequence toselectforallcoherencetransferpathwayswhere p =1,and M0is–y,asillustratedin figure3.6.

Figure3.6 ThepulsesequenceofaDQFCOSYexperiment(upper),andthecoherencetransferpathway (lower). The given coherence orders are denoted by the black lines and p for each 90° pulse are also shown.Basedonafigurefrom[234]. Thistechniquehalvesthetotalamountofobservablemagnetisationthatisinphaseprior toFIDdetection(t 2),astheobservablesignaliswhere p =±1.Also,byselectingfor p= 1, the resultant crosspeaks in the 2dimensional spectrum are purelyabsorptive. This makes the technique less sensitive relative to the conventional COSY experiment. However, the decrease in line broadening and signal overlap and allows for enhanced resolution, and lowers the intensity of the crosspeaks along the diagonal of the 2 dimensional NMR spectrum relative to a conventional COSY spectrum [224, 233]. Additionalpulsesandphaseswitchingdelayscanbeinsertedintothepulsesequence:e.g.

43 Chapter3–NuclearMagneticResonance intriplequantumfilteredCOSY(TQFCOSY)[224].DQFCOSYispredominantlyused forthepurposesofthisNMRstudy. 3.1.3.2 TotalcorrelationNMRspectroscopy SinceCOSYspectraonlyindicatecouplingswithintwotothreebondsofoneanother, this can make assignment difficult for nuclei with similar chemical shifts. Total correlation spectroscopy (TOCSY) extends the information possible by indicating resonances within a spin system across many bonds and relies on crosspolarization ratherthanspinspincoupling[235,236].TOCSYisaveryadvantageoustechniquefor the NMR of peptides as crosscoupling does not traverse an amide bond. Thus each aminoacidresiduecanbeanalysedasaseparatespinsystem. TheTOCSYpulsesequenceinvolvestheapplicationofasinglecoherent rf fieldduring themixingtime τm;thisisknownasaspinlockfield(figure3.7).Whenthe rf fieldis applied, two spins become momentarily equivalent and exchange magnetisation in an oscillatory fashion. The exchange of magnetisation between scalar coupled spins is relayedconnectivelyacrossallcoupledspins(crosspolarisation).Thuscrosspeakscan beobservedduetocouplingofallresonanceswithinaspinsystem.Inatwospinsystem, an entire transfer of magnetisation occurs when τ m corresponds to ½ J, where J is the scalar couplingconstant between the spins. For larger andmore complexmolecules, a number of spectra with different τ m times can be applied to observe scalar coupling throughoutanentirespinsystem.

Figure3.7 ThepulsesequenceofaTOCSYexperiment. Asdiscussed,allaminoacidresiduescanbeassignedasseparatespinsystemswithina TOCSY spectrum as cross polarization does not transfer through an amide bond. The randomcoilprotonchemicalshiftsofthetwentycommonlyoccurringaminoacidshave

44 Chapter3–NuclearMagneticResonance beenpublished[237].Theseinturncanbeusedto derive a crosspeak motif for any givenaminoacidresidue.Inmanycases,aminoacidresiduesareinitiallyassignedvia labellingamideprotonresonancescorrelatedtosidechainprotonresonances[238]. AllofthepeakswithinaTOCSYspectrum(including the diagonal) are in phase and absorptive.ThusTOCSYspectratendtohavebetterresolutionandsensitivityrelativeto COSY spectra. TOCSY spectra can, however, produce negative peaks as a result of crossrelaxationbecauseofnuclearOverhausereffects(seesection3.1.3.3).Thisproblem generally does not occur when short mixing times are used, as is the case for most TOCSYexperimentsinvolvingpeptides[224]. 3.1.3.3 NuclearOverhausereffectNMRspectroscopy The nuclear Overhauser effect arises from the transfer of magnetisation between irradiated nuclei and nearby nuclei via crossrelaxation. Nuclear Overhauser effect spectroscopy (NOESY) experiments differ from COSY and TOCSY experiments as it involvesatransferofmagnetismthroughspace,notthroughbonds.ThusNOESYspectra indicate couplings of nuclei that are close in spatial proximity. The information from NOESY spectra are used to sequentially assign amino acid residues, and to determine distances between pairs of nuclei. These derived distances are used to determine the secondarystructureofapeptide. The pulse sequence of a NOESY experiment is quite similar to that of a TOCSY experiment(seefigure3.8).Aninitial90°pulseforcesthenetmagnetisationintothexy plane,wherespinsevolveoveravariabletimet 1.Thesecond90°pulseisorthogonalto the first rotates a portion of the net magnetisation into the zaxis. During the mixing periodτm, spinswhicharenotinequilibriumtransfertheirmagnetisationthroughspace via dipolar coupling. The third 90° pulse pushes any remaining magnetic component fromthezaxisintothexyplaneandtheFIDisdetectedint2[239].Mixingtimesτmfor NOESYexperimentsareusuallylongerincomparisontothoseofTOCSYexperiments, andalsolacktheappliedcoherent(spinlock) rf fieldinthepulsesequence.

45 Chapter3–NuclearMagneticResonance

Figure3.8 ThepulsesequenceofaNOESYexperiment. Dependingontheinternucleardistance,crosspeakscanbedetectedinNOESYspectra asaresultofinterorintramolecularlycouplednuclei.TherelativeintensityofaNOE signalisinverselyproportionaltothesixthpoweroftheinternucleardistance(I ∝r6).As a result, NOE crosspeaks can be detected from dipolar coupling of nuclei up to an approximateinternucleardistanceof5Å[187,240]. TheinternucleardistancesdeterminedfromNOESYspectraarenotentirelyaccuratedue to a number of contributing factors. (i) The peptides are in solution and subject to molecular vibration and conformational changes, thus the observed NOE signals are representativeoftheaverageinternucleardistances.(ii)Overlapofcrosspeaksthatare veryclosetotheirobservedchemicalshiftsinbothdimensionscanresultinmoreintense, broader crosspeaks. (iii) Spin diffusion, as a result of the crossrelaxation spreading among many nuclei can also affect crosspeak intensities.Ingeneral,these factors are onlyaproblemwithlargermolecules>10kDaandtheexperimentalparameterscanbe alteredtominimisetheseeffects.Itisalsopossiblethatcoherencetransfercanalsobe observed in NOESY spectra, however, this effect can be minimised by pulsed field gradients(theuseofnonuniform magneticfields B0 over short durations of time) and phasecycling(repeatingpulsesequencesoveranumberofcyclespriortoFIDdetection). Tominimisetheeffectsoftheseinaccuracies,NOEintensitiesaregroupedintohigher andlowerintensitiespriortodistancerestraintconversion(section3.1.5). 3.1.4 ChemicalshiftAssignment The first step toward chemical shift assignment of peptides, involves the use of correlation spectroscopic methods, namely TOCSY and COSY. Initially the TOCSY spectrumisanalysedusingtheamide(NH)protonsonthebackboneofthepeptide.Each

46 Chapter3–NuclearMagneticResonance ofthecrosssectionscorrespondingtotheamideprotonsshowcorrelationswithprotons attheα,β,γ,δ,andεpositions(whereappropriate) of the amino acid residues. The characteristicpatternofcrosspeaksforeachtypeofaminoacidcanbedeterminedfrom previouslypublishedchemicalshifts[224,237].Inmanycases,particularlywithlarger peptides, there is a high degree of crosspeak overlap in the TOCSY spectrum. The COSY spectra can be used to resolve some overlapping crosspeaks from the TOCSY spectruminwherecorrelationsareobservedbetweenprotons23bondsapart.TheCOSY spectracanalsobeemployedtoensureeachchemicallydistinctprotonofanaminoacid residueiscorrectlyassigned,fromcorrelationsbetweentheamideandαprotons,αandβ protons,andsoon.So,eachresonanceisassignedinastepwisefashion,alongtheamino acidsidechain. OncetheaminoacidresonancesareassignedbasedontheirTOCSYandCOSYcross peakpatterns,theNOESYspectrumisusedtoensurethecorrectorderingoftheamino acidresidueswithinthepeptidesequence.Thisisdonebyassigningcorrelationsbetween protonsof neighbouring amino acid residuesthat are close in space, this is known as

‘sequential assignment’. The most useful correlations used are NH i to NH i+1 , αHi to

NH i+1 and βHitoNH i+1 [241].TheintensitiesoftheseNOESYcrosspeaksarelargely dependentontheconformationandlocalsecondarystructureofthepeptide.However,all allowedpeptidebackboneconformationsshowatleast1interprotondistancewithin3Å between neighbouring amino acids, therefore producing observable correlations in the NOESYspectrum[229].Breaksinthesequentialassignmentusingamideprotoncross peaks occurs where are present in the sequence, as prolines are cyclic and contain no amide proton. In those cases, sequential assignment can be made upon observingcorrelationsbetweenprotonsofthepreviousaminoacid,andtheαorδprotons oftheresidue. Additional problems can arise in the sequential assignment of peptides, largely from crosspeak overlap, due to correlations between pairs of nuclei with similar chemical shifts. This factor increases with the length of the peptide. Other problems can arise whereαprotonchemicalshiftsareobscuredbylargewaterpeaks,whentheexperimentis

47 Chapter3–NuclearMagneticResonance performedinaqueousmedia.Insomecases,αprotonandαcarboncorrelations,canbe assignedfromHeteronuclearsinglequantumcoherence(HSQC)NMRspectra. 3.1.5 NOEConnectivities Once the sequential and intraresidual signals have been assigned, the remaining NOE signals can be assigned and converted to interproton distances (NOE connectivities). NOE connectivities are the result of interproton distances within 5Å, and are highly dependantonpeptidefoldingandsecondarystructure[242].Theyaregroupedintoshort (oneresidue),medium(twotofourresidues)andlongrange(greaterthanfiveresidues) NOEconnectivities.TheNOEconnectivitiesaredescribedbythestandardnotation,as dAB(i,i+N) ,wheretwoprotonsAandBareonresiduesiand(i+N)respectively,andNis thenumberofresiduesfromresiduei(ie.N=1,forsequentialNOEs).Allconnective distancesaredefinedacrosstheentirepeptide,andtheresidueindicesareoftenomitted fromthestandardnotationofsequentialNOEconnectivities(i.e. dAB ≡dAB(i,i+1) )[229]. Different secondary structure types such as αhelices, βstrands and turns show a characteristic pattern of observed NOE connectivities (see figure 3.9). The spiral secondarystructureofanαhelixischaracterisedbystrong dNN ,medium dαN, dαN(i, i+3) , and dαβ (i, i+3) NOE connectivities. In addition, sometimes weak dNN(i, i+2) and dαN(i, i+4) NOE connectivities can also be observed. In contrast, βstrands are characterised by stronger dαN and weaker dNN NOE connectivities, as a result of low curvature in the backbone structure. Also, a lack of sequential dNα NOE connectivities, is a common characteristicof βstrandstructures[243,244].

48 Chapter3–NuclearMagneticResonance

αhelix βstrand

residue 1 2 3 4 5 6 1 2 3 4 5 6 dNN

dαN

dαN(i,i+3)

dαN(i,i+4)

dβN

dαβ(i,i+3)

Figure3.9 CharacteristicpatternsofshortrangeNOEsseenforidealαhelicesandβstrands.Therelative intensitiesofNOEconnectivitiesareindicatedbythethicknessofthebars[229]. Prolinecanundergo cistrans isomerisationabouttheimidebondbetweenprolineandthe preceding residue. NOE connectivities between the α proton of the preceding residue withtheδandαprotonsoftheprolineareusedtoindicatewhichisomerispresent.Inthe cis formthereisastrongerd αα NOEinteraction,andinthe trans formthereisastronger dαδ interaction(figure3.10).Inmostcases,the trans isomerpredominates[245].

49 Chapter3–NuclearMagneticResonance

chain Hα Hδ Hδ O O H CN H CN NC NC Hα Hδ chain R Hδ Hα H chain R chain α trans cis Figure 3.10 The cistrans isomerisation of the imide peptide bond between proline and the preceding residue. In many cases, not allof theNOEconnectivities canbedetermined fromtheNOESY spectrum. Some signals can be obscured by the diagonal, α proton signals can be obscured by the water signal, and signals can overlap where chemical shifts are coincidental[224]. 3.1.6 Secondaryshifts The chemical shift of a given nucleus is affected by the chemical environment and molecular geometry, and this can be used in the NMR study of peptides to indicate secondarystructure.In 1HNMR,theobservedchemicalshiftsoftheamideprotonsandα protonsalongthepeptidebackboneishighlydependentonthelocalsecondarystructure.

Previouslydeterminedrandomcoilchemicalshifts(δ randomcoil )[237]arecomparedtothe observed chemical shifts (δ observed ) of a given peptide, and described by a secondary chemicalshiftvalue(δ),thatisequalto:

δ=δ observed –δrandomcoil Plotting δ against the amino acid sequence provides an indication of regions of consistent secondary structure throughout the peptide. In many cases the δ value is smoothedover±2residues.Thisreducesthepossibilityofmisinterpretations,duetothe localexternaleffectsonchemicalshiftsfromproximalpolarandaromaticgroups.

50 Chapter3–NuclearMagneticResonance

Studies based on statistical analysis of NMR structures and further theoretical calculationsshowthatonaverage,αprotonsecondarychemicalshiftsareapproximately 0.39ppmwithinanαhelix,and+0.37ppmwithinaβstrandorextendedstructure[246, 247]. Amide proton chemical shifts are a lot more sensitive to pH and temperature, though some degree of interdependence between the secondary chemical shift and the secondarystructurehasbeenestablished[247]. Inthecaseofamphipathicαhelices,whereonefaceofthehelixishydrophobicandthe otherhydrophilic,amideprotonsecondaryshiftsoftenshowanevidentpatternofvarying δacross34residues.Generally,δvaluesarepositiveaboutthehydrophobicface,and negative about the hydrophilic face [248, 249]. This is considered to be due to intermolecularhydrogenbondingeffectsbetweenamideprotonsandcarbonylgroupsof thepeptidebackbone.Theshorterthehydrogenbond,themoreshieldedanamideproton is, causing a downfield shift. Within hydrophobic regions of an αhelix, the intramolecular hydrogen bonds are stronger and shorter, and access to polar solvents (such as water) is limited, resulting in a positive δ. In hydrophilic regions, the intermolecular hydrogen bonds are weakened and lengthened, and the hydrogen bonds areeffectivelysharedwithpolarsolventsandpolaraminoacidsidechains,resultingina negativeδ[248,250]. 3.1.7 Couplingconstants In NMR, characteristic spinspin coupling constants can be observed between nuclei a fewcovalentbondsapart.Thecouplingeffectisdependentonthespinpairingofeach nucleusandtheelectronsofthecovalentbondsconnectingthenuclei.Inthisway,the coupling is sensitive to the bonding network and spin orientations of the nuclei [224]. Thecouplingcausesobservedpeakstoappearasmultiplets,with2I+1numberoflines, whereIrepresentsthespinquantumnumberofthenearestnucleus,andthespacingofthe linesisrepresentedbyacouplingconstant,J[216,251].

51 Chapter3–NuclearMagneticResonance

Couplingacrossthreecovalentbondsisdenotedbythecouplingconstant 3Jandisuseful inidentifyingthesecondarystructureacrossthebackboneofapeptide. 3Jcouplingtothe αprotonisobservedfromthesplittingofamideprotonshiftsinthe1DNMRspectrumor the δ 2 dimension of the COSY spectrum. The coupling constant across three covalent bondscanbedescribedbytheKarplusequation: 3J=A+Bcos 2θ+Ccosθ whereA,B,andCareempiricallyderivedparameterswhosevaluesdependontheatoms andsubstituentsinvolvedandθisthedihedralangle.Inpeptidestructure,theamidetoα 3 proton coupling constant ( JNHαH )givesanindicationoftherangeofpossibledihedral angles, φ.Thepeptidebackbonedihedralangle φliesacrosstheatomsC’ i,N i+1 ,αC i+1 and

C’i+1 ,asillustratedinfigure3.11. R H H O

N N

O R H H Figure3.11 Thepeptidebackbonedihedralangle φ,representedingreen. φis180°inthisrepresentation. 3 Though the dihedral angle φ cannot be measured directly from the JNHαH coupling constant, a range of structurally allowed dihedral angles can be determined. This is equatedbysubstituting(θ= φ60°)intotheKarplusequation[252]. 3 2 o o JNH αH=6.4cos (φ60 )–1.4cos( φ60 )+1.9 3 Theequationgivesuptofour φvaluesforanygiven JNHαH value,asshowninfigure 3 3.12. JNHαH valuescannotbedeterminedwhereprolines(noamideproton)or(2 αprotons)arepresentinthesequence.

52 Chapter3–NuclearMagneticResonance

12

10

8 (Hz)

H 6 α α α α NH J

3 4

2

0 180 135 90 45 0 45 90 135 180 φφφ (deg ) Figure3.12 TheKarpluscurveillustratingtherelationshipbetweenthebackbonedihedralangle φandthe 3 couplingconstant JNHαH .Figureadaptedfrom[253]. Inallpeptides,theusualallowed φanglesrangefrom30°to180°.Foranaverageα helixthedihedralangle φis57°,foraparallelβsheetitis119°,andforanantiparallel 3 βsheetitis139°.Thesehavecorresponding JNHαH valuesof 3.9Hz,8.9Hzand9.7Hz 3 respectively.The JNHαH valuesdonotalwayscorrespondtothetruedihedralangle φ,due 3 to the molecular motion about the peptide backbone. The observed JNHαH coupling constantiseffectivelythetimeaveragedvalueforallconformations,henceforagiven 3 3 JNHαH value; a range of φ values are generated. In general, any JNHαH below6Hzis 3 considered to indicate αhelical secondary structure and any JNHαH above 8 Hz consideredtoindicateβsheetorβstrandsecondarystructure[229]. 3 The JNHαH couplingconstantscanbemeasureddirectlyfromahighresolution1DNMR spectrum or from the antiphase multiplets in the second dimension (δ 2) of a COSY spectrum[254].Thisbecomesincreasinglydifficultwithincreasingpeptidelength,due totheincreasedprobabilityofcrosspeakoverlap.Additionallysomeoverestimationscan bemadewherethespacingissmallerthanthelinewidthofthespectrumorwherecross peak overlap is observed. This also holds true for 1D NMR spectra, especially when neighbouringamidepeaksarecloseinchemicalshift[224,229].

53 Chapter3–NuclearMagneticResonance

3.1.8 Peptidestructurecalculations Peptidestructurecalculationsarerequiredtocorrectlyrepresentthesolutionstructureof apeptideandtheyprovideasimplifiedmeansofcollatingallofthestructuraldatafrom 3 NOEconnectivities,secondarychemicalshifts,and JNHαH couplingconstants.Theinitial stepinpeptidestructuralcalculationsistoinputthepeptidechemicalshiftassignments, 3 NOE connectivities and JNHαH coupling constants. From these data sets, a series of protonprotondistanceanddihedralanglerestraintsaregenerated.Thenextstepsinvolve a series of computational Restrained Molecular Dynamics (RMD) and Simulated Annealing (SA) calculations. The end result is an array of 3D peptide structures, consistentwiththeNMRderiveddata. The structure calculations used for these peptide studies were accomplished using the program ARIA (Ambiguous Restraints for Iterative Assignment) [255]. This program collatestheNMRderivedinputdataandconvertsittodistancerestraints.Italsospecifies the calculation protocol for RMD and SA calculations and interfaces with a second program CNSSolve (Crystallography and NMR System, version 1.2) [256], that essentiallyperformsallofthe3Dstructurecalculations.Inthissection,thestagesof3D peptidestructuregenerationarediscussedindetail. 3.1.8.1 NOEderivedstructuralrestraints WithinaNOESYspectrum,theintensityofNOEsignalsincreasewithincreasedmixing time,untilitreachesamaximumanddecreasestozero[257].So,wherethemaximum signalisobservedforagivenmixingtime,thelongestcouplingscanbedetected.Several otherfactorssuchasmoleculartumblingtimeandlocalisedmolecularrotationratescan also affect NOE intensities. The rate of molecular tumbling is best described by the correlationtimeofthemolecule,τ c,whichinturnaffectstherateofNOEbuildup.Parts ofamoleculethatrotateandvibrateatafasterrate,suchaslongsidechains,willexhibit greater NOE intensities [224]. Spin diffusion, as a result of the propagation of magnetisationacrossamoleculecanalsoaffectNOEcrosspeakintensity.Thesefactors meanthatanexactcalibrationofNOEderiveddistancerestraintsisnotpossible.Inthe caseofpeptideNMR,NOEmixingtimeshavebeenoptimised to reflect the expected

54 Chapter3–NuclearMagneticResonance correlation times (150250 ms) to allow for sufficient interproton distance approximations[238]. ArangeofmethodsexistfortheconversionofNOEintensitiestodistancerestraints.In onesuchmethod,theinterprotondistancerangesareclassifiedbasedonNOEcrosspeak volumesasstrong(1.82.8Å),medium(1.83.8Å)andweak(1.85.0Å).Tominimise inaccuracies, conservative upper and lower bound distance restraints are applied, wherebythelowerboundrestraintsaresettoavaluedeterminedbythesumofthevan derWaalsradii(1.8Å)[241,258].Theinterprotondistance(r ij )betweenprotonsiandj isthencalculatedusingthefollowingequation[255]:

1/6 A()I  rij =    Iij  whereIij istheobservedpeakintensityforthecouplingbetweentheprotonsandA(I)is anintensityproportionalityfactor,calculatedusingthefollowingequation:

 I − Is  A()I =  []A()()I w − A Is + A()Is I w − Is  wheretheaverageofthe10weakestNOEintensities A(Iw)isequalto: 6 A(I w)=(5.0Å) Iw andtheaverageofthe10strongestNOEintensities A(Is)isequalto: 6 A(I s)=(1.8Å) Is

55 Chapter3–NuclearMagneticResonance

ThesecalculationscalibratetheweakestNOEintensitiestoacorrespondingdistanceof 5.0Å,andstrongestto1.8Å,inordertodetermineintensitydependentproportionality factorsfortheremainingpeaks.

When employing ARIA methodology, an additional error estimate ( r) is used to determinetheupper(U)andlower(L)boundsforthedistances[255,259]:

U=r ij +r

L=r ij r

Ratherthanusingapercentageofthedistancer ij , risbestdeterminedfromthesquareof thecalibrateddistances,astheerrordependenceofdistancerestraintsisnotlinear.The errorestimateishenceexpressedusingasecondorderpolynomial[259]: 2 r=0.12xr ij ThisisonlyoneofmanyfunctionalmethodsavailablewhenusingARIA[259,260].In most cases altering the restrictiveness of the bound of r ij does not greatly affect the outcomeofthepeptidestructures[255,261]. 3.1.8.2 AmbiguousNOEs The probability of NOE crosspeak overlap in a NOESY spectrum increases with molecularsize,asdoestheprobabilityofcoincidentalchemicalshifts.InpeptideNMR, thisleadstoadegreeofambiguitywhenassigningNOEresonances.Insuchcaseswhere one crosspeak could be due to a number of possible correlations, the signal intensity cannotbedirectlyconvertedintoadistancerestraint.Thoughalloftheprotonchemical shiftsmaybeassigned,allpossiblecrosscouplingsmustbetakenintoaccounttoensure acompletederivationofthe3Dpeptidestructure[262].

56 Chapter3–NuclearMagneticResonance

Generally, the majority of the assigned crosspeaks in the NOESY spectrum are unambiguous.So,whenstructuralcalculationsareperformedinaniterativeprocess,only theunambiguousdistancerestraintsareusedinthefirstiteration.Theseinitialstructures give an indication of interproton distances throughout the entire peptide structure. Dependingontherangeofconformationsproduced,someambiguitymayberesolvedas only1ambiguousinterprotondistancemaybestructurallyallowed.Witheachiteration, thestructurescanbecontinuouslyrefinedinthisway,improvingtheresultantstructures [262,263].Insomecases,violationsofdistancerestraintsmayresultdependingonthe initialassignmentoftheNOESYspectrum.Additionally,entirelydifferentstructurescan resultdependingonthevalidityoftheNOEsassigned.Intheseinstances,violationsto distance restraints or incorrect assignment of resonances require reassignment of the NOESYspectrum[259,264]. AmbiguousNOEsmaynotneedtobeassignedtooneprotonpairincaseswherecross peakvolumesaretheresultofmultiplecontributingNOEinteractions,thesumaveraging method can be employed [262, 265]. Given the NOE distance dependence and the isolatedspinpairsapproximationarebothestablished[255],anambiguousNOEintensity

(I xy )isdependentonthesumoftheinversesixthpowerofeachcontributinginterproton distance:

Nδ −6 Ixy ∝ ∑ ra a=1 where arunsthroughallN δcontributionstoNOEcrosspeakintensity,atfrequenciesx th andy,andr aisthedistancebetweentwoprotonstothe a contribution.Thismeansthe NOEcrosspeakcorrespondstoasummeddistance(D),relativetothenegativeinverse sixthpoweroftheNOEcrosspeakintensity:

−1/6 Nδ  −6  D ∝ ∑ra   a=1 

57 Chapter3–NuclearMagneticResonance

So, the sum of the volumes of each contributing peak is summed to give the total intensityoftheambiguouscrosspeak.Thisresultsinanumberofconstrainedr avalues sothattheequationisfulfilled.ThismethodofambiguousNOEassignmentgenerallyis less accurate, though it allows all possible interproton distances from NOEs to be expressedinthefinalstructures[255,262]. 3.1.8.3 Stereospecificassignment The methylene protons of many amino acid sidechains exhibit unique chemical shifts. Forthisreasonitisnecessarytoallowforstereospecificassignment,toensuredistance restraintsarecorrectlyassigned[261,266,267].Thiscanoftenbeachievedbyassessing the relative NOE intensities of couplings with nearby protons, such as βmethylene protonswithamideandαprotonsignals.Thismethod is also utilised to stereoassign methyl groups on , leucine and isoleucine sidechains [268]. Though this method can be successful, it is often quite difficult to assign, hence alternative automated methods are often used to achieve correct stereospecific assignment. Also in regions whereahighdegreeofmolecularmotionispresent, the chemical shifts of methylene protonscanbecomedegenerate. When using the program ARIA, stereospecific assignment can be achieved by the ‘floating chirality’ method [269]. This method involves assigning stereospecific resonances as proS or proR chirality, and allowing them to swap their assigned chirality. The ‘floating’ between chirality types has an associated ‘improper dihedral’ energyterm.Thechiralityisusuallyresolvedasthestructuresarerefinedoverseveral iterationcycles,toachievetheminimalimproperdihedralenergy[241,270].Inthisway, stereoassignmentisachievedinanautomatedfashion,withoutspecificassignmentofthe resonances. 3.1.8.4 Restrainedmoleculardynamicsandsimulatedannealing Molecular dynamics uses the known physical properties of molecules to calculate the minimalpotentialenergiesofthemolecularstructures.Inthecaseofrestrainedmolecular

58 Chapter3–NuclearMagneticResonance dynamics (RMD), restraints obtained from NMR or Xray crystallographic data are incorporatedintothecalculations[243,261,262].ManytypesofRMDmethodologies exist,allofwhichuseamoleculardynamicsforcefieldtocalculatemolecularpotential energies[264,271273]. Thefundamental lawsof physics involvingthemotions of particles form the basis of RMD calculations. The particles, in this case atoms, begin with an array of random Cartesiancoordinatesandsubsequentvelocities.Therelativepositionsoftheatomsare allowedtoevolvewitheachcalculationstep,eachwithanintrinsicforcecalculatedusing Newton’ssecondlawofmotion:

Fi = mia i whereF iistheforceontheatomi,m iisthemassoftheatomanda iistheacceleration.

Bothforceandaccelerationareexpressedasvectorsquantities.TheforceF iontheatom canalternativelybecalculatedfromthederivativeofitspotentialenergy(E)[224].Also, the atomic acceleration ai with respect to time t i, can be expressed as the second derivativeoftheatomiccoordinateri: 2 dE d ri = mi 2 dri dt i The equation can be integrated through small, successive time steps to determine the relativepositionsandvelocitiesofeachatom[224,274].Theinitialstartingstructuresfor RMDcalculationsmaybeunconventional,althoughgenerallystartingstructuresarebuilt using template structures, molecular modelling and by means of distance geometry algorithms[241,258,273,275,276].TheresultofaRMDcalculationisexpressedusing atotalpotentialenergyterm(E total ).E total dependslargelyontheprotocolandrestraint inputsdescribedandhowwelltheycanbeusedlocatetheglobalminimumonapotential energy surface. The total energy of a structure is made up of the following potential energyterms[224,244,275]:

59 Chapter3–NuclearMagneticResonance

Etotal =E bond +E angle +E dihedr +E improper +E vdW +E coulomb +E NOE where the geometric energy terms E bond , Eangle and Edihedr correspond to bond lengths, bondanglesanddihedralanglesrespectively,andEimproper isthetermcorrespondingto planarityofaromaticrings,andchiralityofstereocentres(seesection3.1.8.3).E vdW and

Ecoulomb aretheenergytermscorrespondingtoVanderWaalforcesandCoulombicforces respectively.Thefinalterm,E NOE ,correspondstoenergiesoriginatingfromNOEderived distancerestraints[224,275].Ifanyofthetermshavehighenergies,thiscouldindicate inconsistencies in the RMD protocol or NMR derived data. The selection of several possible minimised structures on the potential energy surface is accomplished by a randomarrayofinitialstartingstructuresthatincorporate the NMR derived restraints. Thecalculationsrunovermanystepstoensuretheglobalminimumcanbedetermined [224,241,258,264]. AfterRMDcalculations,simulatedannealing(SA)calculationsareperformedtofurther minimise the range of structures produced, to locate the global minimum [264]. SA works by simulating a molecule at a very high temperature (i.e. 2000 K), which drastically increases the kinetic energy of the system. The excess kinetic energy is removedfromthesysteminastepwisefashion,bycouplingtoaconstanttemperature ‘heatbath’[258].Thiseffectivelysimulatesthemoleculecoolingataslowrate,untilit reachesroomtemperature(unlessotherprotocolsareapplied).Thismethodologyisused to locate the global minima that may not be found using RMD alone. The overall outcomeisimprovedrepresentativepeptidestructures[221,241,264]. RMDand SA protocols canbe adjusted prior tocalculation, to improve the potential energy and quality of the final structures. In some cases, it proves advantageous to increasethetheoreticaltemperaturewhenperformingRMDcalculations,asitmayresult inlessviolationsofNOErestraintsinthefinalstructures[244].Additionally,startingSA calculations from higher temperatures and using a greater number of steps in the ‘cooling’phasecanimprovethequalityofthefinalstructures[277].

60 Chapter3–NuclearMagneticResonance

3.1.9 Structurequality Oncetherepresentativepeptidestructureshavebeenproduced,itisimportanttoanalyse thequalityofthestructures.ThisgivesanindicationofhowconsistenttheNMRinputis withregardstothefinalstructures,andalsoprovidesinsightintoapeptide’ssecondary structureandflexibility.Oneofthefirstindicationsisthenumberandsizeofstructural violationsfromNMRderivedrestraints.Inanidealcalculation,allinterprotondistances shouldbelessthanorequalto0.3Åfromthespecifieddistancerestraints[224].Large violationsposeasignificantproblemandtendtoindicateanincorrectassignmentofthe NOESYspectrum[244].Inmostcasestheviolationscanbeeliminatedbyreassigning the NOESY spectrum and running new RMD and SA calculations. In this way many RMD and SA calculations are repeated (with alterations to the NMR input) for the peptide,eventuallyproducingstructureswithaminimalamountofstructuralviolations. The precision of the final structures is expressed statistically by a rootmean square standarddeviationoftheaveragestructuralgeometry.Forthefinalstructureswhichare well converged and satisfy theNMR restraints, geometries generallyhave aRMSDof lessthan2Å[224].Thisindicatesahighdegreeofprecisionforthefinalstructures.The RMSD is generated by superimposing the centroids of all of the final structures and comparingtherotatedstructureswithastandardaveragestructure(idealisedgeometry). Thisisexpressedbythefollowingequation:

N 1 2 RMSD = ∑(ri − r'i ) N i=1 where N is the number of atoms, r i and r’ i represent the atomic coordinates of the candidateandreferencestructuresrespectively[224].Thefamilyofresultantstructures arerotatedindividuallytobestfitthestandardstructure.Thestandardstructureisoften theresultantstructurethatistheclosesttotheaveragegeometryofalloftheresultant structures. In cases where parts of the peptide have highly consistent geometry, those segmentsofthepeptidestructuresaresuperimposedtoprovideabetterrepresentation. So,whenanalysingfamiliesoffinalstructures,RMSDanalysisisperformedacrossthe

61 Chapter3–NuclearMagneticResonance entire length of the peptide, as well as selected segments. Large RMSD values often indicateerrorsintheNMRderivedrestraintsoralackofNOEsobservedintheNOESY spectrum,asaresultofhighlydisorderedpeptidestructure[241,278]. Structure quality is also examined by observing the dihedral angles of the resultant structures.Thisisquantifiedbycalculatingtheangularorderparametersforafamilyof structures,expressedbytheequation;

N 1  x  S(αi ) = ∑αi  N  x=1  whereS(α i)istheorderparameterofthedihedralangleα iofresiduei,andxcorresponds to the individual structures, from 1 up to N [279]. These indicate the distribution of dihedral angles within a family of final structures. Angular order parameter (S) values range from 0 for randomlydistributed dihedrals to 1 for those with no deviation from their idealised geometry. Angular order parameters are commonly used to assess the backbonedihedralanglespsi(ψ)andphi( φ),whereψisdefinedbyN i,αC i,C’ iandN i+1 and φ is defined by C’ i1, N i, αC i and C’ i (figure 3.13) . Backbone dihedral angles are consideredtobewelldefinedwhereS>0.9,correspondingtoastandarddeviationof24° [279,280]. R H H O R H φφφ ψψψ Ni C'i C'i-1 αααC Ni+1

O R H H O Figure3.13Thedihedralangles φ( blue) and ψ(red).Inthisrepresentationboth φ and ψareequalto180°. Onlycertainψand φanglesarestructurallyallowed.Thisisduetostericandtorsional strain within the peptide structure [281]. The combinations of dihedral angles, when plotted againstone another ina Ramachandran plot,provideanindicationof the local secondarystructure(figure3.14).TheRamachandranplotcategorisesthedihedralangles

62 Chapter3–NuclearMagneticResonance into density regions of defined secondary structure, from known protein and peptide structuraldata.Over80%ofthedihedralanglecombinations will fall within the high densityregions,termedfavourableregions.Theremainingdensitiesarecategorisedinto allowed,generous,anddisallowedregions.Generally,theψand φanglesofGlyandPro residues are excluded from Ramachandran plots due to their atypical dihedral angles [282].

Figure3.14 Ramachandranplot.DihedralanglecombinationsforαhelicesarelabelledasfavourableA, alloweda,andgenerous~a.Asimilarnotationisusedforβsheets(B)andlefthandedαhelices(L). Disallowedregionsareshowninwhite. Typically, high quality structures will exhibit welldefined dihedral angles in the favourableandallowedregionsofaRamachandranplot.GenerallyRamachandranplots are generated for an entire family of final structures, as well as the averaged dihedral anglecombinations[282]. In conclusion, peptide structuresof high quality will have geometries that are closeto idealised geometries, low potential energies, and well defined regions of secondary structure[224].

63 Chapter3–NuclearMagneticResonance

3.1.10 Solventselection Many neuro and antimicrobial peptides are active on a biological membrane surface [283287].Inwater,thecarbonylandamidegroupsofpeptidestendtoformhydrogen bonds with water molecules, disrupting secondary structure, and resulting in random peptide conformations. In contrast, NMR experiments of peptides in lipid bilayers or vesiclesareoftendifficulttoresolve,astheslowtumblingtimescausesignificantline broadening [288]. So, when performing NMR experiments with biologically active peptides, it is important to select a practical solvent system that mimics the chemical environmentatamembranesurface. Membranemickingsolventsystemsaregenerallycomposedofamixtureoforganicand aqueoussolvents.Somecommonlyusedsolventsystemsaredeuteratedtrifluoroethanol (TFE)inwater,andmicellesofdeuterateddodecylphosphotydylcholine(DPC)inwater. These solvent systems have been shown to induce intermolecular hydrogen bonds, producing peptide structures that would be observed at a cellular membrane surface. Additionally, temperature and pH are important factors to consider when preparing a membranemimickingsolventsystem[48,289291]. An artefact of using any aqueous solution (unless it is entirely deuterated) is a large protonsignalinanNMRspectrumduetowater.Thissignalismagnitudeslargerthanthe peptide proton signals. Additional alterations to NMR pulse sequences, such as presaturation,canbeusedtosuppressthewatersignal.Thisinvolvesanadditionallow intensitycontinuous rf pulseduringtherelaxationdelayatafrequencycorrespondingto waterprotons[224,292294].AdditionalalterationstopulsesequencessuchastheWET and WATERGATE sequences also exist as an alternative method of suppressing the watersignal[295298]. LargealcoholswithalowpolarityandbasicitysuchasTFEinducesecondarystructure ofpeptidesbyreplacingwaterintheouterhydrationshell.Theproducedeffectinvolves theformationofintramolecularhydrogenbonds[290,299].TFEalsohasamuchlower dielectric constant than water. This enhances intramolecular electrostatic interactions.

64 Chapter3–NuclearMagneticResonance

ThebulkyCF 3substituentstericallyhinderswatermoleculesfromreachingthepeptide backbone. Relatively, a greater number of water molecules are displaced by TFE molecules in the outer hydration shell and released into the bulk solution. Hence the interactionisalsoentropicallyfavoured[289]. Larger alcohols have a greater potential to stabilise secondary structure than small alcohols such as methanol and ethanol [300]. The tendency for fluorinated alcohols to form micellelike aggregates in solution enhances this stabilising effect [301]. These aggregates form minute regions of low polarity that may further enhance secondary intramolecularinteractionswithinapeptide. AqueousTFEisoftenrecognisedasahelixinducingsolvent,thoughSönnischen etal . demonstratedthatthisonlyoccurredinpeptidesthathadregionswiththepropensityto formhelices[302].Inadditiontothesestudies,aqueousTFEsolutionshavebeenshown toproduceβsheetandβturnsecondarystructureinpeptides[289,303].Thesefactors suggestthataqueousTFEsolutionsdonotforcepeptidestoadoptsecondarystructure, but merely induceitwhere thepropensity exists. Despite this, muchdebate still exists abouttheviabilityofaqueousTFEsolventsystems.InsomecasesaqueousTFEhasbeen shown to produce helical structures in peptide and protein regions that predominantly existasβsheets[299,304,305]. Theuseoffluorinatedorlargealcoholshasbeenshowntodisruptthesecondary,tertiary andquaternarystructureofproteinsinsolution,bydisruptinghydrophobiccoreregions. Peptides however, are generally too small to have hydrophobic cores within their structure. Hence fluorinated alcohols such as TFE in aqueous media still remain a practicalmembranemimickingsolventsystem,forthestudyofpeptides[300,306].

65 Chapter3–NuclearMagneticResonance

3.2 SolidstateNMRspectroscopy 3.2.1 Chemicalshiftanisotropy SolutionstateandsolidstateNMRdonotdifferduetothespecificphaseofasample, butthedynamicsofthenucleiobservedunderanappliedmagneticfield.Solutionstate NMR involves rapidly tumbling molecules, with nuclei that do not have any specific orientation in three dimensions relative to an applied magnetic field. The resultant chemicalshiftisaveragedtoanisotropicvalue.InsolidstateNMR,moleculesarerigid ortumbleatareducedrateandthenucleihaveanorientationdependentchemicalshift. Nuclei in different orientations experience different degrees of electronic shielding relativetotheappliedmagneticfield.Theresultisarangeofchemicalshiftsignalsfora givennucleus,correspondingtoeachuniqueorientation,andanisotropicchemicalshifts areobserved.Theextentofthis‘chemicalshiftanisotropy’(CSA)observedisdependant on many factors, such as molecular motions, local molecular structure, and crystal packing[307]. The3dimensionalnatureof the electronic shielding experiencedbya nucleus causing CSAisbestdescribedusinganellipsoidrepresentationofthechemicalshifttensorwith principletensorelements,σ11 ,σ 22 ,andσ 33 (figure3.15).Theobservedchemicalshiftfora specific nuclear orientation is related to the length of a vector, from the centre of the ellipsoidtotheouteredge,parallelto B0 [224].Thedirectionofthevectorrelativetothe principletensorelementsisdefinedbytheanglesθand φusingasphericalcoordinate system. The orientation of the chemical shift tensor for a given nucleus relative to its localmolecularstructurehasbeendefinedformanysystems[307].Ifthevaluesofthe3 principle tensor elements are defined, the orientations of molecules or molecular constituentscanbedeterminedwithrespecttotheappliedmagneticfield[224,307].

66 Chapter3–NuclearMagneticResonance

Figure3.15 Theellipsoidrepresentationofthechemicalshifttensorandtheprincipletensorelementsσ 11 ,

σ22 ,andσ 33 .Differentorientationsofthetensorrelativetotheappliedmagneticfield B0aredescribedby theanglesθand φandresultindifferentchemicalshiftsvaluesforthenucleus.Figureadaptedfrom[224]. In solidstate NMR, the spectra observed are highly dependant on the nature of the crystalline phase. In a single crystal, a single chemical shift peak would appear for a smallnumberofuniquenuclearorientations.Inapowderedsample,anoverlayofmany chemicalshiftsignalsisobservedfromavastnumberofnuclearorientations.Theresult isabroadNMRsignalwithacharacteristiclineshape,recognisedinsolidstateNMRas a‘powderpattern’. The nature of a powder pattern is related to the principle tensor elements for a given arrangementofnuclearorientations,andtheCSA(σ)ismeasuredsuchthat:

σ=σ 33 –½(σ 11 +σ 22 ) where σ, σ 11 , σ 22 , and σ 33 are in parts per million (ppm). Molecular motions, to an extent, cause of averaging of the CSA (σ). In the case of molecules in a liquid crystalline phase, such as phospholipids in hydrated bilayers, rapid axial rotation of moleculescanoccur[307,308].Thetensorelementsorthogonaltotheaxisofrotation

(σ 11 andσ 22 )areaveragedanddescribedbyσ ┴;theremainingtensorelementparallelto

67 Chapter3–NuclearMagneticResonance

theaxisofrotation(σ33)isdescribedbyσ║ [307].Figure3.16illustratesthetheoretical powderpatternsfornucleiwithasymmetricCSA,andaxiallysymmetricCSA.

A NOTE: This figure/table/image has been removed to comply with copyright regulations. It is included in the print copy of the thesis held by the University of Adelaide Library.

Figure3.16Theoreticalpowderpatternforanucleuswithasymmetricchemicalshiftanisotropy(left),and withaxiallysymmetricchemicalshiftanisotropy(right).Basedonafigurefrom[307].

Theisotropicchemicalshift(δiso)canbecalculatedfromthepowderpatterns,suchthat theCSAisaveraged:

δiso=⅓(σ11+σ22+σ33) Insomecases,theCSAlineshapecanbenarrowedtodeterminetheisotropicchemical shiftofanucleus.Thisisachievedviaspinningasampleatarapidrate(170kHz)atan angle of 54.44° (magic angle) relative to the applied magnetic field. This method of narrowingtheCSAisknownasmagicanglespinning(MAS)[309]. 3.2.2 Quadrupolarinteractions A nucleus with an asymmetric arrangement of nucleons has a spin I > ½ and a non sphericalchargedistribution.Theresultisanucleuswithaquadrupolarmomentthatis dependant on how much the nuclear charge distribution deviates from spherical symmetry.Aquadrupolarnucleusisgreatlyaffectedbythelocalelectricalfieldgradient generatedfromsurroundingcharges.Aquadrupolarnucleuscanorientitself3possible

68 Chapter3–NuclearMagneticResonance orientationsrelativethesurroundingelectricalfield gradient, resulting in spin states of differingenergies,asillustratedinfigure3.17.

Figure 3.17 A quadrupolar nucleus (black), in high and low energy orientations relative to the local electricalfieldgradient(squares).Figureadaptedfrom[251]. Theextentofelectronicshieldingexperiencedbyaquadrupolarnucleusinthepresence of a magnetic field is dependent on the orientation relative to the direction of the magneticfieldandtheelectricalfieldgradient.Theelectricalfieldgradientisrepresented byatensor V, thatistheincludedintheHamiltonian(ĤQ)thatdescribesthequadrupolar interaction: eQ Hˆ = hI• V• I Q 2I(2I −1) where h is Planck’s’ constant, eQ is the quadrupole moment for a single nucleus with spinI,and I istheangularmomentumoperator[224]. Whenamagneticfieldisapplied,nucleiareorientedin2I+1stateandthetransition energiesbetweenstatesaredegenerateintheabsenceofquadrupolarinteractions.Fora 2 Hnucleus(I=1),3states(m=1,0,+1)existand2degeneratetransitionenergies(ν 0) exist due solely to Zeeman interactions. When an axially symmetric electrical field

69 Chapter3–NuclearMagneticResonance gradientispresent,asfor2Hina2HCbond,thequadrupolarinteractionsaltertheenergy levels of the states equally and in the same direction. In most cases the Zeeman interactionsarelargerinmagnitudethanthequadrupolarinteractions[224],asshownin figure3.18. A NOTE: This figure/table/image has been removed to comply with copyright regulations. It is included in the print copy of the thesis held by the University of Adelaide Library.

Figure3.18Thetransitionsenergies(ν0)betweenspinstates(m),forapairofnuclearspins(I=1)dueto Zeemaninteractionsalone,andtheperturbationinenergies(ν/2)duetoquadrupolarinteractions.Figure adaptedfrom[224]. In a single crystal, where 2HC bonds are aligned in one unique orientation, adoublet correspondingtothe2transitionswouldbeobservedintheNMRspectrum.Thesplitting ofenergiesbetweenthetransitionsis 3  2qQe  ν =   2 −1)θ(3cos 4  h  where e2qQ is thequadrupolarcoupling constant and θisthe Euler anglebetween the principleaxisofthequadrupolarnucleusandtheappliedmagneticfield.Inapowdered sample,withquadrupolarnucleiinseveralorientations,theobservedNMRspectrumis anoverlapoftwoaxiallysymmetricpowderpatterns,knownasa‘Pakedoublet’(figure 3.19)[224,310].

70 Chapter3–NuclearMagneticResonance

Figure3.19 CharacteristicPakedoubletfromapowderedsampleofaquadrupolarnucleus(I=1). Thequadrupolarsplittingfrequencyisthespacingbetweenthe2maximacorresponding towhereθis90°.Forarigiddeuteriumnucleus,thequadrupolarsplitting(ν 90 )between thecentralpeaksis 3  e2qQ  ν 90 =   4  h  andthesplittingbetweentheoutermoststeps(ν 0)is 3  e2qQ  ν 0 =   2  h  Molecular motions cause averaging of the quadrupolar splitting energies (ν). This observedaveragingofνcanindicatethemobilityofaparticularquadrupolarnucleus [224].Inmostcasesquadrupolarinteractionsarethemostdominantinteractionsobserved in the NMR spectra. They are used to indicate regions of flexibility and structural symmetrywithinamoleculeofinterest[311313].

71 Chapter3–NuclearMagneticResonance

3.2.2 Dipolarinteractions Everynuclearspinpossessesadipolemoment,generatingalocalmagneticfieldthatin turnaffectsthespinsofothernuclei.InasystemwheretwounlikenucleiwithaspinI= ½exist,dipolarinteractionscauseachangeinthesplittingofenergiesrelativetowhatis observedduetoZeemaninteractionsalone(figure3.20).

Figure3.20 Thetransitionsenergies(ν 0)betweenspinstates,fora pairofnuclearspins(I=½)dueto Zeemaninteractions,andperturbations(D/2)causedbydipolarinteractions.Figureadaptedfrom[310]. The dipolar coupling is a thoughspace interaction and the change in the transition energiesisquantifiedbythedipolarcouplingconstantD h γ γ D = 0 i j 2π 2 r 3 wherehisPlanck’s constant, 0isthepermeabilityofavacuum,ristheinternuclear distance,andγdenotesthegyromagneticratiosofnucleiiandj.Insystemsabundantin nucleiwithspinsI=½,dipolarcouplingisthestrongestoftheobservedinteractions.The extentofthedipolarinteractionisverymuchdependantonthedistancebetweennuclei. Hence,internucleardistancescanbeaccuratelydeterminedfromdipolarcouplingsusing solidstateNMR[314]. In many experiments, the effects of dipolar couplings can cause unwanted line broadening,particularlyincaseswhereadilutehalfintegernucleusisanalysedandthe

72 Chapter3–NuclearMagneticResonance sampleisabundantinprotons(I=½).Theseunwantedeffectscanberemovedbyproton decoupling methods, where a strong RF field is applied corresponding to all proton resonancespriortoacquisition.Inthiswaytransitionsbetweenprotonorientationalstates becomerapidandareaveragedtozero.Theprotonsdonotcoupletothedilutespinof interestandonlydipolarcouplinginteractionsbetweenthedilutespinsareobservedin theNMRspectrum[315,316]. 3.2.4 SolidstateNMRofphospholipidmembranes Biologicalmembranesplayanessentialroleatthecellularlevelforalllivingorganisms. Theyactasaboundary,betweentheintracellularandextracellularmatterandalsocan formsubcellularcompartmentsandorganelles[317].Manyimportantcellularprocesses occur at the membrane that would otherwise not be feasible in purely aqueous media [318]. Additionally, ions, oxygen, water and othernutrients can flow across biological membranes via passive diffusion [9]. Biological membranes are largely comprised of proteins, steroidal compounds, and phospholipids [319]. The phospholipids in membranes are amphipathic in nature and selfassemble to form bilayers, where the phosphateheadgroupsfaceoutwardformingahydrophilicsurface,andthehydrophobic tailsfaceinwardformingahydrophobiccore[9,317,320],.Inthiswayeachpolarface of thebilayer is exposedtoaqueous mediaand thelipidsremain soluble, as shown in figure3.21. A NOTE: This figure/table/image has been removed to comply with copyright regulations. It is included in the print copy of the thesis held by the University of Adelaide Library.

Figure3.21Schematicdiagramofaphospholipidbilayer.Basedonafigurefrom[9]. In 1972, S. J. Singer and G. Nicolson devised the ‘fluid mosaic’ model for biological membranes, that describes them assembling themselves into a thin planar fluid [321].

73 Chapter3–NuclearMagneticResonance

Ratherthanphospholipidsstayingrigidinoneplace,theyeasilymovelaterallyalongthe planeofthemembrane.Themodelincludesamphipathictransmembraneproteinswithin themembranebilayer,withpolarregionsfacingtowardtheoutersurfaceofmembranes, andthenonpolarregionsintegratedintothehydrophobiccoreofmembranes.Thefluid mosaic model supersedes the DavsonDanielli model that describes globular proteins existingonthehydrophilicsurfacesofbiologicalmembranes[322].Itisthemostwidely acceptedmodelforbiologicalmembranestothisdate[9,317]. A common group of phospholipids that exist in eukaryotic membranes are glycerophospholipids; these are biosynthesised in the intracellular fluid adjacent to the endoplasmicreticulumfromglycerolandfattyacids.Theirgeneralstructureiscomposed of a glycerol backbonewith aphosphateheadgroupboundat the C3positionandtwo acylchainsboundattheC1andC2positionsviaesterbonds[9].Theselipidscanself assembletoformbilayersundercertainconditionsandareusedasmodelsofbiological membranes. Some common glycerophospholipids used are dimyristoyl phosphatidylcholine (DMPC) and dimyristoyl phosphatidylglycerole (DMPG). These phospholipidsarezwitterionicandanionicrespectively.

Figure 3.22 Glycerophospholipids usedin model membranes. (a) DMPC(zwitterionic),and (b) DMPG (anionic). ThepropertiesofmodelmembraneshavebeenstudiedusingtechniquessuchasXray diffraction, neutron scattering, solidstate NMR, surface plasmon resonance, dual

74 Chapter3–NuclearMagneticResonance polarisation interferometry (DPI) and quartz crystal microbalance with dissipation monitoring(QCMD)[323326]. The natureofaphospholipidmixturevariesdependingontheconcentrationandchargeof phospholipids,levelofhydration,pH,temperature,andthepresenceofcationsaswellas othercompoundsorsolvents.Thesefactorsinturnaffectthephaseandarrangementof the phospholipids within the sample and the NMR spectra observed. In some cases aligned bilayers are prepared between thin glass plates. Alternatively, lipid vesicle samplescanalsobeprepared,aswellasdrylipidsamples[327,328].Anovelmethodto observephospholipidmembranesbysolidstateNMRistousehydratedmultilamellar vesicles (MLVs). MLVs are lipid vesicles containing many bilayers separated by hydrated interlamellar spaces arranged in an ‘onion like’ structure. In this case, the phospholipids are unoriented with respect to the applied magnetic field (figure 3.23) [329,330].WhenpeptidesareaddedtoMLVsamples,theyinteractwiththehydrophobic interiors of bilayers, the outer hydrophilic surface, or both; depending on their size, conformation, and hydrophobicity. The nature of these peptidemembrane interactions areusedtodescribeapeptidesmodeofaction[112,331,332].

Figure3.23 The‘onionlike’structureofamultilamellarvesicle(MLV):hydrophilicmoleculesoccupy theaqueousinterlamellarspacesandhydrophobicmoleculesoccupythehydrophobicinteriorsofthe bilayers.

75 Chapter3–NuclearMagneticResonance

3.2.4.1 31 PNMRofphospholipidmembranes Phospholipidsamplesareabundantin 31 Pnuclei(100%innaturalabundance),thus 31 P NMRisemployedtoanalysebothbiologicalmembraneandmodelmembranemixtures. Thecharacteristiclineshapesofthe 31 PNMRspectraaredependantonthenatureofthe phospholipidmixtures.Driedphospholipidsamplesshowabroadcharacteristiclineshape withaCSAofapproximately190ppm[333,334](figure3.24a).Hydratedsamplescan spontaneouslyformphospholipidbilayers,withphospholipidsthataremoremobileand abletorotateabouttheirprincipleaxes(figure3.24c).Consequently,the 31 Pspectraof hydratedphospholipidsampleshaveCSAsintheorderof50ppm(figure3.24b)[328, 333,334]. (a) (b) (c)

Figure3.24 Theoretical 31 Ppowderpatternsof (a) adryphospholipidsample,(b) ahydratedphospholipid sample,and (c) theprincipleaxisofrotationofDMPC. Hydrated phospholipid samples show some degree of averaging of the CSA. The principletensorelementsapproximatelyperpendiculartotheaxisofrotation,σ 22 andσ 33 are averaged and described by the element σ ┴. The remaining tensor element σ 11 is approximatelyparalleltoaxisofrotation,isaveragedanddescribedusingtheelementσ ║. TheCSAsoftheresultant 31 Pspectraaregreatlyreducedrelativetodrysamples,andthe

CSA,σ,canbemeasureddirectlyfromthedifferencebetweentheσ ┴andσ ║elements

76 Chapter3–NuclearMagneticResonance of the axially symmetric powder pattern [333, 335]. The presence of peptides in lipid samples can perturb the phospholipid headgroup rotation and mobility and lead to changesinthe 31 PspectralineshapeandtheobservedCSA[328,336,337].Inthisway 31 PNMRisusedtoanalyseofthemobilityandordering of phospholipid headgroups withinbilayers. Theanisotropic 31 PNMRspectraofphospholipidscanhavelinewidthsofupto~190 ppmdependingonthephaseofthesample,yeteachnucleusmustbeirradiatedequally.

Forphospholipidsamples,thespinlatticedecaytimes( T1)aretypicallyfargreaterthan theveryshortspinspindecaytimes( T2).Whenacquiringa1DNMRspectrumusinga single90°pulse,theNMRprobeandreceiverhasarelativelylongringdowntime.The residualringdownappearsintheFIDsignal,distorting the Fouriertransformed NMR spectrum[333,338].Toovercomethis,anisotropicphospholipid samples are acquired usingaHahnspinechopulsesequence(figure3.25).

Figure3.25 ThegeneralpulsesequenceofaHahnspinechoexperiment. TheHahnspinechopulsesequencediffersfromatypical1DNMRasanadditional180° pulseisinsertedintothesequence,aswellastwovariabletimesτ,betweenpulsesand theFIDacquisition.Thefirst90°pulsepushesthenetmagnetisationintothexyplane that decays in amplitude depending on T2, over a period τ. The following 180° pulse invertsthemagnetisationandrefocussesitwithinthexyplane,overasecondperiodτ. TheresultantFIDsignalisthenacquiredasthefirst‘echo’oftheinitialsignalfromthe 90° pulse. In the absence of transverse relaxation, the signal after 2τ is the same magnitudeasthefirstinitial90°pulse.Also,iftheperiodτisgreaterthantheringdown timeoftheprobe,thentheresidualringdownwillnotappearintheFIDsignal[333,338 340].Othercomplicationsin 31 PNMRspectracanarisefromdipolarcouplingbetween

77 Chapter3–NuclearMagneticResonance phosphorousnucleiandprotons,leadingtoadditionallinebroadening[340,341].These dipolar couplings are typically larger than the CSA and can be removed via proton decouplingmethods(seesection3.2.3). 3.2.4.2 2HNMRofphospholipidmembranes Deuterium has a very low natural abundance (0.015 %), hence deuterium labelled phospholipids are chemically (or biochemically) synthesised for the purposes of NMR analysis. In the case of solutionstate 1H NMR of peptides, entirely deuterated phospholipids are often used because 2H resonances do not appear within the 1H frequencyrange[291,342].Conversely,solidstate 2HNMRexperimentscanbeusedto measure the dynamics and ordering of selected regions of the phospholipids, such as phosphateheadgroups,glycerolbackbones,andacylchains. DeuteriumnucleihaveaspinI=1andthushaveaquadrupolemoment.Themagnitude of quadrupolar interactions are in the order of approximately 167 kHz. The 2H NMR spectraofunorienteddeuteriumlabelledcompoundsshowacharacteristic‘Pakedoublet’ foreachuniquetypeofdeuteriumnucleusinthesample(seesection3.2.2).Inthecaseof phospholipids with deuterated acyl chains, a Pake doublet is observed for each unique

CD 2/CD 3groupalongthelengthoftheacylchain.Inhydratedsamples,thequadrupolar spitting values (ν) become averaged to a degree, depending on the mobility of the

CD 2/CD 3groups.TheCD 2groupclosesttothephospholipidheadgroupisgenerallythe least mobile and produces a Pake doublet with a large ν. The terminal CD 3 group generallyisthemostmobileandthusproducesaPakedoubletwithamuchsmallerν.It isgenerallyassumedthattheνvaluesdecreasesequentiallyfromtheCD 2 closesttothe phospholipidheadgrouptotheterminalCD 3group,asaresultofincreasingacylchain mobility[343,344].Sothe 2HNMRspectraofphospholipidsthatareentirelydeuterated along their acyl chains are effectively a superimposition of many Pake doublets. Each contributing Pakedoublet has aquadrupolar splittingvalue, ν, correspondingto each positionontheacylchain(figure3.26).

78 Chapter3–NuclearMagneticResonance

(a)(b)

O H H2C C CH2 O O

O O 1 2 3 4

5 6 7 8 9 10 11 12 13 14 2 Figure3.26(a)ThedeuteratedacylchainregionofDMPC(DMPCd54 ). (b) A HspectrumofDMPCd54 MLV adapted from [82]. The numbers on the spectrum indicate the maxima of each contributing Pake doubletcorrespondingtotheacylchainpositionsoftheCD 2/CD 3groups.Thecentralmaximumisdueto residualdeuteriumfromwater.

TheindividualquadrupolarsplittingsfromeachcarbondeuteriumbondofCD 2/CD 3can be difficult to resolve, particularly when splitting values almost coincident. However, deconvolutionoftheoverlayedPakepowderpatternscanbeachievedby‘dePaking’the 2H NMR spectrum. The dePaking method involves fitting each spectrum to locate the splittingenergiesfromeachPakedoubletcorrespondingtotheEulerangles(θ)of0°and

90°(ν 0andν 90 respectively,seesection3.2.3.1)[313,345,346]. The averaging of quadrupolar splittings (ν) from each carbondeuterium bond of

CD 2/CD 3groupsalongtheacylchainsisquantifiedbyanorderparameterS CD asfollows: 3  e2qQ  ν =  SCD and 4  h 

79 Chapter3–NuclearMagneticResonance

2 SCD =½<3cos θ1> where θ is the angle between the direction of the CD bond and the applied magnetic field, the brackets represent a timeaveraged function, and the quadrupolar coupling constant(e 2qQ)is170kHz,asderivedfromdeuteratedparaffinhydrocarbons[347].In hydrated bilayer samples, the S CD values of deuterated acyl CD 2/CD 3 groups decrease sequentially from the headgroup toward the acyl chain termini, in proportion to the observedνvalues.TheS CD valuesareplottedagainsttheacylchainCD 2/CD 3positions inanS CD orderprofile[312,313]. Theadditionofpeptidestodeuteratedphospholipidsamplescanaltertheobservedνin 2H NMR spectra relative to those observed without the addition of peptides (control samples).Ifapeptideinsertsitselfperpendiculartotheplaneofthemembrane,suchasa pore forming antimicrobial peptide, then a decrease in the mobility of the acyl chains 2 tendstooccur.Thiscausesgreaterobservedνinthe HNMRspectraandgreaterS CD values in the S CD order profiles [348, 349]. If a peptide interacts largely with the phospholipidmembranesurface,anincreaseinthelateraldistancebetweenphospholipid headgroupstendstooccur.Withthelipidsfurtherapart,thereisagreaterfreedomfor acylchainmovementandlowerS CD valuesareobservedintheS CD orderprofiles[350, 351].Amixtureofhigherandlowerobservedνvaluesrelativetothecontrolmayalso occurininstanceswherepeptidesarepartiallyinsertedintothemembrane[82]. The 2H NMR of acyl deuterated phospholipids have a broad line width. Spectral distortionscanoccurwhenacquiringspectraduetolongringdowntimesandshortspin spin relaxation times, in a similar fashion to 31 P NMR experiments. In the case of 2H NMR experiments of anisotropic samples, a quadrupolarecho pulse sequence is used (figure3.27).

80 Chapter3–NuclearMagneticResonance

Figure3.27 Thegeneralpulsesequenceofaquadrupoleechoexperiment[313,352]. ThepulsesequenceissimilartothatofaHahnspinechopulsesequence.However,the secondrefocussingpulseisa90°pulseratherthan180°.After2τperiodstheentireFID signalismeasured,withthenetmagnetisationrotated180°fromitsinitialalignmentin thezaxis[313].Therearesomevariationstothequadrupolarechopulsesequence:in somecasesextrapulsesandτperiodsareaddedthepulsesequencestoavoidproblems associatedwithdeadtime[352].Thepulsesequenceisappliedtoremoveanyresidual ringdownfrominterferingwiththeresultantFIDsignal,inasimilarmannertotheHahn spinechopulsesequence(seesection3.4.2.1).

81 Chapter4–Peptideprofilesof Litoriaewingii

Chapter4 ThePeptideprofilesoftheAustralianbrowntreefrog Litoriaewingii 4.1 Introduction 4.1.1 TheAustralianbrowntreefrog Litoriaewingii TheAustralianbrowntreefrog Litoriaewingii ,alsoknownasthe‘whistlingfrog’,isone ofthemostcommonfrogsthroughoutsouthernAustralia.Thefroggrowsupto45mmin bodylength,variesincolourfrompaletodarkbrown(figure4.1),andsomefoundin regionsofVictoriaarepartiallyorcompletelygreen.Thefroginhabitscreeks,marshes, wetlands, and residential areas. The frog is often recognised by its’ distinctive advertisementcallandisalsorenownedforits’swiftabilitytocatchinsectsinmidflight [353].Somecloselyrelatedspeciesare Litoriaparaewingii and Litoriaverreauxii [354, 355].

Figure4.1TheAustralianbrowntreefrog, Litoriaewingii . Thegeographicaldistributionof L.ewingii extendsinanarcfromthesoutherntipofthe Eyre Peninsula in South Australia, through Victoria and Tasmania to the southeast of coastalNewSouthWales[353](figure4.2).ThespecieshasbeenintroducedintoNew Zealand,whereithasestablishedpopulations[356].

82 Chapter4–Peptideprofilesof Litoriaewingii

Figure4.2Thegeographicaldistributionof Litoriaewingii . The varied morphology of L. ewingii populations found throughout southern Australia suggeststhattheirtaxonomicclassificationshouldbesubjecttoreview.Investigatingthe peptideprofilesofgeographicallyisolatedpopulationsmayprovideevidencetomerita reclassificationofthespecies[54,55,92]. 4.1.2 PeptideprofilesofAustralianfrogs Anuran skin peptide profiles appear to change rapidly with respect to changes in morphology[54,92].Itmayprovedifficulttodifferentiateanuranspeciesbasedontheir morphologyand/orbehaviouralone.However,theymayshowsignificantdifferencesin their peptide profiles. This could occur if populations of an anuran species become geographically isolated, their genes mutate and diverge over time, and they ultimately evolve into different species. This phenomenon by which populations of an organism becomephysicallyseparatedforadurationoftimeandevolveintodifferentspecies,is known as allopatric speciation. For two different populations of an organism from a commonancestortobeclassifiedasadifferentspecies,twoseparateindividualswould need to mate and produce offspring that are unable to reproduce. Alternatively, a subspeciesisgenerallydefinedasapopulationthatmaybegeographicallyisolatedand/or showmorphologicaldifferencesfromanotherpopulation,yetstillabletoproducefertile offspringwhenindividualsfromtheseparatepopulationsinterbreed[9].

83 Chapter4–Peptideprofilesof Litoriaewingii

PopulationX PopulationY

(a) (b)

PopulationX

(c) PopulationY

Figure4.3(a) TheAustraliangreentreefrog Litoriacaerulea . (b) Geographicaldistributionofpopulations X (Northern Territory) and Y (coastal Queensland). (c) HPLC traces of populations of Litoria caerulea fromdifferentgeographicalregions[54,92].EachpeptideisolatedfromtheHPLCtracesisdepictedbya letterornumber. The peptide profile of a given anuran within the Litoria genus may be used to differentiate it from another geographical population, or species. This has been

84 Chapter4–Peptideprofilesof Litoriaewingii demonstratedbetweenthecloselyrelatedspecies L.aurea and L.raniformis [71],andthe moredistantlyrelated L.xanthomera andL.splendida [357,358].Peptideprofilesoftwo majorpopulationsoftheAustraliangreentreefrog L.caerulea fromDarwinandCoastal Queensland were shown to be unique, despite each population appearing to be morphologicallyidentical(figure4.3)[54,92].Additionally,subtledifferenceshavebeen observed in the peptide profiles of L. caerulea from the Darwin area and offshore MelvilleIsland,whichwaspreviouslyconnectedwiththemainlandlessthan8000years ago[359]. OneextensiveexampleofpeptideprofilingisthatoftheRedTreeFrog L.rubella from regionsincentralandnorthernAustralia.Thestudiesrevealeduniqueprofilesfor atleast sixpopulations,someofwhichmayeventuallybereclassifiedasnewspecies[60,360]. 4.1.3 Populationsandtaxonomyof Litoriaewingii L. ewingii was first described in 1841 from Tasmanian specimens [361]. The species formerly of the Hyla genus [362] was later described as two species: Hyla calliscelis (1875)and Hylainguinalis (1935)[363,364].Thefirstadoptionofasubspeciesof L. ewingii was that of Boulenger in 1890 who regarded calliscelis as a subspecies: Hyla ewingiicalliscelis .Thespecimenswere,however,werefromNewSouthWales,asfaras theBlueMountainsandSydney.Thisiswelloutsidethetypicallocalityof L.ewingii . Uponfurtherstudiesintotheirmorphology,thesubspeciesfromNewSouthWaleswas laterreclassifiedas L.verreauxii in1961[365]. An extensive review of the morphology of L. ewingii was conducted by Copeland in 1957;heidentifiedsixsubspecies,andalsoconsidered H.inguinalis asavalidsubspecies [366].Arecentchangeinthetaxonomyofspeciescloselyrelatedto L.ewingii hasbeen thedescriptionofanewspeciesfromcentralandnortheasternVictoria: L.paraewingi; previouslythesefrogswouldhavebeenidentifiedas L.ewingii [354].

85 Chapter4–Peptideprofilesof Litoriaewingii

SOUTHAUSTRALIA

PopulationB

PopulationA Figure4.4 Geographicaldistributionpopulationsof Litoriaewingii .PopulationA(left)fromtheAdelaide hills,andPopulationB(right)fromPenola. This study involves a comparison of the peptide profiles of L. ewingii taken from the PenolaareaofSouthAustraliain2007[367],withthatofapopulationfromAdelaide, analysed in 1997 by Steinborner et. al. [368]. The population from Penola is approximately400kmsoutheastofAdelaide(figure1.3).Thepurposeofthisstudyisto comparethepeptideprofilesandmorphologyofthesetwopopulationsanddiscusstheir implicationstowardtaxonomicclassification.Anadditionalpartofthisstudyistoisolate newpeptidesanddeterminetheirbiologicalactivity.

86 Chapter4–PeptideprofilesofLitoriaewingii

4.2 ResultsandDiscussion 4.2.1 IsolationofLitoriaewingiiskinpeptides Skin secretions of L. ewingii from the Penola based population (Population B) were collectedon a monthlybasis from March2006 to February2007. The secretionswere purifiedbyHighPerformanceLiquidChromatography(HPLC).FromtheHPLCtraceof PopulationB,atotalofsixpeptideswereidentified.TheHPLCtracesofskinsecretions taken over different months of the year did not yield any significant variance in the peptidesproduced.TheHPLCtracesofPopulationBdid,however,appearsignificantly differenttothatofPopulationA(figure4.5).

A NOTE: This figure/table/image has been removed to comply with copyright regulations. It is included in the print copy of the thesis held by the University of Adelaide Library.

Figure4.5TheHPLCTracesofPopulationA[368],from theAdelaideHills(upper)andPopulationB [367],fromPenola(lower).Eachdifferentpeptideisdenotedbyanumbersbasedonretentiontime.*nota peptide. ThesequencesofthepeptidesfrompopulationBweredeterminedfromamixtureofboth positiveandnegativeionelectrospraymassspectrometry(ESMS)andautomatedEdman

87 Chapter4–Peptideprofilesof Litoriaewingii sequencing.Thesequencesofthepeptides,fromboth L.ewingii populations,arelistedin table4.1. Table4.1: Peptidesequencesdeterminedfrom Litoriaewingii .PeptidesisolatedfromtheAdelaideHills and Penola populations are denoted as A and B respectively [367, 368]. Peptides are listed based on sequencehomology. Name Population Sequence a MWHPLC peak b Tryptophyllin6.1 A LFFWG-NH 2 667 2 b Tryptophyllin6.2 A IFFFP-NH 2 668 5 b Tryptophyllin6.3 B IVFFP-NH 2 620 4 c Ewingiin1 A/B GWFDVVKHIASAV-NH 2 1426 3 c Ewingiin1.1 A/B FDVVKHIASAV-NH 2 1183 1 d Ewingiin2.1 A GLLDMVTGLLGNL-NH 2 1315 7 Ewingiin2.2 B GLLDMVTGLLG GL-NH 2 1258 6 Ewingiin2.3 B GLLD VVT SLLGNL-NH 2 1311 9 Ewingiin2.4 B GLLD VVT AV LGNL GL -NH 2 1453 10 Caerin1.1 A GLLSVLGSVAKHVLPHVVPVIAEHL-NH 2 2583 8 aDifferencesintheaminoacidsequencesofpopulationBpeptidesrelativetothesequencesofhomologous peptidesfrompopulationA,arehighlightedinbold. bSonamedbecauseoftheirsequencesimilaritytotheTryptophyllinpeptidesisolatedfrom Litoriarubella [369]. cThis peptide was formerly named Uperin 7.1 because it was thought that there was a relationship to peptides from anurans of the genus Uperoleia [368]. This is no longer deemed appropriate, hence the peptidewasrenamedEwingiin(derivedfromthenameofthisspecies). dForsimilarreasons,thepeptideinitiallycalledCaeridin7.1wasrenamedEwingiin2.1. Theonlypeptidespresentinthesecretionsofboth L.ewingii populationsareewingiin1 and the cleaved derivative ewingiin 1.1. A fascinating observation is the fact that differentpeptidesareproducedineachoftheprofiles,thoughthepeptidesshowahigh degree of sequence homology. There are two tryptophyllan pentapeptides (6.1, 6.2) present in the secretion of population A. Population B, instead only produces one pentapeptide, tryptophyllan 6.3; the major peptide of the secretion. Tryptophyllin 6.2 (populationA)andtryptophyllan6.3(populationB)onlydifferbytheoneaminoacidin position2ofthesequences.Therearethreeewingiin2peptides(2.2,2.3,2.4)isolated from population B that exhibit sequence homology (7993 %) with ewingiin 2.1 from populationA.

88 Chapter4–Peptideprofilesof Litoriaewingii

ThemostsurprisingobservationfromthepeptideprofileofpopulationBisthelackofa caerinpeptide;caerinpeptidesarepotent,widespectrumantibioticscommonlypresentin thegranularsecretionsofseveral Litoria species[5355,67,197,358,368,369].Alack ofcaerinpeptideshas,however,beenpreviouslyobservedinthepeptideprofilesofsome L.rubella and L.electrica populations[60,360]. 4.2.2 Sequencedeterminationof Litoriaewingii peptides ThefirstofthepeptidesisolatedfrompopulationBof L.ewingii istryptophyllin6.3 (4) , asmallpeptidenamedduetoitssimilaritytotryptophyllinpeptidesisolatedfromspecies of the Litoria and Phyllomedusa genera [60, 360, 370]. A collisioninduced (MS/MS) spectrum obtained in positve ion mode of the ESMS produced a (MH) + ion of tryptophyllin6.3isillustratedinfigure4.6.

Figure4.6Collisioninduced(MS/MS)positiveionmassspectrumoftryptophyllin6.3(4) ,isolatedfrom PopulationBof Litoriaewingii .Positiveionfragmentationsofthe(MH) +species,(b)and(y)fragmentions areshownaboveandbelowthespectrum,respectively.Nomagnification.

89 Chapter4–Peptideprofilesof Litoriaewingii

The MS/MS data for the (MH) + ion of the tryptophyllin 6.3 (4) shown in Figure 4.6, illustrates (b) cleavage ions drawn above the spectrum and (y) cleavage ions below. Figure4.6containsthree(b)cleavageionsandfour(y)ions. TheMS/MSdataderivedfromthe(MH) ionofthetryptophyllin6.3 (4) isshownin Figure4.7.

Figure4.7Collisioninduced(MS/MS)negativeionmassspectrumoftryptophyllin6.3(4) isolatedfrom PopulationBof Litoriaewingii .Positiveionfragmentationsofthe(MH) species,( α)and( β)fragment ions are shown above and below the spectrum respectively. (γ) and (δ) ions produced from side chain inducedbackbonecleavagesarealsoshown.Magnification: m/z 103221(x4); m/z 386519(x4). Figure 4.7 Illustrates ( α) cleavage ions and ( β) cleavage ions above and below the spectrum,respectively.TheFigure4.7containsfour( α)cleavageionsandthree( β)ions. Inaddition,itcontainsthe(δ)and(γ)ionsproducedfromPhe3andPhe4s’sidechain inducedbackbonecleavages.

90 Chapter4–Peptideprofilesof Litoriaewingii

Collectively,thepositiveandnegativeionbackbonecleavagesshowthesamesequence information. The isobaric leu1/Ile1 was assigned using Edman sequencing, completing thesequence. Thecollisioninduced(MS/MS)spectrumoftheESMSproduced(MH) +ionofewingiin 1 (3) obtainedinthepositiveionmodeisillustratedinfigure4.8.

Figure 4.8 Collision induced (MS/MS) positive ion mass spectrum of the ewingiin 1 (3) isolated from PopulationBof Litoriaewingii .Positiveionfragmentationsofthe[MH] +species,(b)and(y)fragmentions areshownaboveandbelowthespectrum,respectively.Magnification: m/z 437938(x2). TheMS/MSdataforthe[MH] +ionoftheewingiin1 (3)showninfigure4.8,illustrates (b) cleavage ions drawn above the spectrum and (y) cleavage ions below. The ten (b)

91 Chapter4–Peptideprofilesof Litoriaewingii cleavageionscanbeusedtoidentifynineresidues,butnottheorientationofthe(Lys His)residues.Thefive(y)cleavageionscanbeusedtoidentifytheresiduesatpositions 5to9andgivetheorientationoftheLysandHisresidues. CollisioninducedMS/MSdatafortheESMSproduced[MH] ionsoftheewingiin1 (3) isshowninfigure4.9.

Fig4.9: Collisioninduced (MS/MS) negativeionmassspectrumofewingiin1 (3)isolatedfromPopulation B of Litoria ewingii . Negative ion fragmentations of the [MH] species, ( α) and ( β) fragment ions are shown above and below the spectrum, respectively. (γ) and (δ) ions produced from side chain induced backbonecleavagesarealsoshown.Sequencingofthepeptidebeginsfrom1377duetofacilesidechain cleavages from serine (S*) and aspartic acid (D*) producing formaldehyde and water respectively. Magnifications: m/z 116654(2x); m/z 11601402(16x).

92 Chapter4–Peptideprofilesof Litoriaewingii

TheMS/MSdataforthe[MH] ionoftheewingiin1 (3) showninfigure4.9illustrates (α)cleavageionsdrawnabovethespectrum.No(β) cleavages were observed in this spectrum.Sequencingofthepeptidebeginsfrom1377duetofacilecharacteristicside chaincleavagesofAsp4(releasingwater)andSer11(releasingformaldehyde)[200,201, 371].Theeight(α)cleavagesallowassignmentofsixoftheresidueswithinthesequence andthe (δ)and(γ) ionsproducedfromthesidechain induced cleavage confirms the position of Asp4 in the sequence [371]. Collectively the negative ion spectrum shows significantly less sequence information than the positive ion spectrum. The spectra collectivelyshowthemajorityofthesequence,exceptforthefirsttworesidues(Gly1 Trp2).EdmansequencingwasusedtoidentifytheisobaricLys/Gln7,andtheisomeric Leu/Ile9,andthefirsttworesidues,completingthesequencing. The collisioninduced (MS/MS) spectrum of the ESMS produced (MH) + ion of the ewingiin1derivative;ewingiin1.1 (1) obtainedinthepositiveionmodeisillustratedin figure4.10.

93 Chapter4–Peptideprofilesof Litoriaewingii

Figure 4.10 Collision induced (MS/MS) positive ion mass spectrum of ewingiin 1.1 (1) isolated from PopulationBofLitoriaewingii .Positiveionfragmentationsofthe[MH] +species,(b)and(y)fragmentions areshownaboveandbelowthespectrum,respectively.Magnification: m/z 50702(x2); m/z 7701130(x2). Thespectrumof( 1) illustrates seven(b)cleavageionswhichcanbeusedtoidentifynine oftheresidues,butnottheorientationofthe(LysHis) residues. In addition, four (y) cleavage ions reveal the orientation of the Lys4 and His5 residues and an additional backbonecleavageafterthefirsttworesidues.Thespectrumshowsthemajorityofthe sequence,exceptforthefirsttworesidues(Phe1Asp2).Edmansequencingwasusedto identify the isobaric Lys/Gln5, and the isomeric Leu/Ile7, and the first two residues, completingthesequencing.

94 Chapter4–Peptideprofilesof Litoriaewingii

Thecollisioninduced(MS/MS)spectrumoftheESMSproduced(MH) +ionofewingiin 2.2 (6) obtainedinthepositiveionmodeisillustratedinfigure4.11.

Figure 4.11 Collision induced (MS/MS) positive ion mass spectrum of ewingiin 2.2 (6) isolated from PopulationBof Litoriaewingii .Positiveionfragmentationsofthe[MH] +species,(b)and(y)fragmentions areshownaboveandbelowthespectrum,respectively.Magnification: m/z 50540(x16). The spectrum ewingiin 2.2 (6) illustrates ten (b) cleavage ions which can be used to identifythelastnineoftheresidues,butnottheorientationofthe(Leu3Asp4)residues. Inaddition,four(y)cleavageionscanbeusedtoidentifyLeu9andtwopairsofresidues, (MetVal)and(ThrGly).EdmansequencingwasusedtoidentifytheisomericLeu/Ile throughoutthesequenceandthefirstfourresidues,completingthesequencing.

95 Chapter4–Peptideprofilesof Litoriaewingii

The collisioninduced(MS/MS) spectra of the ESMS produced(MH) +ionofewingiin 2.3 (9) obtainedinthepositiveionmodeisillustratedinfigure4.12.

Figure4.12Collisioninduced(MS/MS)positiveionmassspectrumoftheewingiin2.3(9) isolatedfrom PopulationBof Litoriaewingii .Positiveionfragmentationsofthe[MH] +species,(b)and(y)fragmentions are shown above and below the spectrum, respectively. Magnification: m/z 50346 (x10); m/z 3501247 (x4). Thespectrumofewingiin2.3 (10)illustrateseleven(b)cleavageionswhichcanbeused to identify residues three to eleven. In addition, five(y)cleavageionscanbeusedto identify residues seven to ten. Edman sequencing was used to identify the isomeric Leu/Ilethroughoutthesequenceandthefirsttworesidues,completingthesequencing.

96 Chapter4–Peptideprofilesof Litoriaewingii

The collisioninduced(MS/MS) spectra of the ESMS produced(MH) +ionofewingiin 2.4 (10) obtainedinthepositiveionmodeisillustratedinfigure4.13.

Figure 4.13 Collision induced (MS/MS) positive ion mass spectrum of ewingiin 2.4 10 isolated from PopulationBof Litoriaewingii .Positiveionfragmentationsofthe[MH] +species,(b)and(y)fragmentions are shown above and below the spectrum, respectively. Magnification: m/z 50742 (x6); m/z 12731431 (x6). Thespectrumofewingiin2.4 (10)illustrateseleven(b)cleavageionswhichcanbeused toidentifyresiduesfivetothirteen.Inaddition,andfour(y)cleavageionscanbeusedto idetify residues six and seven. Edman sequencing was used to identify the isomeric Leu/Ilethroughoutthesequenceandthefirstfourresidues,completingthesequencing.

97 Chapter4–Peptideprofilesof Litoriaewingii

AsummaryofthemassspectraldataobtainedforthepeptidesisolatedfromL.ewingii (PopulationB)isIllustratedintable4.2. Table4.2: Massspectraldatafor Litoriaewingii peptidesisolatedfrompopulationB.

Tryptophyllin6.3IVFFPNH 2 (MH) +m/z 621 bions m/z 621,507,360,213[FFPNH 2] yions m/z 621,508,409,262,115[IVFFPNH 2] (MH) m/z 619

αααα ions m/z 619,506,407,260,113[IVFFPNH 2]

ββββ ions m/z 619,507,358,211[FFPNH 2] γF3m/z 390, δF4m/z 375, γF4m/z 243, δF3m/z 228

Sequence: IVFFPNH 2

Ewingiin1GWFDVVKHIASAVNH 2 (MH) +m/z 1427 b ions m/z 1427,1311,1153,1082,969,704,605,506,391,244[FDVV(KH)IASAV

NH 2] y ions m/z 1427,922,823,724,596,459[(GWFD)VVKH] (MH) m/z 1425 [(MH) CH 3O] m/z 1395 [(MH) CH 3O,H2O] m/z 1377 αααα ionsfrom[(MH) CH 3O,H2O] m/z 1377,1135,988,692,564,427,406,314,243,186 [(GW)F(D*VV)KHIAS*] γD4m/z 1018, δD4m/z 406

Sequence: (GW)FDVVKHIASAVNH 2

98 Chapter4–Peptideprofilesof Litoriaewingii

Table4.2: Continued.

Ewingiin1.1FDVVKHIASAVNH 2 (MH) +m/z 1184 b ions m/z 1184,1068,997,910,839,726,461,362[V(KH)IASAVNH 2] y ions m/z 1184,923,725.597,460,[(FD)(VV)KH]

Sequence: (FD)VVKHIASAVNH 2

Ewingiin2.2GLLDMVTGLLGGLNH 2 (MH) +m/z 1259 b ions m/z 1259,1129,1072,1015,902,789,629,532,[VTGLLGGLNH 2] y ions m/z 1259,732,631,529,472,358,245[(GLLDM)VTGLL]

Sequence: (GLLD)VVTSLLGNLNH 2

Ewingiin2.3GLLDVVTSLLGNLNH 2 (MH) + m/z 1312 b ions m/z 1312,1182,1068,1011,898,785,698,597,498,399,284,171

[LDVVTSLLGNLNH 2] y ions m/z 1312,716,615,528,415,302[(GLLDVV)TSLL]

Sequence: (GL)LDVVTSLLGNLNH 2

Ewingiin2.4GLLDMVTAVLGNLGLNH 2 (MH) + m/z 1454 b ions m/z 1454,1323,1266,1153,1039,982,869,770,698,597,498,399

[VVTAVLGNLGLNH 2] y ions m/z 1453,956,857,756,586[(GLLDV)VT(AV)]

Sequence: (GLLD)VVTAVLGNLGLNH 2 All of the peptides isolated from L. ewingii populations contain the posttranslational modificationCterminalamide,confirmedbythelossof17Dafromthe[MH] +ions.The negativeionESMSspectraofthe[MH] speciesofewingiins2.22.4weretoocomplex toprovidesignificantsequencingdata.Thisislikelytobeduetothecompetingfacile sidechaincleavagesofAsp,Asn,Ser,ThrandMetresidues.

99 Chapter4–Peptideprofilesof Litoriaewingii

4.2.3 Biologicalactivitiesof Litoriaewingii skinpeptides The peptides tryptophyllin 6.16.3 were tested for both smooth muscle (via CCK2 receptor activation) and opioid activities using guinea pig ileum [372, 373], as many othertryptophyllinpeptidesfromthespecies L.rubella [68].Thepeptideshowever,did notshowanysignificantactivitiesfromeitherofthebiologicaltests. Ewingiin1(formerlyUperin7.1)wastestedinpreviousworkandwasshowntohave moderate antibiotic activity (MIC (g/mL)): Leuconostac lactis (50); Streptococcus uberis (100)) [368]. Ewingiin2.1 (formerlycaeridin7.1)hasbeen testedfor antibiotic andnNOSinhibitionactivitiesinpreviouswork,andshowednosignificantactivitiesfor eithertest[368].Ewingiins2.22.4haveyettobetested.Caerin1.1isadocumentedwide spectrum antibiotic (MIC (g/mL 1)): Bacillus cerues (50), Enterococcus faecalis (25), Leuconostoclactis (1.5), Listeriainnocua (25), Micrococcusluteus (12), Staphylococcus aureus (3), Staphylococcus epidermidis (12), Escherichia coli (100), Pasteurella multocida (25))andannNOSinhibitor(IC 50 36.6M)[369]. 4.2.4 Morphologicaldifferencesin Litoriaewingii populations The population of L. ewingii from around regions of the Adelaide hills and Fleurieu peninsula (population A) show some subtle, but distinct differences relative to the populationfromsoutheasternSouthAustralia(populationB). Individuals from population A have three or four large, discrete, black spots on the posteriorsurfacesofthethighsuponayellowbackground;thesespotsarenotpresenton thethighsofindividualsfrompopulationB(observationsfromaseriesof30specimens). Alsoanestimatedoneintwentyof L.ewingii fromthePopulationBaregreen.These green individuals are absent in the Adelaide hills and Fleurieu peninsula. Green individualsarealsoknowntobecommonthroughoutregionsofVictoria,quiteclosein localitytopopulationB.Elsewherethroughoutthegeographicdistributionof L.ewingii , someindividualsareapaleyellow,whereasothersbear black markings, but these are smallandirregularlyshaped[353,374].

100 Chapter4–Peptideprofilesof Litoriaewingii

4.3 SummaryandConclusions Thepeptidesprofilesofpopulationsof Litoriaewingii fromAdelaideandsoutheastern SouthAustraliaaredistinctlydifferent.Thepeptidesfromeachpopulationdo,however, shareahighdegreeofsequencehomology.Geographicalisolationofthesepopulations andmutationsintheDNAencodingtheskinpeptides,hasleadtochangesinthepeptide profilesovertime.Thepeptideprofilingtechniquewassuccessfullyusedtoobservethese changes.Inthismanner,peptideprofilingcouldalsobeusedtoaidinmappingoutthe geographicalmigrationpatternoffrogspecies. When the morphological features are combined with marked differences in peptide profilesitbecomesevidentthatthepopulationsmerittaxonomicrecognition.Ifitwere furthershownthatindividualsof L.ewingii fromtwoseparatepopulationsweretohave offspring that were infertile, then that would merit reclassification of the two anuran populationsasbeingaseparatespecies[9].Welackevidencemeritingspecificstatusbut notethattheextentofdivergenceiscomparabletothemorphologicaldistinctionofthe subspeciesof Litoriaverreauxii : L.verreauxiiverreauxii and L.verreauxiialpina,though a comparison of their respective peptide profiles is not available. Accordingly we recognisethepopulationsof L.ewingii assubspecies: L.ewingiiewingii and L.ewingii calliscelis . Environmentalfactorsmayleadtotheupregulationofsomepeptides.Thesefactorsarise inresponsetodifferentenvironmentalthreats(microbial,fungal,plantetc.),whichinturn would effect a given peptide profile. However, the SES technique largely depletes the granular glands upon activation (see Section 1.3.1), allowing for all detectable skin peptidestobeanalysed,usingthehighlysensitiveHPLCandESMStechniques[40,44, 189,375].Also,the L.ewingii specimenswerekeptinisolationthroughoutthisstudy, minimizinganyenvironmentalexposure. Future studies include biologically testing the peptides isolated from population B, for analgesic,smoothmuscle,hormonal,andantimicrobialactivities.Ifsomeofthesewere found to be biologically active, the peptides could be used as lead compounds for the

101 Chapter4–Peptideprofilesof Litoriaewingii developmentofpharmaceuticals.Studiesintothe3dimensionalstructureofthepeptides using 2dimensional NMR experiments may also follow.Futurestudiesofthepeptide profiles of L. ewingii populations from other regions may provide further insight into theirmigrationpatternandtaxonomicspeciation.

102 Chapter4–Peptideprofilesof Litoriaewingii

4.4 Experimental 4.4.1 Collectionandpreparationoffrogskinsecretions Seven specimens of Litoria ewingii were collected from near the River Murray at Renmark and maintained in captivity for the duration of this investigation. The frogs wereheldbytheback legs, the skin moistened withdeionised water, andthegranular dorsal glands situated on the back were stimulated by means of a bipolar electrode of 21GplatinumattachedtoaPalmerStudentModelsquarewaveelectricalstimulator.The electrode was rubbed gently in a circular manner on the dorsal surface of the animal using10voltsandapulsedurationof3ms[44].Theliberatedsecretionwaswashedfrom thefrogwithdeionisedwater(50cm 3),themixturefilteredthroughahighvolume(HV) filterunit(0.45 m),andreducedinvolumetoca.1cm 3.Thisproceduredoesnotinjure theanimalandwasapprovedbytheUniversityofAdelaideAnimalEthicsCommittee. 4.4.2 HPLCseparationofgranularsecretion HPLCseparationoftheskinsecretionwasachievedusingaVYDACC18HPLCcolumn (5 ,200A,4.6x250mm)(SeparationsGroup,Hesperia,CA.,USA)equilibratedwith 10% acetonitrile/90% water/0.01% trifluoroacetic acid (TFA). The crude solution (150 L )wasinjectedintothecolumn.Theelutionprofilewasgeneratedusingalinear gradientproducedbyanICIDP800DataStationcontrollingtwoLC1100HPLCpumps, increasingfrom1075%acetonitrileoveraperiodof30min.ataflowrateof1mL/min. The eluant was monitored by ultraviolet absorbance at 214nm using ICI LC1200 variable wavelength detector (ICI Australia, Melbourne, Australia). Fractions were collected, concentrated and dried in vacuo for MS and Edman Investigation. HPLC peptideprofilesareshowninFigure2. 4.4.3 Sequencedeterminationofpeptidesbymassspectrometry ElectrospraymassspectrawereobtainedusingaMicromassQTOF2hybridorthogonal accelerationtimeofflightmassspectrometer(Waters/Micromass,Manchester,UK)with amassrangeto m/z 10,000.TheQTOF2isfittedwithanelectrospray(ES)sourceinan orthogonal configuration with a Zspray interface. Samples were dissolved in

103 Chapter4–Peptideprofilesof Litoriaewingii acetonitrile/water (1:1 v/v) and infused into the ES source at a flow fate of 5 L/min. Experimental conditions were as follows: capillary voltage 50V. Tandem mass spectrometry(MS/MS)datawereacquiredusingargonasthecollisiongasandcollision energywasadjustedtogivemaximumfragmentation. 4.4.4 AutomatedEdmansequencing Peptideswerefreezedriedfromapproximately200lofsolutionandredissolvedin30 lof10%acetonitrile/90%water/0.01%TFAsolutions.15lofthesesampleswerethen NterminallysequencedusingaProcise®automatedsequencerfollowedbyaseriesof HPLCrunsperformedonaC18reversephasecolumnusingUVabsorbancedetection. Automated Edman Sequencing was performed by Chris Cursaro, School of Molecular andBiomedicalScience,TheUniversityofAdelaide. 4.4.5 Synthesisofpeptidesfrom Litoriaewingii The ewingiin and tryptophyllan peptides were synthesized by Genscript Corp. (Scotch Plains,NJ,USA)usingstandardprocedure[376]. 4.4.6 Biologicalactivitytesting Smooth muscle contraction testing and opioid activity studies of the peptides tryptophyllin6.16.3werecarriedoutbyRebeccaJ.JackwayandDr.IanF.Musgravein theDepartmentofClinicalandExperimentalPharmacology;usingstandardprocedures describedpreviously[372,373].Thebiologicalactivitiesofthepeptidesaresummarised insection4.2.3. 4.4.6.1 Smoothmuscleactivitytesting Male guinea pigs (~ 300 g) were used in these experiments. Immediately prior to the experiment, the guinea pigs were killed by stunning and subsequent decapitation. The ileum was extracted, mesenteric tissue was removed and the tissue cleaned by rinsing withphysiologicalsaltsolution(Kreb’ssolution;comprisingofinmM:KCl2.7,CaCl 2

1.0,NaHCO 313.0,NaH 2PO 43.2,NaCl137,glucose5.5;pH7.4).2cmsegmentswere suspendedin10mLorganbathscontainingKreb’ssolutionandgassedwith95%O 2and

5 % CO 2. The ileum segments were connected to an isometric forcedisplacement

104 Chapter4–Peptideprofilesof Litoriaewingii transducerandatissueholder.ThetensionwasrecordedusingMACLAB(version3.0). TheKreb’ssolutionwasreplacedseveraltimestoensurethattheileumsegmentswere washed thoroughly, and allowed to equilibrate for a period of 30 min under a resting tensionof2g.Solutionsupplyreservoirsandorganbathsweremaintainedat37ºCand gassedwithO 2/CO 2asdescribedabove. Following the equilibration time, the bath solution was replaced several times until a stable tension baseline was reached. The tension was readjusted to 2 g. Acetylcholine (Ach)(10 8–10 6M)wasaddedtoeachorganbathtoconstricttheileumtissue.Thiswas washedoutbyreplacingtheKreb’ssolutionseveraltimes.AsecondadditionofAch(10 6M)wasaddedtoensurethattheresponsewasstable. The Ach was washed out and ileum tissue left for 5 min until a stable baseline was achieved. A cumulative concentration response curve to cholecystakinin octapeptide (CCK8) (10 10 – 10 8 M) wasthencompleted.Followingawash,thetissuewasagainleftfor5minuntilastable baseline was achieved. The cumulative concentration response curve was repeated for CCK8NS(10 9–10 7M)orpeptidesamples(10 10 –10 5M).Inseveralexperiments, following the wash, ileum tissues were pretreated with atropine (3x10 7M),CCK2receptorantagonistYM022(1x10 6M)orLNnitroarginine(L NNA) (2 x 10 4 M) and allowed to equilibrate for 15minuntilastablebaselinewasreached.Ach,CCK8,CCK8NSandpeptidesamples werereappliedasoutlinedabove. Tocomparethepotenciesofdifferentpeptidesandtomeasurethechangesinpotency produced by receptor antagonists, the contractions of the ileum were expressed as a percentageofAch(10 6M)contraction.Dataareexpressedasmean±SEM.Differences betweendatasetswereevaluatedbyperforminganalysisofvariance(ANOVA)followed byDunnett’stest.AlevelofP<0.05wasconsideredtobesignificant. 4.4.6.2 Opiodactivitystudies Male guinea pigs (~ 300 g) were used in these experiments. Immediately prior to the experiment, the guinea pigs were killed by stunning and subsequent decapitation. The ileum was extracted approximately 10 cm from the ileocaecal junction and strips of

105 Chapter4–Peptideprofilesof Litoriaewingii longitudinalmusclewithattachedmyentericplexuswereremovedandcleanedbyrinsing withphysiologicalsaltsolution(Kreb’ssolution).Thetissuesegmentswerepreparedas perthesmoothmusclecontractionassayasdescribedpreviously [50,372]. Followingthe30minequilibrationtime,thebathsolution was replaced several times untilastablebaselinetensionwasobtained.Thetensionwasreadjustedto2g.Ach(10 8 –10 6M)wasaddedtoeachorganbathtoconstricttheileumtissue.Thiswaswashedout byreplacingtheKreb’ssolutionseveraltimes.Toelectricallystimulateinthe myenteric plexus, the tissue preparation was passed between a pair of platinum electrodes, which were connected to the output of a Grass stimulator (West Warwick, USA).Thetissuewasstimulatedat60V,0.1Hzwithpulsesof2msduration.LNNA(2 x10 4M)wasaddedandthetissuepreparationequilibratedforafurther15minuntila stable contraction response was achieved. In each tissue preparation the concentration responsecurvesfordynorphinA(113)(10 12 –10 10 M)wereconstructedusingserial application.Followingawash,theLNNA(2x10 4M)wasreappliedandthetissuewas againleftfor5minuntilastablecontractionwasachieved.Thecumulativeconcentration response curve was repeated for the peptide samples (10 10 – 10 5 M). In several experiments,followingthewash,ileumtissueswerepretreatedwithnaloxone(1x10 7 M)inadditiontoLNNA(2x10 4M)andallowedtoequilibratefor15minuntilastable contractionwasreached.DynorphinA(113)andthepeptidessampleswerereappliedas outlinedabove. Tocomparethepotenciesofdifferentpeptidesandtomeasurethechangesinpotency produced by naloxone, the concentrations of which decrease the electrically stimulated contractions by 50 % (IC 50 ) were determined. The apparent dissociation constant K d of naloxone was also calculated for each peptide using the equation

Kd=C/( DR 1)derivedfromthemasslawforcompetitiveantagonism,whereCisthe concentrationofnaloxone(1x10 7M)and DR isthedoseratiooftheagonist(theratio ofIC 50 valuesinthepresenceandabsenceoftheantagonist)[377].Differencesbetween datasetswereevaluatedbyperformingANOVA,followedbyDunnett’stest.Alevelof P<0.05wasconsideredsignificant.

106 Chapter5–Antimicrobialmeucinpeptides

Chapter5 Solutionstructuresoftwoantimicrobialpeptidesfromthe scorpion Mesobuthuseupeusmongolicus 5.1 Introduction 5.1.1 Mesobuthuseupeusmongolicus The scorpion commonly known as the ‘Lesser Asian Scorpion’, Mesobuthus eupeus mongolicus (formerly Buthus eupeus mongolicus ), is a subspecies of M. eupeus first describedbyA.Birulain1911[378].Thereare23recognisedsubspeciesof M.eupeus , that are geographically distributed throughout regions of southern Europe (Turkey, Armenia, Georgia), southern Russia (Astrakahn region), the middle east (Israel, Iran, Iraq),andnorthernAsia(China,Mongolia,Kazahkstan,Korea)[379].ThesubspeciesM. eupeus mongolicus inhabits arid to semiarid regions of the Gobi , ranging from northernChinatosouthernMongolia[380].Thespeciesisquitesmall,asscorpionadults growuptoatotallengthofapproximately38mm.Thescorpionsgenerallyhaveyellow appendages(legs,claws,tail)andtheircephaloraxandabdomen(headandbody)range fromayellowtodarkgrey,dependingonthepopulation(figure5.1)[379].

107 Chapter5–Antimicrobialmeucinpeptides

A NOTE: This figure/table/image has been removed to comply with copyright regulations. It is included in the print copy of the thesis held by the University of Adelaide Library.

Figure 5.1: Mesobuthus eupeus (top) and the geographical distribution of the subspecies M. eupeus mongolicus(bottom)[380]. The venom of M. eupeus mongolicus has been used in Chinese medicine, as has the venom of a larger sympatric scorpion species, M. martensii (the ‘Chinese scorpion’) [380].Unfortunately,inrecenttimesM.martensiihasbeenlistedintheChinaSpecies Red list as a vulnerable species. Human overexploitation of the habitat of M. eupeus mongolicusmayalsothreatenitasaspecies,thoughinsufficientdataexiststoclassifyit asathreatenedspecies[3,4]. 5.1.2 ThevenomcompositionofMesobuthuseupeus The venom of M. eupeus, like that of all scorpions, is composed of a mixture of mucopolysaccharides,hyaluronidase,phopholipase,lowmolecularweighthistaminelike

108 Chapter5–Antimicrobialmeucinpeptides molecules,proteaseinhibitors,andbiologicallyactivepeptides[6].Themajorityofearly researchintothevenomcompositionof M. eupeus wasperformedbyEvgenyGrishinand coworkersfromspecimensinsouthernRussia[115,381,382].Itwasfoundthatalarge portionofthevenomspeptidecontentconsistsofdisulfiderichneurotoxicionchannel inhibitors,designedtosubdueprey(suchasinsectsandspiders)andfordefenceagainst predators.Manyofthepeptides,inparticularthechloridechannelinhibitorswerenamed insectotoxinsfortheirselectivitytowardinsectchloridechannels[382385]. Withtheaidofmodernchromatographicmethodsandmassspectrometry,peptidesthat occurinmuchlowerconcentrationswithinthe M. eupeus venomhavebeenisolatedand characterised. The activities and amino acid sequences of biologically active peptides isolatedfrom M. eupeus venomarelistedintable5.1.

109 Chapter5–Antimicrobialmeucinpeptides

Table5.1: Peptides isolated from thevenomof M. eupeus specimens .Amino acidsequences mayvary dependingonthesubspecies. Peptide Aminoacidsequence # Disulfide Activity* Reference motif InsectotoxinI1 MCMPCFTTRPDMAQQCRACCKGRGKCFGPQCLCGY 219,526, a [385] D-NH 2 1631,2033

InsectotoxinI2 ADGVKGKSGCKISCFLDNDLCNADCKYYGGKNLSW 1162,1537, b [382] CIPDKSGYCWCPNKGWNSIKSETNTC-OH 2245,2647

InsectotoxinI3 MCMPCFTTDHQTARRCRDCC GGRGRKCFGQCLCGY 219,527, a [383] D-OH 1631,2033

InsectotoxinI4 MCMPCFTTDHNMAKKCRDCC GGNGKCFGPQCLCNR 219,526, a [383] -OH 1631,2033

InsectotoxinI5 MCMPCFTTDPNMANKCRDCC GGGKKCFGPQCLCNR 219,526, a [383] -OH 1631,2033

InsectotoxinI5A MCMPCFTTDPNMAKKCRDCC GGNGKCFGPQCLCNR 219,526, a [384] -NH 2 1631,2033

BeKm1 RPTDIKCSESYQCFPVCKSRFGKTNGRCVNGFCDC 2849,3454, c [386] F-OH 3856

BeM9 ARDAYIAKPHNCVYECYNPKGSYCNDLCTENGAES 1265,1638, b [381] GYCQILGKYGNACWCIQLPDNVPIRIPGKCH-OH 2448,2850

BeM10 VRDGYIADDKDCAYFCGRNAYCDEECKKGAESGKC 1264,1635, b [381] WYAGQYGNACWCYKLPDWVPIKQKVSGKCN-OH 2245,2647

BeM14 ARDAYIADDRNCVYTCALNPYCDSECKKNGADSGY 1265,1636, b [381] CQWLGRFGNACWCKNLPDDVPIRKIPGKCH-NH 2 2246,2648

Meucin13 IFGIAIGLLKNIF-NH 2 d [113] Meucin18 FFGHLFKLATKIIPSLFQ-OH d [113] Meucin24 GRGREFMSNLKEKLSGVKEKMKNS-OH e [387] Meucin25 VKLIQIRIWIQYVTVLQMFSMKTK-OH e [387] MeuKTX VGINVKCKHSGQCLKPCKDAGMRFGKCMNGKCDCT 727,1332, c [388] PK-OH 1734 MeuKTXβ1 GFREKHFQRVKYAVPESTLRTVLQTVVHKVGKTQF 3859,4564, c [389] GCPAYQGYCDDHCQDIEKKEGFCHGFKCKCGIPMG 6866 F-OH MeuKTXβ2 GFREKHFQRVKYAVPESTLRTVLQTVVHKVGKTQF 3859,4564, c [389] GCSAYQGYCDDHCQDIEKKEGFCHGFKCKCGIPMG 6866 F-OH #Disulfidebridgingcystineresiduesareunderlined,andthedisulfidebridgingmotifdefined. *Biological activities: a. chloride channel inhibitor; b. sodium channel inhibitor; c. potassium channel inhibitor; d. antimicrobial; e. antimalarial .

110

                

 

A NOTE: This figure/table/image has been removed to comply with copyright regulations. It is included in the print copy of the thesis held by the University of Adelaide Library.

  A NOTE: This figure/table/image has been removed to comply with copyright regulations. It is included in the print copy of the thesis held by the University of Adelaide Library.



   

Chapter5–Antimicrobialmeucinpeptides

Theobjectiveofthisstudyistoverifythehelicalnatureofmeucin13andmeucin18by investigating their solution structures in a membrane mimicking environment,using 2 dimensionalNMRmethods.

113 Chapter5–Antimicrobialmeucinpeptides

5.2 Results Protonresonanceswereassignedusingthesequentialassignmentmethod[394]described in section 3.1.4, using a combination of DQFCOSY, TOCSY and NOESY 1H NMR 3 1 spectra.Inaddition JNHαH couplingconstantsfromthe1dimension HNMRspectraand theDQFCOSYspectrawereusedtogeneratebackbonedihedralrestraints. 5.2.1 Chemicalshiftassignment TheTOCSYspectrumofmeucin13showedcoincidentamidechemicalshiftsforGly3 and Leu8, Ala6 and Leu9. Also, the amide chemical shifts of Ala4 and Phe13 were almost coincident. These amide chemical shifts were easily distinguished from one another upon assignment of the other regions of the TOCSY and COSY spectra. The majorityoftheamideregionofthemeucin13NOESYspectrumwaswellresolved,with sequentialNH iNH i+1 peaksobservedfromGly3toPhe13.ThePhe2Gly3amidepeak wasnotobserved,sothePhe2amideresonancewasassignedfromtheNH iαH i+1 peak. TheTOCSYspectrumofmeucin18showedahighdegreeofoverlappingresonancesin the amide region. Four coincident amide chemical shifts were observed for Ala9 and Ile13, Ile12 and Leu16, and three coincident amide chemical shifts were observed for Thr10, Ser15 and Phe17. These amide chemical shifts were distinguished from one anotheruponcloseexaminationoftheNOESYspectrum,otherregionsoftheTOCSY spectrum, and the COSY spectrum. The amide region of the meucin18 NOESY spectrum was very well resolved with NH iNH i+1 peaksobservedfromPhe2toGln18 with the exception of Pro14. In that case a medium NH iδH i+1 peak was observed between Ile13 and Pro14, and medium δH iNH i+1 peaks were observed between Pro14 andSer15.TheNterminalresiduesintheNMRspectraofbothmeucinpeptideswere identified from the observed the αH iNH i+1 and αH iβH i+1 peaks, completing the sequences.ThepartialTOCSYandNOESYspectrafor meucin13 and meucin18 are showninfigures5.3and5.4,respectively.

114 Chapter5–Antimicrobialmeucinpeptides

Figure5.3 PartialNOESY(mixingtime=150ms)andTOCSYspectraofmeucin13inTFE/H 2O(1:1, v/v)at25°C.VerticallinesintheTOCSYspectrumconnectthelinesineachspinsystem.NOEsbetween sequential NH protons are indicated in the NOESY spectrum . Residues are labelled with the standard singleletterabbreviationsforaminoacids,andtheirpositionwithinthesequence.

115 Chapter5–Antimicrobialmeucinpeptides

Figure5.4 PartialNOESY(mixingtime=150ms)andTOCSYspectraofmeucin18inTFE/H 2O(1:1 v/v)at25°C.VerticallinesintheTOCSYspectrumconnectthelinesineachspinsystem.NOEsbetween sequential NH protons are indicated in the NOESY spectrum . Residues are labelled with the standard singleletterabbreviationsforaminoacids,andtheirpositionwithinthesequence.

116 Chapter5–Antimicrobialmeucinpeptides

Asummaryofalloftheassigned 1Hresonancesformeucin13andmeucin18islistedin tables5.3and5.4respectively. 1 Table5.3 HNMRChemicalshiftsformeucin13inTFE/H 2O(1:1byvolume);n.o.,notobserved. Residue Chemicalshift(ppm) NH αCH βCH Others Ile1 n.o. 3.74 1.82 γCH 2 1.10,1.39 γCH 3 0.88 δCH 3 0.82 Phe2 8.10 4.60 3.07,3.07 H2,6 7.19 H3,5 7.30 H4 7.25 Gly3 7.86 3.73,3.73 Ala4 7.62 3.94 1.33,1.33 Ile5 7.39 3.96 1.89 γCH 2 1.23,1.47 γCH 3 0.86 δCH 3 0.83 Ala6 7.53 4.12 1.31,1.31 Gly7 8.16 3.71,3.81 Leu8 7.86 3.75 3.50,1.39 γCH 0.91 δCH 3 0.63,0.26 Leu9 7.53 4.14 3.72 γCH 1.60 δCH 3 0.80,0.84 Lys10 7.94 3.98 1.86,1.86 γCH 2 1.43,1.43 δCH 2 1.61,1.61 εCH 2 2.90,2.90 + ζNH 3 7.48 Asn11 7.98 4.51 2.82,3.23 δNH 2 6.60,7.15 Ile12 8.05 4.02 1.83 γCH 2 1.83 γCH 3 1.46 δCH 3 0.81 Phe13 7.63 4.47 2.71,2.84 H2,6 7.23 H3,5 7.32 H4 n.o. C(O)NH 2 6.86,6.90

117 Chapter5–Antimicrobialmeucinpeptides

1 Table5.4 HNMRChemicalshiftsformeucin18inTFE/H 2O(1:1byvolume);n.o.,notobserved. Chemicalshift(ppm) Residue NH αCH βCH Others Phe1 n.o. 4.08 3.03,3.03 2,6H 7.12 3,5H 7.23 4H n.o. Phe2 8.09 4.49 2.88,3.01 2,6H 7.06 3,5H 8.12 4H n.o. Gly3 7.72 3.69,3.78 His4 8.08 4.50 3.06,3.13 2H 8.44 4H 7.11 Leu5 7.81 4.16 1.54,1.54 γCH 0.83 δCH 3 0.76,0.76 Phe6 7.79 4.22 3.02,3.02 H2,6 7.09 H3,5 7.18 4H n.o. Lys7 7.88 3.95 1.77,1.77 γCH 2 1.33,1.32 δCH 2 1.61,1.61 εCH 2 2.88,2.88 + ζNH 3 7.53 Leu8 7.60 4.11 1.60,1.60 γCH 0.83 δCH 3 0.79,0.7 9 Ala9 8.10 4.00 1.35,1.35

Thr10 7.55 4.02 4.14 γCH 3 1.02 Lys11 7.56 4.36 1.86,1.86 γCH 2 1.40,1.40 δCH 2 1.59,1.59 εCH 2 2.88,2.88 + ζNH 3 7.49 Ile12 7.76 3.96 1.80 γCH 2 1.12,1.12 γCH 3 0.80 δCH 3 0.74 Ile13 8.10 4.10 1.94 γCH 2 1.12,1.58 γCH 3 0.88 δCH 3 0.79 Pro14 4.26 1.76,2.30 γCH 2 1.84,2.02 δCH 2 3.41,3.66 Ser15 7.55 4.25 3.82,3.93 Leu16 7.76 4.57 1.13,1.48 γCH 1.53 δCH 3 0.74,0.80 Phe17 7.55 4.57 2.84,3.22 2,6H 7.19 3,5H 7.32 4H n.o.

Gln18 7.64 4.22 1.97,2.15 γCH 2 2.29,2.29 εNH 2 6.47,7.25 COOH n.o.

118 Chapter5–Antimicrobialmeucinpeptides

The majority of the proton resonances were assigned for each of the meucin peptides. The four proton resonances of some phenylalanine residues were unresolved in the TOCSYandNOESYspectra.AlsotheCterminalcarboxylhydrogenwasnotobserved formeucin18,asitislikelythecarboxylicacidgroupwasdeprotonated(pK a~5). 5.2.2 SecondaryChemicalShifts

TherandomcoilchemicalshiftsforαprotonsandamideprotonsinH 2Owereobtained fromWishart et. al. [237],toindicateregionsofsecondarystructure(seesection3.1.6). The difference in αproton chemical shifts relative to the random coil chemical shifts (secondarychemicalshifts),weresmoothedoverawindowofn±2residues.Theamide protonsecondarychemicalshiftswerenotsmoothed.

0.20

0.10

0.00

0.10

0.20

H Secondary Chemical Secondary H Shift (ppm) 0.30 1 CH CH 0.40 IFGAIAGLLKNIF Sequence

Figure5.5 αprotonsecondaryshiftsofmeucin13inTFE/H 2O,smoothedoverawindowofn±2 residues. Figure5.5illustratesthesmoothedαprotonsecondarychemicalshiftsformeucin13.All secondarychemicalshiftsarebelow0.20ppmacrosstheentiresequence.Theseupfield shiftsareconsistentwiththepeptideadoptingapredominantlyhelicalstructure[395].

119 Chapter5–Antimicrobialmeucinpeptides

Figure5.6showstheunsmoothedamidesecondaryshiftsformeucin13.Theyshowan unusualperiodicchangeinchemicalshiftacrossthesequence.Generally,helicalpeptides periodicallyfluctuateinamidesecondarychemicalshiftproducinga‘zigzag’plotthat alternates every 3 to 4 residues. For residues Ala4 to Phe13, the amide secondary chemical shift deviates in a similar way from Gly7 to Phe 11, suggesting the peptide backbonedoeshavehelicalstructure.However,theamidesecondaryshiftpatternisnot as consistent as synthetised amphipathic αhelical peptides such as the GCN4 ‘leucine zipper’peptideandLL9[248,395].

0.2

0

0.2

0.4

0.6

0.8 H Secondary ChemicalH Secondary Shift (ppm) 1 NH NH 1 IFGAIAGLLKNIF Amino Acid Sequence

Figure5.6 Amide protonsecondaryshiftsofmeucin13inTFE/H 2O. Figure 5.7 illustrates the smoothed αproton secondary chemical shifts for meucin18. FromtheNterminusuptoLys11,secondarychemicalshiftsarenegative,consistentwith predominantly helical structure. The remaining αproton secondary chemical shifts suggestrandomcoilstructureacrossthe7Cterminalaminoacids,mostlikelyduetothe helixdisruptingeffectofthePro14residue.

120 Chapter5–Antimicrobialmeucinpeptides

0.10

0.05

0.00 0.05

0.10

0.15

0.20

0.25 0.30 H Secondary ChemicalH Secondary Shift (ppm) 1 0.35 CH CH α 0.40 FFGHLFKLATKIIPSLFQ Amino Acid Sequence

Figure5.7 αprotonsecondaryshiftsofmeucin18inTFE/H 2O,smoothedoverawindowofn±2 residues.

0.2

0

0.2

0.4

0.6 H Secondary Chemical Shift (ppm) HSecondaryChemical Shift 1 0.8 NH NH

1 FFGHLFKLATKIIPSLFQ Amino Acid Sequence

Figure5.8 Amide protonsecondaryshiftsofmeucin18inTFE/H 2O.

121 Chapter5–Antimicrobialmeucinpeptides

Figure5.8demonstratestheunsmoothedamidesecondaryshiftsformeucin18.TheN terminalamideshiftsuptoLys10showasimilarperiodictrendtothefirst10residuesof meucin13. The central residues clearly illustrate a periodic amide secondary chemical shiftpatternofapredominantlyhelicalstructure.Theamidesecondaryshiftsofthelast4 residues deviate significantly from random coil values (0.4 to 0.8 ppm), hence this regioncouldalsohaveahelicalstructure.However,thesecondarystructureinthatregion cannotbeclearlydefined,duetothelackofanamideprotononthepro14residue.The secondaryshiftsindicatethatmeucin18mayadoptahelixhingehelixstructure,similar totheantimicrobialpeptidescupiennin1aandcaerin1[396398]. 5.2.3 NOEConnectivities ThesummariesofdiagnosticNOEconnectivitiesused in the structural calculations of meucin13andmeucin18areshowninfigures5.9and5.10,respectively.

Figure5.9 AsummaryofNOEconnectivitiesusedinstructurecalculationsofmeucin13inTFE/H 2O(1:1 v/v).ThethicknessofthebarsindicatestherelativestrengthofNOEs(strong<3.1Å,medium3.1–3.7Å andweak>3.7Å).

Themajorityofmeucin13sequentialdNN anddαN signalsfromGly3onwardaremedium instrength,withtheexceptionofthestrongdαN signal between Ile1 and Phe2. A few mediumrange signals are observed 2 residues apart, mainly consisting of medium dαN(i,i+2) and weak dαβ(i,i+2) signals. A significant amount of mediumrange signals are

122 Chapter5–Antimicrobialmeucinpeptides

observed3residuesapart,namelyweaktomediumdαN(i,i+3) anddαβ(i,i+3) signals.Also,2 dαβ(i,i+4) signalsareobservedacrossthecentralaminoacidsinthesequence.Overall,the NOEconnectivitypatternofmeucin13ischaracteristicofαhelicalstructureacrossthe majorityofthesequence[399],withtheexceptionofthefirst5Nterminalresidues.

Figure5.10 AsummaryofNOEconnectivitiesusedinstructurecalculationsofmeucin18inTFE/H 2O (1:1v/v).ThethicknessofthebarsindicatestherelativestrengthofNOEs(strong<3.1Å,medium3.1–3.7 Åandweak>3.7Å).GreybarsindicateambiguousNOEs.

ThesequentialdNN anddαN signalsofmeucin18fromPhe2onwardaremediumtostrong inintensity,withagapinthesequentialsignalsobservedaboutthePro14residue.Ina similarfashiontomeucin13,afewmediumrangesignalsareobserved2residuesapart; namely medium dαN(i,i+2)andweakdαβ(i,i+2) signals. A significant amount of medium rangesignalsareobserved3residuesapart.MostlyweaktomediumdαN(i,i+3) anddαβ(i,i+3) signals,spanningacrossPhe2toLys11.Additionally,weakdαN(i,i+3)anddαβ(i,i+3)signals areobservedacrossIle13toGln18.Similartomeucin13,2dαβ(i,i+4) signalsareobserved across the central amino acids in the sequence. There are less mediumrange NOE connectivitiesintheNterminalregionindicatingitcouldbeeitherhelicalorrandomin structure.Also,afewambiguousNOEsareobservedintheCterminalregion.TheNOE connectivitypatternofmeucin18ischaracteristicofαhelicalstructureacrossmostof the sequence, with less characteristic αhelical NOEs about the Pro14 residue and C terminalregion.Thisfurtheremphasizesthatmeucin18islikelytoadoptahelixhinge helixstructure.

123 Chapter5–Antimicrobialmeucinpeptides

AfewlongrangeNOEconnectivitieswereobservedforeachpeptide.3longrangeNOE signals were observed across 5 residues for meucin13: a d βHNH(i,i+5) (Phe2Gly7), a dαHNH(i,i+6) (Gly3Leu9),andad αHNH(i,i+5) (Ala4Leu9).2longrangeNOEsignalswere observed across 5 residues for meucin18: a d αHNH(i,i+5) and a d βHNH(i,i+5) signal (both Lys11Leu16). These interproton distances can exist within 6Å or less, in a helical structure. So, the few longrange NOEs observed are unlikely to be intermolecular interactions and the peptides appear to exist in their monomeric form under these conditions. 5.2.4 Couplingconstants 3 1 The JNHαH couplingconstantswereunabletoberesolvedfromthesplittinginthe1D H NMRspectraforeitherofthemeucinpeptides.Thiswaslargelyduetotheoverlapof amideprotonsignals.Uponcloseanalysisofthespacingbetweenantiphasemultipletsin 3 δ2 of the DQFCOSY spectra as described by Kim and Prestegard [254], no JNHαH coupling constants were observed below 6Hz, or above 8Hz. Hence, no backbone dihedralrestraintswereappliedinthestructuralcalculations. 5.2.5 Structurecalculations AfterassigningandintegratingcrosspeaksfromtheNOESYspectrum,NOEcrosspeak volumeswereconvertedtodistancerestraintsusingARIAasdescribedbyNilges et.al. [400](SeeChapter3).Thetotalnumberofdistancerestraintsgeneratedformeucin13 andmeucin18were127and289respectively.Noambiguousrestraintsweregenerated from meucin13 NOEs, and 15 were generated from meucin18 NOEs. Summaries of groupeddistancerestraintsgeneratedafter8iterationsofARIAstructurecalculationsare listedintable5.5.

124 Chapter5–Antimicrobialmeucinpeptides

Table5.5 SummaryofgroupedNOEconnectivitiesfromtheNOESYspectraforstructurecalculationsof meucin13andmeucin18. Number of restraints meucin-13 meucin-18 SequentialNOEs 36 71 MediumrangeNOEs 26 52 LongrangeNOEs 3 2 IntraresidueNOEs 62 149 AmbiguousNOEs 0 15 Total 127 289 TheconjecturesdrawnfromtheNMRspectraofthemeucinpeptidescorroboratedwell withthegeneratedstructures.Ofthe60finalstructures generated from RMD and SA calculations,the20withthelowestpotentialenergywerefittedacrossselectedbackbone heavy atoms, where consistent geometry was observed. Figure 5.11 illustrates the overlaysofthe20lowestpotentialenergystructuresofmeucin13andmeucin18,across residuesAla6Phe13andIle5Phe17,respectively.

Phe1 Ile1

Gln1 (a) Phe1 (b)

Figure5.11 The20lowestenergystructuresofmeucin13 (a) andmeucin18 (b) inTFE/H 2O(1:1,v/v), superimposedbestfitsoverthebackboneatomsofAla6Phe13andIle5Phe17respectively. It is evident in figure 5.11 that each meucin peptide adopts predominantly helical structures.The‘fraying’effectillustratesthepropensityforconformationalflexibilityof theNterminalresidues.TheRMSDsfromthemeangeometriesofthebackboneatoms acrossselectedresiduesformeucin13andmeucin18are2.29±0.40Ǻand0.744±0.25 Ǻrespectively.Thisshowsthattheoverlayedmeucin18structuresexhibitahighdegree of consistency across the selected backbone region, as illustrated in figure 5.11. The

125 Chapter5–Antimicrobialmeucinpeptides structural and potential energy statistics generated from RMD and SA calculations for meucin13andmeucin18aresummarisedintable5.6. Table 5.6 Structural statistics of meucin13 and meucin18 following RMD and SA calculations. The energies are derived from the mean of the 20 lowest energy structures. The RMSDs from the mean geometrywereobtainedbybestfittingselectedresiduesofmeucin13(613)and meucin18(516)that showcongruentgeometryaboutthebackboneatoms(N,αC,C'). Energies (kcal.mol -1) meucin-13 meucin-18

Etotal 6.54±0.61 14.82±0.94

Ebond 0.08±0.02 0.46±0.06

Eangle 3.58±0.09 7.88±0.41

Eimproper 0.17±0.02 0.24±0.04

EVdW 2.71±0.51 6.23±0.70

ENOE 0.01±0.02 0.01±0.02

Ecdih 0.00 0.00 RMSD from mean geometry (Å) Allheavyatoms 3.76±0.62 3.35±0.62 Allbackboneatoms 2.57±0.53 2.57±0.53 HeavyatomsofSelectedbackbone 3.63±0.61 3.63±0.61 Selectedbackboneatoms 2.29±0.40 0.744±0.25 The totalpotential energy of meucin18 is ~2 fold that of meucin13, and the largest contributingfactorsweretheVanderWaals(E VdW )andangular(E angle )potentialenergy terms.Theresultantstructureshadanglesthatvaried significantly from the predefined values in the parameters set for the RMD and SA calculations using ARIA [401], resultinginlargeE angle terms.Thehydrophobicfacesoftheamphipathichelicesinduce many Vander Waals interactions between hydrophobic sidechains, as reflected by the large E VdW potential energy terms. Statistical analysis of the final 20 NMR derived structuresofanotheramphipathichelicalpeptide:cupiennin1a,showedasimilartrendin

EVdW andE angle potentialenergies[112].Noviolationsfromtheidealisedgeometries(> 0.3 Å) were observed for either of the meucin peptides’ structures, suggesting they adequatelyrepresenttheirrespectiveNMRderivedrestraints.

126 Chapter5–Antimicrobialmeucinpeptides

(a)

(b)

Figure5.12Ramachandranplotofaveragebackbone φ and ψ anglesformeucin13(a) andmeucin18(b) in TFE/H 2O (1:1, v/v). Allowed regions for αhelices, are labelled A (most favoured), allowed ‘a’ and generous ‘~a’. The glycine and proline residues are indicated by and , respectively, while the remainingresiduesareindicatedby .Welldefinedresiduesareindicatedbythesolidblackmarkers.

127 Chapter5–Antimicrobialmeucinpeptides

Ramachandran plots of the average φ and ψ backbone dihedral angles of the final 20 structuresmeucin13andmeucin18aredisplayedinfigure5.12.TheRamachandranplot ofthemeucin13structuresshowedathirdoftheresidues(excludingglycines,CandN terminalresidues)hadanglesinthefavouredregionforαhelices(A)andtheremaining2 thirdsfallintotheallowedregion(a).Noresidueswereconsideredtobewelldefinedas allangleorderparameters(S)werelessthan0.9(seeSection3.1.9).So,thestructureof meucin13 is predominantly helical across the peptide, with a moderate degree of flexibilityorextendedsecondarystructure. TheRamachandranplotofmeucin18showed6welldefinedresidues(40%,excluding glycines, C and Nterminal residues) at positions Lys7 and from Ile12Leu16. This illustratestheconsistentsecondarystructureaboutthecentralandCterminalregionsof thepeptide.Atotalof8residues(53%,includingPro14)hadbackboneanglesthatfall intothefavouredregionforαhelices(A),and5residues(33%)thatfallintotheallowed region(a).AdditionallytheHis4residueshowedaφandψcombinationthatfallsintothe allowedregionforβstrandsorβturns.The φandψcombinationscollectivelyshowthat meucin18 has an αhelical structure across the majority of the peptide, excluding residuesPhe1toHis4.

128 Chapter5–Antimicrobialmeucinpeptides

Figure5.13showstheenergyminimisedstructuresofmeucin13andmeucin18,from theaverageofthefinal20structuresgenerated.Theamphipathichelicalnatureofeach meucinpeptidesisdemonstrated,asthechargedandpolarresiduestendtopointtothe downward face and the hydrophobic residues the upward face. Additionally the Gly3 residue faces downward toward the hydrophilic face, exposing the polar amide and carbonylgroupsofthepeptidebackbone.

(a)

(b) Figure5.13 Ribbonrepresentationsoftheminimisedaveragestructuresofmeucin13 (a)andmeucin18 (b).

129 Chapter5–Antimicrobialmeucinpeptides

5.3 Discussion Theresultsinsection5.2showthatmeucin13andmeucin18adoptlinearamphipathic helical structures in TFE/H 2O, as predicted from EdmundsonSchiffer helical wheel projections(SeeSection5.1.3).Thisisfurthersupportedbypreviouscirculardichroism experiments,thatshowthepeptidesadoptrandomstructuresinwaterandadopthelical structures in TFE/H 2O [113]. TFE/H 2O is a membrane mimicking solvent system, promotingtheformationofintermolecularhydrogenbonds[289].Hence,thestructural conformationsgeneratedcanbeassumedtobeagoodrepresentationofthoseadoptedon amicrobialmembranesurface. The meucin peptide structures show regions of flexibility, particularly about the N termini.Thisistoalargeextentisduetotheglycine residues. Glycines only have a singleproton as their sidechain, allowing forincreased conformational freedom. They areknowntodisrupthelicalstructureandinduceturnsinproteinstructure[402].Meucin 13 shows less consistency with typical αhelical structure, partly due to the glycine residues at positions 3 and 7 within the sequence. This is illustrated by the lack of mediumrangeNOEconnectivitiesacrosstheNterminalregion(figure5.9).Meucin18 has a glycine residue at position 3, hence the NOE connectivity data also suggests flexibilityorextendedsecondarystructurewithintheNterminalregion.Additionallythe Ramachandran plot for meucin18 shows that His4 has backbone dihedral angles associatedwithβstrandorβturnstructure. Prolineresiduesarealsoknowntodisrupthelicalstructureandareoftenpresentinthe hinge region of antimicrobial peptides that adopt a ‘helixhingehelix’ motif, such as caerin1.1[398].Surprisinglytheprolineatposition14withinthesequenceofmeucin18 onlyappearstodisruptthehelicalstructurein1ofthefinal20structures(figure5.11). TheNOEconnectivitypatternalsoshowsalackofmediumrangeNOEswithintheN terminalregion.ThelongrangeNOEconnectivities(d αHNH(i,i+5)andd βHNH(i,i+5))between Lys11andLeu16suggestaβturnmayexistwithinthestructure.However,thebackbone dihedral angles of pro14 are synonymous with helical structure (figure 5.12) and the

130 Chapter5–Antimicrobialmeucinpeptides residue is well defined. Also, the interproton distances associated with the long range NOEs(≤6Å)canexistwithinthehelicalstructureofmeucin18. Thecytolyticactivitiesofthemeucinpeptidesagainstnumerousmicrobes,indicatestheir role in protecting the venom gland of M. eupeus from infection. In addition to antimicrobial activity, haemolysis assays showed that meucin peptides are cytolytic towardmammalian(rabbit)erythrocytesatlowconcentrations(≤6.25M).Additionally, meucin13andmeucin18affectedthemembranecurrentsmeasuredfromratdorsalroot ganglion(DRG)cellsat20Mand5Mconcentrations,respectively[113].Itislikely thatmeucinslysetheeukaryoticcellswithinthehaemolymphofotherarthropodsina similarfashion.Hence,aidintheimmobilisationanddigestionofprey,byfacilitatingthe accessofanddigestiveenzymestotheirtargettissues[403].Otherhelicalpeptides with antimicrobial and haemolytic activities have been isolated from scorpion species, suchaspandanin2,isolatedfromthevenomof PandinusImperator [139]. Thedifferencesintheactivitiesofmeucin13andmeucin18arereflectedbythelengths oftheirhelicalregions,andtosomeextent,theirnetcharges.Meucin18hasanetcharge of +3 at pH 7 and has 2 cationic residues directed toward the hydrophilic face of the amphipathichelix:Lys7andLys11.Incontrast,meucin13hasanetchargeof+2atpH7 andonlyonecationicresidue:Lys10.Thesefactorsaffectthepeptidesabilitytobindto anionicmembranes,penetratethemembranesurface,andformpores.Theporeforming abilitiesofthepeptideswereobservedbyGao et.al. uponmicroscopicexaminationof M. luteas (bacteria), S. cerevisiase (yeasts), and G. candidum (fungi) exposed to the peptides. The greater activity of meucin18 is further shown in haemolytic assays of meucin13 (37.7% haemolytic activity) and meucin18 (74% haemolytic activity) with rabbitDRGsat6.25M.Itisalsoimportanttonote thatin testingthetoxicityof the peptidesinmice(8miceforeachpeptide),1in8diedfrominjectionsof20gand10g ofmeucin13andmeucin18(bothdissolvedin0.9%NaCl)respectively[113]. The antimicrobial meucinpeptidesrepresentasmall percentageof linear antimicrobial peptides isolated from scorpion venoms. Though the peptides do show toxicity within

131 Chapter5–Antimicrobialmeucinpeptides mice,adaptationstothesequencesmayretaintheantimicrobialactivityandsignificantly reduce the haemolytic and other toxic effects. The antimicrobial meucin peptides are significantcandidatesforthedesignofnewpharmaceuticals,asanalternativetocurrent therapeuticantibiotics.

132 Chapter5–Antimicrobialmeucinpeptides

5.4 Experimental

The2dimensionalNMRspectraofmeucin13andmeucin18 in TFE/H 2O (1:1) were acquiredbymembersofProfessorShunyiZhu’sresearchgroup,StateKeyLaboratoryof Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China. NMR spectra were acquired at 600 MHz on a BrukerDRX600spectrometer(BrukerOptics,Billerica,MA,USA)witha 1Hfrequency of600MHz,at25°C.3mgsamplesofpeptidesweredissolvedin0.5mld3TFE/H2O (1:1,v/v),givingfinalconcentrationsof4.2mM(meucin13)and2.9mM(meucin18). The 1HNMRresonanceswerereferencedtothemethyleneprotons of d3TFE (3.918 ppm). 2Dimensional TOCSY, NOESY, DQFCOSY and 1D NMR experiments were conducted as described in Wong et. al. [110]. The NMR spectral data was sent to the DepartmentofChemistry,UniversityofAdelaideforresonanceassignmentandpeptide structurecalculations. 5.4.1 Crosspeakassignmentandstructurecalculations The 1Hresonancesinthe2DNMRspectrawereassignedusingSparkysoftware(version 3.106) via the standard sequential assignment procedure. For each symmetric pair of crosspeaks,thepeakoflargervolumewasusedintheconversiontoadistancerestraint [400].Assignmentofdistancerestraintsofmethyleneandisopropylgroupswasachieved usingthefloatingchiralitymethod[269]. Structuresweregeneratedfromrandomstartingconformations,usingARIA(version1.2) [401]implementedwithCNS(version1.1)software[256].TheRMDrefinementandSA coolingstepsweredoubledwithrespecttothestandardprotocol[401].Foreachofthe eightiterations,aninitial60structuresweregenerated.The20lowestcalculatedpotential energy structures (from the final 60 of the eighth iteration) were selected for analysis. The program MOLMOL (version 2k.2) [404] was used to display the overlayed backbonesofthe20lowestenergystructuresandVMDsoftware(version1.8.2)[405] wasusedtodisplaytheenergyminimisedaveragestructures.

133 Chapter6–SolidstateNMRoffallaxidin4.1a

Chapter6 SolidstateNMRstudiesoftheantimicrobialpeptide,fallaxidin4.1a 6.1 Introduction 6.1.1 Membraneactiveantimicrobialpeptides Antimicrobialpeptidesprovideanessentiallineofdefenceagainstpathogensformany organisms, including plants, , , and microbes [406408]. Many organisms produce an array of antimicrobial peptides to eliminate the vast range of pathogenic microbes they come in to contact with, even those with adaptive immune system such as humans [409]. Plants and invertebrates lack adaptive immunity; hence antimicrobial peptides are more imperative for survival. Thousands of antimicrobial peptides have been isolated and studied to date, which are a valuable alternative to traditionalantibioticscurrentlyusedintherapeuticmedicine[410]. Antimicrobial peptides generally range from 1250 amino acids in length and are described by four subgroups based on secondary structure: (i) αhelical peptides, (ii) extendedpeptides,(iii)disulfidebridgedlooppeptides,and(iv)βstrandeddisulfiderich peptides (with two or more disulfide bridges) [406, 411]. Another important factor to considerwhenclassifyingantimicrobialpeptidesisthepresenceofchargedaminoacid residues. Most antimicrobial peptides contain cationic side chains and a net positive chargeatneutralpH,asthisenhanceselectrostaticinteractionsbetweenthepeptidesand the anionic microbial membranes. However, a small number of anionic antimicrobial peptideshavebeencharacterised,suchasMaximinH5isolatedfrom Bombinamaxima [412].Thepeptidecharacterisedinthisstudy,fallaxidin4.1a,isclassifiedasacationicα helicalpeptide. Many of the helical antimicrobial peptides isolated from amphibians are Cterminally amidated.Anexceptiontothisismagainin,whichcarriesaCterminalfreeacid[413].It has been demonstrated that peptides that have Cterminal amides generally display

134 Chapter6–SolidstateNMRoffallaxidin4.1a greater antimicrobial activity [414]. An increased positive charge usually results in an increase in antimicrobial activity but a large positive charge (e.g. greater than +9) can reduce potency [415]. This reduction in activity may be a consequence of the higher chargedensityaffectingthepropensityforhelixformation[416]. The mechanisms of how amphipathic αhelical peptides interact with bacterial membranesaremostwidelydescribedbytwomodels:the“carpet”model[417]andthe “barrelstave”model[418](seeSection1.3.2).Inthecaseofthecarpetmodelpeptides assembleparalleltoamembranesurface,actinginadetergentlikemanner,strainingthe bilayer,resultingintheformationoftransientdefectsinthemembrane.Themembrane then ultimately breaks up into small vesicles (mixed micelles) coated by the peptide, destroyingthemembrane,leadingtocelldeath[78]. Inthecaseofthebarrelstavemodel,thepeptidesinsertthemselvesintothemembrane and aggregate parallel to the membrane surface, forming transmembrane pores that disrupt the osmotic potential of the cell. The disruption leads to a breakdown of the transmembranepotential and iongradientsandleakageof the cellularcontents occurs, resultingincelldeath[418,419].Anothersimilartransmembranemodelthatexistsisthe ‘toroidal’pore,whereboththepeptidesandthelipidheadgroupslinethelumenofthe pore [79, 420]. Mechanistic models of amphipathic helical peptides interacting with bacterialmembranesareillustratedinFigure6.3.

A NOTE: This figure/table/image has been removed to comply with copyright regulations. It is included in the print copy of the thesis held by the University of Adelaide Library.

135 Chapter6–SolidstateNMRoffallaxidin4.1a

Figure6.1 The“carpet”mechanism(left)wherethepeptidescoatthesurfaceofthelipidbilayeruntila thresholdconcentrationisreached,mixedmicelleformationoccurs,andthemembraneisdestroyed.The “poreforming”mechanisms(right),wherethepeptidesassociatewiththemembranesurface,insertintothe membrane, and form pores. In the “barrelstave” model, peptides line the lumen of the pores, in the “toroidalpore”modelbothpeptideandlipidslinethelumenofthepores.Figureadaptedfrom[421]. Aminimumpeptidelengthof20residuesisrequiredtospanthemembraneasan αhelix, although for smaller peptides a modified model hasbeen proposed where the peptides dimeriseendtoendtoeffectcompletepenetration[422]. 6.1.2 Bacterialandcytoplasmicmembranes ThecellwallsofGrampositiveandGramnegativebacteriahaveavarietyofdifferences incompositionandstructure,hencedifferentchemicalproperties.Thecellularwallsof Grampositive bacteria are generally comprised of a single plasma membrane, with a thickouter layer comprisedpeptidoglycan,techoicacids, andlipotechoic acids(Figure 6.2a).ConverselythecellularwallsofGramnegativebacteriaaremadeupofanouter membrane rich in on the outer leaflet, a periplasmic space (or periplasmic gel) that contains peptidoglycan, and an inner plasma membrane (Figure 6.2b) [9].

Figure6.2 ThegeneralstructureofthecellularwallsofGrampositive(a) ,andGramnegativebacteria(b) . Basedonafiguresfrom[9,423].Membraneproteinsarenotshown,withtheexceptionofporinproteinin theGramnegativeoutermembrane.

136 Chapter6–SolidstateNMRoffallaxidin4.1a

The membranes of both Grampositive and Gramnegative bacteria contain transmembraneproteins,anditisimportanttonotethattheoutermembraneofGram negativebacteriacontainsporinproteins.Theseallowforthediffusionofelectrolytesand small molecules across the outer membrane. Porin proteins are not common in Gram positive bacteria, however do exist in the plasma membranes of a few species of Mycobacteria [424]. Thepresenceoftechoicacidsandlipopolysaccharidesontheoutersurfacesofbacterial wallsresultinanetnegativesurfacechargeandbacteriahaveaveragemembrane potentialsintheorderof70mV.Incontrast,thecytoplasmicmembranesurfacesof animalsaremostlycomprisedofzwitterionicphospholipidheadgroups,andhaveanet surfacechargeclosetoneutral,andverysmallmembranepotentialsofapproximately9 mV[425].Themembranepotentialisaveryimportantfactorwhenconsideringbinding affinityandspecificityofcationichelicalpeptides.Ithasbeenknownthatmembrane surfacepotentialsinduceporeformationofsomeantimicrobialpeptides,mostlikelydue totheaffectsonamphipathichelicalformation,transmembranepeptidealignment,and depthofinsertionintothebilayer[76,426,427]. 6.1.3 Structureandbiologicalactivityoffallaxidin4.1a RecentlymembersoftheBowieresearchgroupdeterminedtheskinpeptideprofileof L. fallax [428].Thepeptidefallaxidin4.1isolatedfromtheskinsecretionsshowsmodest antimicrobialactivity.Thesequenceoffallaxidin4.1isunusual,inthatitcontainsthree Pro residues and has a Cterminal free acid group, features not typically present in antimicrobialpeptides[409,429]. Fallaxidin4.1 GLLSFLPKVIGVIGHLIHPPS-OH

Fallaxidin4.1a GLLSFLPKVIGVIGHLIHPPS-NH 2 InpreviousactivitystudiesitwasfoundthattheCterminalamideanalogueoffallaxidin 4.1(fallaxidin4.1a)hasconsiderablyenhancedantimicrobialactivity(upto4foldgreater

137 Chapter6–SolidstateNMRoffallaxidin4.1a thanfallaxidin4.1)againstseveralGrampositivebacteria[428,430],aslistedinTable 6.1. Table6.1 Theantimicrobialactivitiesoffallaxidin4.1and4.1a[82]. Bacteria Antimicrobialactivity a[MIC( g.mL 1)] Grampositive Fallaxidin4.1 Fallaxidin4.1a Bacilluscereus b 25 Enterococcusfaecalis (ATCC29212) 50 Leuconostoclactis b 12 3 Listeriainnocua b 50 Micrococcysluteus (ATCC9341) 100 12 Staphylococcusaureus (ATCC29213) 25 Staphylococcusepidermidis (ATCC14990) 100 25 Streptococcusuberis b 50 12

Gramnegative Enterobactercloacae (ATCC13047) Escherichiacoli (ATCC35218) aindicatesthatthereisnoactivity≤100 g.mL 1. bWildstrain. AnEdmundsonSchiffwheelprojectionofthefirst18aminoacidresiduesoffallaxidin 4.1 predicts that the peptide is likely to adopt a helical structure on a biological membranesurface.2DNMRstudieshaveshownthatfallaxidin4.1aadoptsapartially helicalstructureinmembranemimickingDPCmicelles(Figure6.3).

138 Chapter6–SolidstateNMRoffallaxidin4.1a

A NOTE: This figure/table/image has been removed to comply with copyright regulations. It is included in the print copy of the thesis held by the University of Adelaide Library. (a) (b) Figure6.3Helicalwheelprojectionsforthefirst18residuesoffallaxidin4.1a(a),nonpolar,polarand basicaminoacidresiduesarehighlightedinyellow,greenandbluerespectively.Ribbonrepresentationof theminimisedaveragesolutionstructureoffallaxidin4.1ainDPCmicelles(b)[82]. Although the solution structure of fallaxidin 4.1a is important in understanding its antimicrobial activity,it isalso essential to investigatethedynamicsofitsinteractions withphospholipidmembranes.SolidstateNMRspectroscopyhasbeenwidelyusedfor this purpose and applied to model lipid membranes [308, 431, 432]. The lipids investigated havenaturally abundant 31P (100%) inthephospholipid headgroups and syntheticallyincorporated 2Hintheacylchains.Thisallowstheorderanddynamicsof thelipidmoleculestobeprobedoverawiderangeoftimescales[112,431,433436].

The lipid mixtures used in this study are 1:1 d54DMPC/DMPC and 1:1:1 d54 DMPC/DMPC/DMPG for neutral “mammalian” and anionic “bacterial” model membranes,respectively.SimilarsolidstateNMRstudieswithamphibianantimicrobial peptideshavebeenconductedbyGehmanetal.usingtheaurein1.2,citropin1.1,caerin 1.1,andmaculatin1.1peptides[332]. InadditiontosolidstateNMRstudies,membersoftheresearchgroupleadbyDr.Lisa Martinhave performedreal time analysisof fallaxidin4.1a additionto supported lipid bilayers(SLBs)usingQuartzCrystalMicrobalancewithdissipationmonitoring(QCM). Theseexperimentsinvolvemonitoringthechangeinfrequency(f)anddissipation(D) ofaresonatingquartzchip,coatedwithsupportedlipidbilayers(SLBs)[437439].QCM probes the immediate interaction between the peptide and the membrane prior to an

139 Chapter6–SolidstateNMRoffallaxidin4.1a equilibriumstate,therebyenablingsomeelucidationofthepenetrationpathway.Inthis study, solidstate NMRspectroscopy and QCM are used as complementary techniques forstudyingtheinteractionoffallaxidin4.1awithphospholipidmembranes. Theobjectiveofthisstudyistoobtaininformationabouttheinteractionsoffallaxidin 4.1a with mammalian (neutral) and bacterial (anionic) model membranes, using solid stateNMRandQCM.Theresultspresentedareusedtostudythepeptidesmechanismof antimicrobialactivityandcellselectivitytowardbacterialmembranes.

140 Chapter6–SolidstateNMRoffallaxidin4.1a

6.2 Results 6.2.1 31 PsolidstateNMRspectroscopy Solidstate 31 PNMRexperimentswereusedtoinvestigatetheeffectoffallaxidin4.1aon the mobility of phospholipid head groups. Static 31 P NMR spectra were taken for unorientedlipidsamplesof1:1 d54 DMPC/DMPCand1:1:1 d54 DMPC/DMPC/DMPG mixturesaloneandinthepresenceoffallaxidin4.1a,ata10:1lipid/peptideratio.The resultantspectraareshowninFigure6.4.

(a)

(b)

31 Figure 6.4 P NMR spectra obtained for unoriented bilayers of (a) d54 DMPC/DMPC and (b) d54 DMPC/DMPC/DMPGalone(grey)inthepresenceoffallaxidin4.1a(black)atalipid/peptideratioof10:1 at30 °C. Inall 31 PNMRspectratheunorientedlineshapesshowaxiallysymmetricchemicalshift anisotropy(CSA)properties,whichindicatesthatthelipidsareinthefluidorlamellar 31 (L α)phase[335].The PstaticNMRspectraofDMPCandDMPC/DMPGaloneshowed

141 Chapter6–SolidstateNMRoffallaxidin4.1a

CSAsof43and38ppmrespectively.Thesingularpowderpatternsshowthatthereis nodegreeoflateralphaseseparationoflipidsin the control samples. In addition, the CSAs are typical for unoriented multilamellar vesicle (MLV) samples as shown in previousstudies[285,331,332,335]. Theadditionoffallaxidin4.1atoneutralDMPCMLVsresultedinareduction 31 PCSA of38ppm,similartotheCSAsobservedformixturesofmaculatin1.1andcaerin1.1 with DMPC MLV in previous studies [332]. The 5 ppm reduction in CSA infers a decreaseinorderingofphospholipidheadgroupsinthepresenceoffallaxidin4.1a.This suggeststhatthepeptidedisruptsthepackingoflipidswithinthebilayers,causinggreater spacingbetweenlipidmolecules[333].Onlyasingularlineshapeisobservedindicating no lateral phase separation of lipids and the bilayers are maintained within vesicle structuresinthepresenceofthepeptide. The addition of fallaxidin 4.1a to anionic DMPC/DMPG MLVs resulted in two contributing 31 Ppowderpatterns,indicatinglateralphaseseparationofthelipidsinthe presence of peptide. Similar phase separations have been observed for the peptide cupiennin to DMPC/DMPG MLV suspensions [112]. Deconvolution of the two 31 P powderpatternsusingtheDMFITprogram[440]revealedtwolipidlamellarcomponent CSAs of 39 (60%) and 34 ppm (40 %). The approximated intensities of each contributingpowderpatternareconsistentwiththemolarfractionofPC(33%)andPG (66%)phosphateheadgroupsasillustratedinFigure6.5.ThedecreaseintheminorCSA suggestsanelectrostaticinteractionbetweenthecationicfunctionalgroupsofthepeptide andtheanionicheadgroupsofDMPG,causingsomedegreeofphaseseparationwithin thebilayers[112].

142 Chapter6–SolidstateNMRoffallaxidin4.1a

31 Figure6.5: PNMRspectraobtainedforunorientedbilayersof d54 DMPC/DMPC/DMPGinthepresence offallaxidin4.1atalipid/peptideratioof10:1at30 °C.The‘ 31 Pspectrumfit’istheresultantsumofStatic 31 PCSAfits1(60%)and2(40%),fromDMFIT. Asummaryofthe 31 PCSAsforeachpeptidelipidmixtureisgiveninTable6.2. Table6.2 31 PspectraldataforDMPCandDMPC/DMPGMLV,alone(control)andwiththeadditionof fallaxidin4.1a. Sample 31 PCSA(ppm) a Control +fallaxidin4.1a DMPCMLV 43 38 DMPC/DMPGMLV 38 39(60%) b 38 34(40%) b aCSAdetermined ±0.5ppm. bContributingCSAswerefittedusingtheDMFITprogram[440]. 6.2.2 2HsolidstateNMRspectroscopy Deuterated DMPC was used in 2H NMR experiments to investigate the effects of fallaxidin 4.1a on themobility of acyl chains. Static 2H NMR spectra were taken for unoriented lipid suspensions of 1:1 d54 DMPC/DMPC and 1:1:1 d54 DMPC/DMPC/DMPG mixtures alone and in the presence of fallaxidin 4.1a, at a 10:1

143 Chapter6–SolidstateNMRoffallaxidin4.1a lipid/peptideratio.TheresultantspectraareanoverlayofPakedoubletscorrespondingto

CD 2andCD 3groupsontheacylchainsof d54 DMPC,asshowninFigure6.6.

(a)

(b)

2 Figure 6.6 H NMR spectra obtained for unoriented bilayers of (a) d54 DMPC/DMPC and (b) d54 DMPC/DMPC/DMPGalone(grey)inthepresenceoffallaxidin4.1(black)atalipid/peptideratioof10:1 at30 °C. 2 The static H NMR spectra are typical for hydrated d54 DMPC/DMPC and 1:1:1 d54 DMPC/DMPC/DMPGsuspensions,withasmallcentralisotropic peak due to residual deuteriuminthebuffersolution[344,434,441].The 2HNMRspectrumoftheDMPC MLVnarrowedupontheadditionfallaxidin4.2,withahigherdegreeofsuperimposed Pakedoubletsontheouteredgesofthepowderpattern relative to the control sample. 2 Thisindicatesadecrease HquadrupolarsplittingscorrespondingtoCD 2groupsonthe toward the head groups of the phospholipids. The 2H NMR spectrum of the

144 Chapter6–SolidstateNMRoffallaxidin4.1a

DMPC/DMPGMLVwithfallaxidin4.1ashowsonlyaslightnarrowinginthepowder patternrelativetothecontrol,indicatingthatthepeptidehaslittleinfluenceontheacyl chainmobilityofDMPCinthelipidmixture. The overlapping 2H quadrupolar spittings taken from static 2H NMR spectra were

‘dePaked’ to further calculate the order parameters (S CD ) of the DMPC (see Section

3.2.4.2) [312, 344, 442]. The S CD values indicate the degree of order of the CD 2/CD 3 groupsinthedeuteratedacylchainsofDMPC,asshowninFigure6.7[307].

Figure6.7Plotofthecarbondeuteriumbondorderparameters(S CD )againstacylchaincarbonpositionfor unorientedbilayersof d54 DMPC/DMPC(left)and d54 DMPC/DMPC/DMPG(right)alone( )and inthe presenceoffallaxidin4.1( ●)atalipid/peptideratioof10:1at30 °C.

A decrease in the S CD order profile of DMPC MLV was observed at the acyl chain positions2to6relativetothecontrol,indicatingincreasedmotionanddisorderofthe upperpartofthechaintowardtheheadofthephospholipid.Asignificantincreaseinthe

SCD order was observed at the central region of the acyl chain (316 %), a result of additionalstericinteractionsandareductioninspacecausinglowerCD 2mobility.The remainingS CD values(1014)arealmostidenticaltothosefromthecontrol,indicating littlechangeinordertowardthehydrophobictailregionsofthelipids.Collectivelythis

145 Chapter6–SolidstateNMRoffallaxidin4.1a effect is the result of partial insertion of the peptide into the bilayer or a surface interaction. The S CD order profile of DMPC/DMPG MLV showed a slight increase in quadrupolarsplittingsupontheadditionoffallaxidin4.1a,asreflectedintheS CD order profile.ThepeptideappearstoordertheneutralDMPCacylchainsinthemixedbilayer, suggestingtheintegrityofthebilayerismaintainedwithaslightreductioninspacefor acylchainmobility. A summary of the quadrupolar coupling constants taken from the 2H NMR spectra is giveninTable6.3. 2 Table 6.3 H quadrupolar splittings (± 0.1 kHz) measured for d54DMPC/DMPC and d54 DMPC/DMPC/DMPG unoriented bilayers, both alone and in the presence of fallaxidin 4.1a at a 10:1 lipid/peptidemolarratioand30°C. 2HQuadrupolarsplittings(kHz) %Changefromlipidalone Carbon DMPC+ DMPC/PG+ DMPC+ DMPC/PG+ DMPC DMPC/PG position Fall1a Fall1a Fall1a Fall1a 2 27.6 26.8 27.0 27.9 -3 +3 3 27.0 26.2 26.0 26.9 -3 +3 4 26.4 25.3 25.2 26.1 -4 +4 5 25.0 24.3 23.9 25.0 -3 +5 6 24.4 23.7 23.2 24.3 -3 +4 7 22.3 23.0 21.3 22.5 +3 +5 8 20.5 22.3 19.7 20.7 +9 +5 9 18.0 21.0 17.4 18.2 +16 +5 10 16.8 17.3 16.1 17.1 +3 +6 11 15.3 15.9 14.3 15.4 +4 +8 12 13.3 13.9 12.9 13.5 +4 +5 13 11.3 11.7 11.0 11.4 +4 +4 14 3.4 3.5 3.3 3.4 +4 +4 6.2.3 QuartzCrystalMicrobalance Theconcentrationdependenceoffallaxidin4.1awasdeterminedonneutralDMPCand ontheanionic2:1DMPC/DMPGsupportedlipidbilayers.Adecreaseinfrequency( f) correlatestoanincreaseinmassontheQCMchipsurfaceandviseversa.Thefrequency changeversustimedataforthe7 th harmonicovertoneisshowninFigure6.8.

146 Chapter6–SolidstateNMRoffallaxidin4.1a

A NOTE: This figure/table/image has been removed to comply with copyright regulations. It is included in the print copy of the thesis held by the University of Adelaide Library.

Figure6.8QCMtracesfortheinteractionoffallaxidin4.1awith(a)DMPC,and(b)2:1DMPC/DMPG lipidbilayersasafunctionofpeptideconcentration(120M)and19.1°C.Thefrequencychange(f)of the7thharmonicovertoneversustimeisshown.Attime=5minthepeptidewasintroducedontothelipid surfaceandthepeptidewasincubatedfor20min[82]. ThedecreaseinfrequencyobtainedontheDMPCbilayer(Figure6.8a)revealsaninitial insertionoffallaxidin4.1intothelipidlayerforallconcentrations.However,atapeptide concentration of 5 M, the increase in frequency is observed due to membrane disruption.Abovethisconcentrationthreshold,theinitialdecreaseinfrequencyfollowed byalargeincreaseinfrequencycorrespondstopeptideinsertionintothebilayerfollowed bylipidremoval. Incontrast,theadditionoffallaxidin4.1aonto2:1DMPC/DMPGbilayers(Figure6.8b) showsaninitialdecreaseinfrequencyfollowedbyaplateau,consistentwithinsertionof

147 Chapter6–SolidstateNMRoffallaxidin4.1a the peptide into the bilayer. The peptide insertion was notably more rapid at concentrationsof5Mandaboveandmoreuniformplateauregions.Theseobservations showthepeptideinsertsandremainsincorporatedintothebilayer,withminorremovalof excesspeptidefromthesurfaceabovethethresholdconcentration. QCMtracesoffrequencychangesoffourharmonicovertonesupondepositingfallaxidin 4.1a(7M)onto2:1DMPC/DMPGbilayers,isshowninFigure6.9.

A NOTE: This figure/table/image has been removed to comply with copyright regulations. It is included in the print copy of the thesis held by the University of Adelaide Library.

Figure6.9TheQCMtracesforthefrequencychange(f)versustimefortheinteractionoffallaxidin4.1a (7M)with2:1DMPC/DPMGbilayers.Theresponsesforthe3rd,5th,7thand9thharmonicsareshown,at time=5minthepeptidewasintroducedontothelipidsurfaceandthepeptidewasincubatedfor20min [82]. The recording of different frequency overtones provides a means of observing mass additionasafunctionofdistancefromthechipsurface(9thclosestand3rdthefurthest) [437,443].Thedecreasesinfrequencyobservedoverallfourovertonesdemonstratethat fallaxidin4.1acausesanincreaseinmassacrosstheentiredepthofthemembraneabout thebilayernormal.Thisshowsthatthepeptideisinsertinginatransmembranemanner, inasimilarfashiontotheQCMtraceofcaerin1.1onDMPCbilayers[437].Thedegree offrequencychangedecreasesfromthe3rdtothe9thharmonic,indicatingthatthemass increase is not uniform across the bilayer normal and that there is some excess accumulationofpeptideontheinterfacialregionofthebilayersurface.

148 Chapter6–SolidstateNMRoffallaxidin4.1a

6.3 Discussion SolutionNMRstudiesshowthatthestructureoffallaxidin4.1aappearstobepartially helical,yetdisruptedaboutthecentralregionofthepeptide.Prolinesandglycines,are knowntodisruptαhelicalstructure[444,445],asisreflectedbytheobservedrandom coilcharacteristicsaboutresiduesfromPro7towardtheCterminalendofthepeptide. However,thepeptide’sflexibilitymayenhanceinteractionswithmembranesinasimilar mannertothecentralhingeregionsofmanyamphipathichelicalpeptides[71,112,369]. The DPC and DMPC lipids each share the zwitterionic choline head group and DPC micellesmimicamembraneenvironmentbypromotingtheformationofintramolecular hydrogenbonds.Itcouldbeassumedthatfallaxidin4.1awouldadoptasimilarstructure intheDPCmicellesasinDMPCMLVs,thoughthecurvatureonthemembranesurface of DPC micelles may perturb the peptide’s propensity to form a helical structure. The mixedDMPC/DMPGsurfacehasanetnegativesurfacechargeonthemembrane.The netchargeoffallaxidin4.1ais+2undertheexperimentalconditionsusedforthisstudy

(pH 6.97), given that the histidine residues (pK a ~ 6.5) remain uncharged [9]. The additionalelectrostaticinteractionswiththecationic/polarsidechainsmayinduceamore helical secondary structure due to facial alignment of the cationic/polar side chains on onefaceofthehelix,asanticipatedfromaSchiffEdmundsonhelicalwheelprojection (seefigure6.3a). Microscopy studies by Kim et. al. [446] with MLV suspensions (DOPC/cholesterol/DMPG9:9:2)showthattheaveragesizeofeachMLVwouldbein theorderof4M,giventhelipidsuspensionswerehydratedandagitatedmechanically viavortexing.ThelipidtopeptideratiointheMLVsuspensionsusedinthesolidstate NMRexperimentsis10:1,andtheconcentrationofpeptideinthelipidsuspensionis~ 100mM(20mg.mL 1).Thisconcentrationisingreatexcess(~200times)ofwhatisused invivo forantimicrobialactivityassays.Thehighconcentrationofbothpeptideandlipids is necessary to observe the changes in lipid dynamics effectively by solidstate NMR. Arguablythepeptidemayinteractwiththephospholipidmembranespurelyasanartefact ofthehighconcentrationsused.However,thelipidpart(~7mg/100L)ofthehydrated MLV suspensions still could allow sufficient space for a hydrophilic peptide to reside

149 Chapter6–SolidstateNMRoffallaxidin4.1a withintheaqueouscomponentofthesuspension,asisthecaseforrothein1peptidein DMPCMLVatalipid/peptideratioof10:1(seesection 7.2.2). Additionally, the real time QCM experiments performed at much lower concentrations (~0.510 g.mL 1), show that fallaxidin 4.la does interact with phospholipid membranes at concentrations similartowhatisobserved invivo [82]. 6.3.1 SolidstateNMRspectroscopyandQCM ThesolidstateNMRandQCMoffallaxidin4.1awith the DMPC and DMPC/DMPG lipidmixturesshowedahighdegreeofdifferencesbetweeneachlipidsystem.Thesolid stateNMRofDMPCMLVsuggestsasignificantincreaseinthemobilityand/orchange inorientationofthephospholipidheadgroupsuponadditionoffallaxidin4.1a.Thisis 31 shownbythe PNMRpowderpattern(CSA).Also,theS CD orderprofilesdetermined from 2HNMRshowedanincreaseinorderaboutthecentreoftheacylchain(positions7 9)andadecreasetowardtheheadregionofthechain.Thisdifferenceintheacylchain order may indicate incorporation of the peptide into the membrane surface (interfacial region),leadingtoincreasedspacingofthelipidheadgroups.Thisinturnwouldleadtoa changeindynamicsabouttheupperregionoftheacylchains,asshownbythedecreased 31 SCD orderparametersandthedecreaseinthe PCSA.Theinsertionandsubsequentrapid mass removal upon addition to DMPC SLBs at concentrations ≥5 M observed using QCMsuggeststhepeptidedestroysneutralbilayersviaasurface(carpet)interaction. The line shape or CSA of the static 31 P spectra gave an indication of the motion and alignmentofthephosphateheadgroups,whichinferchangesinorientationandsurface charge density. With the addition of fallaxidin 4.1a to the negatively charged DMPC/DMPG(2:1)MLV,thecontributing 31 PCSAoftheDMPGenrichedcomponent decreased,whilethe 31 PCSAoftheDMPCcomponentremainedrelativelyunchanged. This decrease in 31 P CSA is typically associated with an alteration in head group conformation [447], suggesting an associative electrostatic interaction between the PG headgroupsandfallaxidin4.1a.ThedeuteriumNMR,however,revealedanincreasein theacylchainorderoftheDMPCphospholipids.Fallaxidin4.1amayformtoroidalor ‘barrelstave’pores,wheretheanionicPGheadgroupsorientthemselvesaboutthelumen

150 Chapter6–SolidstateNMRoffallaxidin4.1a ofthepores,asdescribedinprevious 31 PNMRstudiesofmembraneswithmelittin[448] andcupiennin[112].Theadditionalmembranecurvatureaboutthetoroidalporewould affect the averaging of the 31 P shielding tensor relative to a planar membrane surface; hencetheobservedreductionin 31 PCSA.Thiswouldexplainthedecreaseinthe 31 PCSA fortheDMPGandanincreaseinorderfortheDMPCacylchains.QCMdatashowsthat fallaxidin 4.1a inserts into the membrane in a transmembrane fashion in negatively charged 2:1 DMPC/DMPG bilayers, similar to caerin 1.1 and maculatin 1.1 upon addition to 4:1 DMPC/DMPG bilayers [437]. The likely formation of transmembrane poreswithinanionicmembraneswasobservedforallpeptideconcentrations(120M) in the QCM component of this study. Following saturation of the bilayer with pores, excess fallaxidin 4.1a aggregates on the surface of the membrane. These loosely associatedpeptideaggregatescanbereadilyremovedfromthebilayersurfacebyrinsing withbuffersolution[437]. 6.3.2 Mechanismofantimicrobialactivity The peptides’ ability to lyse bacteria via the carpet mechanism is dependant on its bindingaffinityanditseffectonthemembranesurfacecharge.Alternatively,oncethe peptideinteractswithamembrane,itsabilitytoinsertintoabilayerandlysebacteriavia the barrelstave or toroidal pore mechanism is essentially limited by the length of its amphipathicαhelicalregions.Fallaxidin4.1ais24aminoacidsinlength,thusiseasily abletospanabacterialmembrane. Fromtheantimicrobialactivitydata,fallaxidin4.1aappearstobecytolytictowardonly theGrampositivebacteriatested(Table6.1),similartomanyantimicrobialpeptidessuch ascitropin1.1andaurein1.2[46,71].Thepeptidesmaybeabletoformporeswithinthe outermembranesoftheGramnegativebacteriawhiletheinnermembrane(andosmotic potential of the cell) remains intact. The presence of porin proteins within the outer membranes(fordiffusionofionsfurther)suggeststhattransmembraneporesmayhave littleinfluenceontheintegrityofGramnegativecellmembranes.Gramnegativebacteria may also destroy any peptide that traverses the outer membrane using proteolytic

151 Chapter6–SolidstateNMRoffallaxidin4.1a enzymespresentintheperiplasmicspace[9](seeFigure6.2)andremainresistanttocell lysisviaporeformation. Castle et al. [449] reported a proposed mechanism of the linear nonhelical apidaecin peptidesviadiffusionacrossabacterialmembraneanddockingwithatargetmoleculeor receptor, leading to inhibition of the dnaK protein. Additional QCM studies by Piantavigna et al. [439] suggest that apidaecin peptides are easily able to traverse bacterialmembranes.Fallaxidin4.1amayinteractwithbacteriainasimilarsitespecific manner, in conjunction with nonspecific membrane interactions. However, the QCM resultsaremoreconsistentwiththepeptideinteractingspecificallywithmembranes. Collectively,thesolidstateNMRandQCMresultsstronglysuggestthatfallaxidin4.1a causestheformationoftransmembraneporesatlowpeptideconcentration(≥1M)in DMPC/DMPG(bacterialmodel)membranesandthedisruptionofDMPC(mammalian model) membranes only at higher peptide concentrations (≥5 M). This highlights the concentrationdependentcellselectiveantimicrobialactivityoffallaxidin4.1a.Also,the antimicrobial activity tests show that fallaxidin 4.1a is selective toward Grampositive bacteria. To further prove that fallaxidin 4.1a does form pores within anionic membranes, additionalmembraneleakageexperimentscouldbeundertakenbyaddingfallaxidin4.1a to solutions containing fluorescent dye encapsulated within giant unilamellar vesicles (GUVs). Experiments such as these were performed by Ambroggio et. al. with the antimicrobialpeptidescitropin1.1,aurein1.2andmaculatin1.1[450].Alternativelypore formationcanbeobservedvisuallyusingcryoelectronmicroscopy,asdonebyHan et. al. upon the addition of magainin 2 to DMPC/DPMC vesicles [451]. Further modifications to fallaxidin 4.1a may produce enhanced selectively toward anionic membranes and greater antimicrobial potency. The evidence illustrated in this study clearlyshowsthatfallaxidin4.1aisanexceptionalcandidateforthefuturedevelopment oftherapeuticantibiotics.

152 Chapter6–SolidstateNMRoffallaxidin4.1a

6.4 Experimental 6.4.1 Samplepreparation Fallaxidin4.1aanditsamidemodificationweresynthesisedwith Laminoacidsusingthe standardNαFmoc method, by GenScript Corp. (Piscataway, NJ) [376] and shownto havegreaterthan90%purity,asdeterminedbyHPLCandESIMS.Phospholipidswere obtainedfromAvantiPolarLipids(Alabaster,AL)andusedwithoutfurtherpurification. Fallaxidin4.1a(2.1mg,1mole)wascodissolvedwitheithera1:1molarmixtureof d54 DMPC/DMPCora1:1:1molarmixtureof d54 DMPC/DMPC/DMPGusing1mlof

CHCl 3/MeOH (1:1v/v);producingalipid/peptideratioof10:1.Theorganicsolventwas removedviarotaryevaporation(250mbar,30 °C)toformathinlipid/peptidefilmina round bottom flask, and the samples lyophilised overnight. The dried samples were hydratedwith100lof 50mMMOPS(150mMNaCl,pH7)buffer,subjectedtofive freeze thaw/vortex cycles and centrifuged (1 minute, 4000 rpm). The resultant viscous translucent suspensionsweretransferredto 5mm NMR tubes for NMR analysis. The ‘neutralDMPC’and‘anionicDMPC/DMPG’controlswerepreparedinasimilarmanner, withouttheadditionoffallaxidin4.1a. 6.4.2 31 PsolidstateNMR AllsolidstateNMRexperimentswereperformedonaVarian(PaloAlto,CA)Inova300 spectrometer, using a 5 mm Doty (Columbia, SC) MAS probe at 30 °C. Static proton decoupled 31 PNMRspectrawereobtainedatanoperatingfrequencyof121.5MHzusing aHahnspinechopulsesequencewitha5.8s90ºpulse,62sinterpulsedelayanda4s recycledelay. 31 PNMRspectrawereaveraged over60,000scansata spectralwidthof 125kHzwith100Hzexponentiallinebroadeninguponprocessing.Overlapped 31 Pline shapesweredeconvolutedusingDMFITsoftware.Firstly,thebaselineandthelineshapes ofthecontributingpowderpatternswerefittedbyselectingthe‘CSAstatic’modelanda line broadening of 10Hz. Lorentzian integration functions were then employed to calculate the widths (CSAs) and relative intensities each contributing powder pattern [440].

153 Chapter6–SolidstateNMRoffallaxidin4.1a

6.4.3 2HsolidstateNMR 2H NMR spectra were obtained at an operating frequency of 46.1 MHz using a quadrupolarechopulsesequencewitha3.8s90ºpulse,40sinterpulsedelayanda0.5 srecycledelay. 2HNMRspectrawereaveraged over160,000scansataspectralwidthof 500 kHzwith100Hzexponentiallinebroadening.TheoverlappingPakedoubletsfrom theunorienteddeuteriumspectrawere‘dePaked’usingsinglevaluedecomposition[313, 346, 452], numerical calculations were administered by GNU Scientific library v.1.11 [453]andgraphicaloutputsgeneratedwithgnuplotv4.2.4[454]. 6.4.4 QuartzCrystalMicrobalance QCM experiments were performed by members of Dr. Lisa Martin’s research group, School of Chemistry, Monash University, Clayton, Victoria, Australia. QCM measurements were performed using the QSense E4 system (QSense, Sweden). The sensorcrystalsusedwere5MHz,ATcut,quartzdiscs(chips)withanevaporatedgold surface (QSense). The resonance frequency and energy dissipation were measured simultaneouslyatthefundamentalfrequencyofthecrystal(1 st harmonicat5MHz)and fourharmonicsofthefundamentalfrequency(3 rd ,5 th ,7 th and9 th harmonicat15,25,35 and 45 MHz, respectively) [437]. Raw data were analysed by QTools (QSense) and Origin7.5(OriginLab,USA)software. Supportedphospholipidbilayerswerepreparedusingaliposomedepositionprocedure, whereby liposomes are allowed to spontaneously rupture and fuse together to form bilayersontoa3mercaptopropionicacid(MPA)modifiedchip.Liposomesolutionsof eitherneatDMPCoraheterogeneous2:1DMPC/DMPGcompositionwerepreparedas previouslydescribed[438].LipidswerepurchasedfromAvantiPolarLipids(Alabaster, USA). Theliposomesolutions(0.13mM)wereintroducedintotheQCMcellsataflowrateof 100 L/min.Nonrupturedliposomeswererinsedoffwithbuffer.Afterabaselinehad

154 Chapter6–SolidstateNMRoffallaxidin4.1a beenestablished,thepeptidesolution(1,2,5,7,10and20 Minbuffer;totalvolumeof 1mL)wasallowedtoflowthroughthecellsat100 L/min. The peptide was left to incubatewiththelipidbilayerforatleast20minandthenthecellswererinsedwith buffer. The buffer used throughout experiments was phosphate buffered saline (PBS), containing 0.1 M NaCl and 20 mM phosphate (pH 6.9). Sodium chloride (Ultra, ≥99.5%), potassium phosphate monobasic, and potassium phosphate dibasic (ACS reagent, ≥99%) were purchased from SigmaAldrich (Castle Hill, Australia). All experimentswereperformedat19.10±0.05ºC,aspreviouslydescribed[437,439].

155 Chapter7–NMRofamphibianneuropeptides

Chapter7 NMRstudiesofCCK2agonists 7.1 Introduction 7.1.1 Biologicalactivitiesofamphibianneuropeptides RecentlytheskinpeptideprofileoftheAustralianamphibianspeciesLitoriarothiiand two Crinia species, C.signifera and C.riparia havebeeninvestigated[66,67,69].Their peptideprofilescontainarangeofantimicrobialpeptidesandneuropeptides.Biological testsoftheskinpeptidesrevealedthateachspeciesproducedauniqueneuropeptidethat actedviaCCK2receptors,namelyrothein1andfrom L.rothii [83],riparin1from C. riparia and signiferin 1 from C. signifera [50]. Additional tests were performed on a number of alanine substituted analogues of rothein 1, each with differing activities relativetothenativepeptide.Thestudiesshowedthateachpeptidewouldinducesmooth musclecontractionand/orproliferationofsplenocytesviaCCK2receptoractivation[50, 83,430],assummarisedinTable7.1. Table7.1Smoothmuscleandsplenocyteproliferationactivitiesofrothein1and Crinia peptides[50,83, 430]. Peptide Sequence SmoothMuscle SplenocyteProliferation activity a activity b [Min.Conc.(M)] [Min.Conc.(M)] Rothein1 SVSNIPESIGF-OH Inactive 10 5 Rothein1.1 AVSNIPESIGF-OH 10 7 10 7 Rothein1.2 SV ANIPESIGF-OH Inactive 10 6 Rothein1.3 SVSNIP ASIGF-OH 10 8 Inactive Rothein1.4 SVSNIPEAIGF-OH 10 8 Inactive Rothein1.5 SVSNIPESIG A-OH Inactive Inactive Riparin1 RLCIPVIFPC -OH Inactive 10 7 Signiferin1 RLCIPYIIPC -OH 10 9 10 6 a. Determinedusingconcentrationresponsecurvesofguineapigileumsegmentcontraction. b. Determined usingconcentrationresponsecurvesofmousesplenocyteproliferation(Alamarbluetest).

153 Chapter7–NMRofamphibianneuropeptides

In the biological activity tests, the peptides bind to CCK2 receptors on cholinergenic nervessurroundingthesmoothmuscletissue(guineapigileum)causingthereleaseof acetylcholine.The acetylcholine thenbindstomuscarinic receptorsonsmooth muscle, inducingacontraction.Inthesplenocyteproliferationassays,thepeptidesbindtoCCK2 receptors on the outer membrane of selected spenocytes (specifically, Jurkat lymphoblasts and Tlymphocytes from the splenic tissue of mice) inducing cellular proliferation.Theproliferationofsplenocytescausesthereductionofalamarblue,which changes colour from blue to red, and the fluorescence of the reduced alamar blue measured(excitation544nm,emission590nm)[372,455]. Tests performed using rothein 1 on guinea pig ileum reveal that the peptide does not show any significant smooth muscle contraction (below 1% of the standard acetylcholine). This is not surprising as the potent smooth muscle active peptides, caerulein1.1and1.2,arealsopresentintheL.rothiiskinsecretions[67].Thecaerulein peptides induce smooth muscle contraction via bindingto CCK2 receptor, and share a highdegreeofsequencehomologywithmammalianCCKpeptides[67,83].Despitethe lack of smooth muscle activity, Alamar blue tests have shown that rothein 1 induces splenocyteproliferationviabindingtoCCK2receptorsatamoderateconcentration10 5 M[83]. Itisinterestingthattheanaloguesofrothein1showvastlydifferentsmoothmuscleand splenocyteactivities.Alaninesubstitutionoftheserineresiduesatthe1 st and3 rd serine residues(rothein1.1and1.2)enhancesthesplenocyteactivityofthepeptides(relativeto rothein 1) and rothein 1.1 is also smooth muscle active. The most interesting of the findings is that rothein 1.3 (Glu7 to Ala7) and rothein 1.4 (Ser8 to Ala8) are smooth muscleactiveatlowconcentrations(108M),yetshownosignificantsplenocyteactivity [83, 430]. The Crinia peptide riparin 1 causes splenocyte proliferation at the lowest detectable concentration (10 7 M), yet shows no smooth muscle activity. In contrast, signiferin1isthemostpotentsmoothmuscleactiveofthepeptides(10 9M)thatalso inducessplenocyteproliferationatamoderateconcentration(10 6M)[50,83].

154 Chapter7–NMRofamphibianneuropeptides

The protein sequences of CCK2 receptors of guinea pigs ( Cavia porcellus ) and mice (Musmusculus )are87%identical(seeAppendixB)[456,457].So,alaninesubstituted rothein1peptideanaloguesandtheselected Crinia neuropeptidesshowvastlydifferent splenocyte and smooth muscle activities, though they bind to very similar mammalian receptors.Thisalludestothequestion,whydothesepeptidesappeartohavesuchvaried activities? Thisstudydetails:(i)thesolutionstructuredeterminationofrothein1.3androthein1.4, in aqueous TFE using 2dimensional NMR techniques and a comparison of these structureswithrothein1,and(ii)aninvestigation of any key structural characteristics whichmayexplainthevariedactivitiesoftherotheinpeptides.Anadditionalobjectiveof this study is to investigate the dynamic interactions between selected neuropeptides (rothein 1, riparin 1 and signiferin 1) and neutral membranes via solidstate NMR techniques, to determine what interactions may occur on cellular membrane surfaces priortoreceptorbinding. 7.1.2 Membranemediatedreceptorbindingofhormonepeptides The mechanistic pathways that mediate the binding of peptide hormones to transmembranereceptorshasremainedacontroversialtopicformanyyears.Thesimplest modelofreceptorbindinginvolvesalockandkeymechanism,whereapeptidehormone binds directly to a transmembrane receptor from the extracellular fluid, triggering a cellular response via a secondary messenger pathway. Unlike small hormones such as adrenalineandmelatonin,peptidesareflexibleandfoldintospecificconformationsupon binding to a receptor site. The interaction of a randomly oriented peptide (from extracellular fluid) binding to a receptor can effect a significant change in free energy [85,87,458].Thisonestep‘lockandkey’mechanismofhormonepeptidetoreceptor binding may not reflect the biological activities (effective concentrations) of many hormonepeptides. StudiespioneeredbyRobertSchwyzerandcoworkersdetailtheNterminalfragmentsof hormone peptides ACTH(124) and dynorphin(113) interacting with bilayers within

155 Chapter7–NMRofamphibianneuropeptides artificial liposome suspensions, using a series of photolabelling, capacitance minimisation, and infrared attenuated total reflection spectroscopy experiments [458 464].Theobjectiveofthesestudieswastoobservethebindingofpeptidehormoneswith membranesandtoseewhetherthisreflectstheiractivity.Itwasproposedthatapeptide hormone may associate with the cellular membrane prior to binding to a receptor site. Fromthis,astepwisemodelforthebindingofahormonepeptidetoatransmembrane receptorwasdevisedasfollows:(i)thepeptideinanextended(random)conformation transfersfromtheextracellularfluidontothemembranesurface,(ii)thepeptidepartially insertsintothemembrane,(iii)thepeptideorientsitselfintoaconformationrecognised by the receptor site and, (iv) the peptide binds to the receptor site and the hormone function is activated via a secondary messenger pathway. The membrane mediated bindingofahormonepeptidetoatransmembranereceptorisillustratedinFigure7.1.

A NOTE: This figure/table/image has been removed to comply with copyright regulations. It is included in the print copy of the thesis held by the University of Adelaide Library.

Figure 7.1 A schematic of the membrane mediated binding of amphipathic peptide hormones to transmembranereceptors.Basedonafigurefrom[85]. Thismodelofmembranemediatedreceptorbindingcanalsoapplytoantagonisthormone peptides, where binding occurs with deactivation of the receptor. If this model is applicable,itmaybeimportancttodesignapeptidehormonebasedtohaveanaffinityfor thetargetcellmembranesurfaceadjacenttothereceptorsite. Thephospholipidcomponentofmammalianmembranesgenerallycontainsamixtureof zwitterionic(neutralnetcharge)andanionicphospholipids,with‘fatty’acylchainsthat

156 Chapter7–NMRofamphibianneuropeptides vary in length and degree of saturation [465]. Some common types of zwitterionic phospholipids present in mammalian membranes are phosphotidylcholine (PC), phosphatidylethanolamine (PE) and sphingomyelin (Sph). Some common types of anionicphospholipidsincludephosphatidylglycerine(PG),phosphatidylinositol(PI)and phosphatidylserine(PS)[465468].Alloftheseareglycerophospholipids(glycerolback bone),withtheoneexceptionofsphingomyelin. Thearrangementofphospholipidswithinmammaliancellularmembranesisasymmetric. TheinnerlayerisenrichedinbothneutralandanionicaminophospholipidssuchasPS andPEandtheouterlayeralmostexclusivelymadeupofneutralPCandSphlipids.This asymmetricdistributionofphospholipidsisregulatedbyanumberoftransporterswhich activelytransportaminophospholipidsfromtheouterlayertotheinnerlayer[469].Since theouterleafletislargelymadeupofneutrallipids,zwitterioniclipidssuchasDMPCare commonlyusedasmodelmembranestorepresenttheextracellularsurfaceofeukaryotic cells. 7.1.3 Cholecystokininreceptorligands Human cholecystokinin and gastrin peptides are involved in the regulation of the gastrointestinal system in response to food intake, they also affect renal function and satiety [470]. The two families of peptide hormones contain a range of amino acid sequence lengths, derived from unique prepropeptide sequences. Additionally, each peptidefamilysharesthesamecarboxyterminalpentapeptidesequence(Table7.2).The peptides have differing affinities for CCK receptors, depending on the length of the peptides,andthepresenceofsulphatedtyrosineresidues.

157 Chapter7–NMRofamphibianneuropeptides

Table7.2Commonhuman Cholecystokininpeptideligands[84,470,471]. Peptide a Sequence

CCK33 RMSIVKNLQNLDPSHRISDRDY(SO 3)MGWMDF -NH 2

CCK8 DY (SO 3)MGWMDF -NH 2

CCK4 WMDF -NH 2

Gastrin34 pEGPQGPPHLVADPSKKQGPWLEEEEEAY (SO 3)GWMDF -NH 2

Gastrin17 pEGPWLEEEEEAY (SO 3)GWMDF -NH 2

Gastrin14 WLEEEEEAY (SO 3)GWMDF -NH 2 aCCKandGastrinpeptidesexistinsulphatedandnonsulphatedforms. CCK receptors exist as two subtypes; type I (CCK1) and type II (CCK2). CCK1 receptorsarepredominantlyfoundthroughoutthegastrointestinaltractandspecificparts of the central nervous system and show ahigh affinity forsulphated CCK andgastrin peptides.CCK2receptors arepredominantlylocatedthroughout thebrain, CNS andin specificpartsofthegastrointestinaltract.Theyshowahighaffinityforbothsulphated andnonsulphatedgastrinandCCKpeptides.ThroughoutthegastrointestinaltractCCK2 receptorsarefoundonmanycelltypes,suchasneurons,parietalcells,gastricepithelial cells and gastric chief cells [84]. They also are present on some lymphocytes such as monocytes, Tcells, and lymphoblasts [472474]. Exploration into the use of radiolabelled CCK2 receptor ligands has been the focus of studies in recent years as CCK2 receptors are commonly over expressed in many types of cancerous tumours withinthegastrointestinaltract[475]. CCKreceptorsarepartofalargefamilyofGproteincoupledreceptors,locatedonthe exteriormembraneofcells.Gproteincoupledreceptorsarehormonereceptorsinvolved in many biological processes; upon activation, they relay a response via a secondary signaltransductionpathway,triggeringacellularresponse.Gproteincoupledreceptors arelargeproteins,integratedintocellularmembranes,withsevenhelicaltransmembrane domains.Thefirsthighresolution3DstructureofaGproteincoupledreceptorwasthat ofrhodopsin,determinedbyPalczewski et.al. in2000(Figure7.2)[476].

158 Chapter7–NMRofamphibianneuropeptides

A NOTE: This figure/table/image has been removed to comply with copyright regulations. It is included in the print copy of the thesis held by the University of Adelaide Library.

Figure7.23DimensionalXraycrystalstructureoftheGproteincoupledreceptorrhodopsin:αhelices areshowninpurple,βturnsshownindarkblue.Adaptedfrom[476],pdbcode1f88. TheaminoacidsequencesoftheCCKreceptorsareknownandmolecularmodelshave beenreportedbasedonthestructuralmotifofrhodopsin[84,477].Furtherstudiesofthe CCK2receptorusingsitedirectedmutagenesis,affinitystudies,andmolecularmodelling havebeenusedtogenerateamodelofthecholecystakininnonapeptide(CCK9)within theCCK2receptorbindingsite[478,479].Thestudiesshowthatanumberofaromatic amino acid residues within the transmembrane (TM) helices of the CCK2 receptor (Tyr189,Phe347andTrp351)andotherpolarandchargedresidues(Arg57,His207and Asn358),arecriticalforthebindingofCCK9withintheCCK2receptorsite. Inadditiontomodellingstudies,MierkeandcoworkersperformedNMRstudiesofthe complexofnonsulphatedCCK8(CCK8ns)withtheNterminusoftheCCK2receptor [CCK2R(147)] and CCK8ns with the third extracellular loop of the CCK2 receptor [CCK2R(352379)].BothNMRstudieswereperformedusingDPCmicelles[480482]. TheNOEderiveddistancerestraintsbetweentheCCK8nsandtheselectedsegmentsof

159 Chapter7–NMRofamphibianneuropeptides

CCK2receptorwerethenintegratedintoamolecularmodeloftheCCK2receptor,based onthestructuralmotifofrhodopsin[482].TheoutcomewasarefinedmodeloftheCCK 8ns/CCK2Rcomplexforstructureactivityrelationshipstudies;amodelappropriatefor structureactivitystudiesofCCK2activeamphibianpeptides(seeFigure7.3).

A NOTE: This figure/table/image has been removed to comply with copyright regulations. It is included in the print copy of the thesis held by the University of Adelaide Library.

Figure7.3Top(left)andside(right)viewsofthemolecularmodelofCCK8ns(grey)withinthebinding site of CCK2R (black). Ribbon representations of the extracellular (EC) and transmembrane and N terminal(NT)regionsoftheCCK2Rproteinbackboneareshown,withstickrepresentationsofkeyamino acid residues, denoted by standard single letter abbreviations. CCK8ns is illustrated with ribbon representationsacrossthepeptidebackbonewithballandstickrepresentationoftheaminoacidsidechains, keyresiduesaredenotedbystandardthreeletterabbreviations.Figureadaptedfrom[482]. Rothein1,rothein1.3,rothein1.4andtheselectedCriniapeptidesmayalsobindwithin the CCK2 receptor site in a similar fashion to CCK8ns. Hence, their 3dimensional solutionstructuresmayprovidethebasisforfurtherstructureactivityrelationshipstudies for modelling noncovalent interactions with the CCK2 receptor site. In addition to structural properties, the interactions of the peptides with phospholipid membrane surfaces can provide a further basis for exploring the membrane catalysed receptor bindingmodelandexplaintheirrespectivebiologicalactivities.

160 Chapter7–NMRofamphibianneuropeptides

7.2 Results 7.2.1 Solutionstructuresofrothein1.3androthein1.4

NMR spectra were acquired for rothein 1.3 and 1.4 in TFE/H2O (1:1) and proton resonancesassignedusingthesequentialassignmentmethod[394]describedinsection 3.4, from a combination of COSY, TOCSY and NOESY 1H NMR experiments. The NMR experiments, resonance assignment, and structural calculations to determine the solutionstructureofrothein1,wereperformedpreviouslybyEmilyNicholson,Schoolof Chemistry and Physics, the University of Adelaide [83]. For comparative reasons, the solutionstructureofrothein1,aswellastheNMRderivedstructuraldataareincludedin thischapter. 7.2.1.1 Chemicalshiftassignment Forrothein1.3,asignificantamountofoverlapwasobservedintheamideprotonregion oftheTOCSY spectrum,with coincident amidechemical shifts observed for residues Ile5, Ser8 and Gly10. However, these residues were unambiguously assigned upon examination of the COSY spectrum and the remaining TOCSY spectrum. Medium to weaksequentialNH iNH i+1 peakswereobservedfromresiduesSer2toPhe11,withthe exception of Pro6. In this case, a medium αH iNH i+1 peak was observed. The partial TOCSYandNOESYspectraforrothein1.3areshowninFigure7.4. Forrothein1.4,amoderateamountofoverlapwasobservedintheamideprotonregion oftheTOCSYspectrum,withanarrowvarianceinamide chemicalshiftobserved for residuesIle5,Glu7,Ala8andGly10.Unambiguousassignmentof the chemical shifts were made upon examination of the COSY spectrum and the remaining TOCSY spectrum.NosequentialNH iNH i+1 peakswereobservedacrossresiduesSer2toAsn4, and the Glu7Ala8 peak was obscured by the diagonal of the NOESY spectrum.

However,mediumαH iNH i+1 peakwereobservedfortheseresidues,aswellasforPro6. PartialTOCSYandNOESYspectraforrothein1.4areshowninFigure7.5.

161 Chapter7–NMRofamphibianneuropeptides

Figure7.4 PartialNOESY(mixingtime=200ms)andTOCSYspectraofrothein1.3inTFE/H 2O(1:1, v/v)atpH1.52and25 oC.NOEsbetweensequentialNHprotonsareindicatedintheNOESYspectrum. Verticallinesconnecttheresonancesineachspinsystem.Residuesarelabelledwiththestandardsingle letterabbreviationsforaminoacids,andtheirpositionwithinthesequence.

162 Chapter7–NMRofamphibianneuropeptides

Figure7.5 PartialNOESY(mixingtime=200ms)andTOCSYspectraofrothein1.4inTFE/H 2O(1:1, v/v)atpH2.40and25 oC.NOEsbetweensequentialNHprotonsareindicatedintheNOESYspectrum. Verticallinesconnecttheresonancesineachspinsystem.Residuesarelabelledwiththestandardsingle letterabbreviationsforaminoacids,andtheirpositionwithinthesequence.

163 Chapter7–NMRofamphibianneuropeptides

AdditionallowintensitypeakswereobservedintheCOSY,TOCSYandNOESYspectra ofrothein1.3androthein1.4.Theseseriesofpeakswerelikelytobetheresultof cis trans isomerisation about the imide bond of the Pro6 residue (See section 3.5). These peakswerenotassignedwithinanyoftheNMRspectra. Asummaryoftheassigned 1Hresonancesforrothein1.3androthein1.4areshownin Tables7.3and7.4respectively. Eachspectrum was completely assigned, however N + terminalNH 3 resonanceswerenotobserved. 1 o Table7.3 HNMRchemicalshiftsforrothein1.3inTFE/H 2O(1:1,v/v)atpH1.52and25 C.n.o.indicates resonancewasnotobserved. Chemicalshift(ppm) Residue NH αCH βCH Others Ser1 n.o. 4.30 4.13

Val2 8.55 4.32 2.24 γCH 3 1.08 Ser3 8.23 4.57 3.92,3.98

Asn4 8.31 4.83 2.86,2.91 γNH 2 6.74,7.50

Ile5 8.02 4.47 1.99 γCH 2 1.26,1.64

γCH 3 1.04

δCH 3 0.98

Pro6 4.44 2.05,2.35 γCH 2 2.05,2.16

δCH 2 3.77,3.95 Ala7 7.96 4.36 1.50 Ser8 8.01 4.46 3.92,4.03

Ile9 7.74 4.30 2.00 γCH 2 0.97,1.29

δCH 3 1.56 Gly10 8.02 3.92,4.03 Phe11 7.79 4.78 3.13,3.29 H2,6 7.26 H3,5 7.31 H4 7.22

164 Chapter7–NMRofamphibianneuropeptides

1 o Table7.4 HNMRchemicalshiftsforrothein1.4inTFE/H 2O(1:1,v/v)atpH2.40and25 C.n.o.indicates resonancewasnotobserved. Chemicalshift(ppm) Residue NH αCH βCH Others Ser1 n.o. 4.21 4.04

Val2 8.45 4.23 2.15 γCH 3 0.99 Ser3 8.12 4.49 3.83,3.89

Asn4 8.19 4.77 2.79,2.84 γNH 2 6.64,7.38

Ile5 7.87 4.38 1.92 γCH 2 1.17,1.56

γCH 3 0.96

δCH 3 0.89

Pro6 4.33 1.90,2.24 γCH 2 1.96,2.06

δCH 2 3.68,3.83

Glu7 7.93 4.26 2.02,2.11 δCH 2 2.51 Ala8 7.96 4.28 1.41

Ile9 7.63 4.16 1.90 γCH 2 1.48

γCH 3 1.21

δCH 3 0.87 Gly10 7.90 3.83,3.96 Phe11 7.70 4.67 3.04,3.20 H2,6 7.23 H3,5 7.28 H4 7.20 7.2.1.2 Secondarychemicalshifts Therandomcoilchemicalshiftsforαprotonsandamide protons were obtained from Wishart et. al. [237].αProtonchemicalshiftsforrothein1[83],rothein1.3androthein 1.4wereplottedagainsttherandomcoilchemicalshifts,andsmoothedoverawindowof n ± 2 residues, the amide proton secondary chemical shifts of each peptide were not smoothed. The αproton and amide proton secondary chemical shifts are illustrated in Figures7.6and7.7respectively.

165 Chapter7–NMRofamphibianneuropeptides

0.40 0.30 0.20 0.10 0.00 0.10 0.20 H Secondary Shift (ppm) HSecondary 1 0.30 -CH α α α α 0.40 1 2 3 4 5 6 7 8 91011 Residue number Figure 7.6 αproton secondary shifts of rothein 1 (purple), rothein 1.3 (blue) and rothein 1.4 (red) in

TFE/H 2O(1:1,v/v). Theαprotonsecondarychemicalshifttrendsofrothein1,rothein1.3androthein1.4are almostidentical.Thesecondaryshiftsoftherotheinpeptidesarewithin0.4ppmofthe zero,anddonotindicateanydistinctregionsofsecondarystructure.Theplotindicates thatthepeptideconformationsarelikelytoberandom.

0.60 0.40 0.20 0.00 0.20 0.40 0.60 H Secondary Shift (ppm) Shift Secondary H 1 0.80 NH NH 1 2 3 4 5 6 7 8 91011 Residue number Figure7.7 Amideprotonsecondaryshiftsofrothein1(purple),rothein1.3(blue)androthein1.4(red)in TFE/H 2O(1:1,v/v).Positivevaluesindicateadownfieldshiftfromtherandomcoilvalues, negativevalues indicateanupfieldshift[237]. Theamideprotonsecondarychemicalshifttrendsofrothein1,rothein1.3androthein 1.4 are very similar. The amide secondary shifts for each peptide generally show a

166 Chapter7–NMRofamphibianneuropeptides decreaseinthesecondaryshiftvaluesfromtheNterminaltotheCterminal,withagap due to the Pro6 amino acid residue. No defined regions of secondary structure can be determined from the amide proton secondary chemical shifts for rothein 1, rothein 1.3 androthein1.4. 7.2.1.3 NOEconnectivities ThediagnosticNOEconnectivitypatternsofrothein1,rothein1.3androthein1.4,based on ARIA assignments after eight iterations, are displayed in Figure 7.8. For rothein 1 very little sequential d NN signals were observed across the length of the peptide, and mediumtoweakd αNandd βNNOEconnectivitiesexistacrossthemajorityofthepeptide sequence. One medium range d αN(i,i+3) is observed at the Cterminus of the peptide, characteristicofhelicalstructure.However,theassignmentofthismediumrangeNOEis ambiguous.Forrothein1.3,mediumsequentiald NN ,andweaktomediumd αN andd βN

NOEconnectivitiesareobservedacrossthemajorityofthepeptide.Twomediumd βN(i,i+2) NOEs are observed at the Nterminus and between the Pro6 and Ser8 amino acid residues. However,the latter NOE assignment is ambiguous. For rothein 1.4, four d NN

NOEsareobservedtowardtheCterminalendofthepeptide,andmediumtostrongd αN and d βN NOE connectivities are observed across the majority or the peptide. No diagnostic medium or long range signals were observed for rothein 1.4. Overall the diagnosticNOEconnectivitiesareconsistentwithanextendedstructureforeachpeptide.

167 Chapter7–NMRofamphibianneuropeptides

3 Figure7.8 SummariesofNOEconnectivitiesand JNHαH couplingconstantsusedinstructurecalculations of(a)rothein1,(b)rothein1.3and(c)rothein1.4inTFE/H 2O(1:1v/v).Thethicknessofthebarsindicates therelativestrengthofNOEs(strong<3.1Å,medium3.1–3.7Åandweak>3.7Å).

168 Chapter7–NMRofamphibianneuropeptides

7.2.1.4 Couplingconstants 3 Figure7.8alsoshowsthe JNHαH couplingconstantsforrothein1,rothein1.3androthein 1.4determineddirectlyfromtheamideregionofthehighresolution1DNMRspectra. Themajorityofcouplingconstantsfallwithintherangeof68Hz,couplingconstants thatareconsistentwithrandomcoilstructure.Oneexceptionisthecouplingconstantof3 HzfromVal2amideprotonofrothein1.3,synonymouswithhelicalstructure.Another exceptionisthe8.4HzcouplingconstantsfromPhe11ofrothein1androthein1.4,thatis consistentwithβstrandsorβturns[229]. 7.2.1.5 Structurecalculations TheNOESYspectraofrothein1.3androthein1.4werefullyassignedandthecrosspeak volumesconvertedtointerprotondistancerestraintsusingamethoddescribedbyNilges et. al. [400]. A summary of the NOE derived distance restraints for rothein 1.3 and rothein1.4resultingafter8iterationsofARIAstructurecalculationsareshowninTable 7.5.Atotalof87nonredundantdistancerestraintswereproducedforrothein1.3,7that wereambiguous.Atotalof97NOErestraintswerederivedfromtheNOESYspectrum ofrothein1.4,2thatwereambiguous.Inaddition,onedihedralrestraintwasderivedfor rothein1.3,andtwoforrothein1.4fromthehighresolution1DNMRspectra. Table 7.5 A summary of experimentally derived NOE distance restraints for rothein 1.3 and rothein1.4. NumberofRestraints Peptide Rothein1.3 Rothein1.4 Sequence SVSNIPASIGF-OH SVSNIPEAIGF-OH SequentialNOEs 29 26 MediumrangeNOEs 2 0 LongrangeNOEs 0 0 IntraresidueNOEs 49 69 AmbiguousNOEs 7 2 Total 87 97 TheARIARMDandSAcalculationsproduced60finalstructuresforeachpeptide,the 20structureswiththelowestpotentialenergywerechosenforanalysis.The20lowest potential energy structures generated for rothein 1, rothein 1.3 and rothein 1.4 are illustratedinFigure7.9,superimposedoverresiduesVal2Gly10.

169 Chapter7–NMRofamphibianneuropeptides

(a)

(b) (c)

Figure7.9 The20lowestenergystructuresofrothein1(a),rothein1.3(b)androthein1.4(c)inTFE/H 2O (1:1,v/v),superimposedbestfitsoverthebackboneatomsofVal2Gly10. Thebackbonestructuresofrothein1,rothein1.3androthein1.4displaylittlestructural consistency across the central regions. The RMSDs from the mean geometries of the backboneatomsacrossresiduesVal2Gly10forrothein1,rothein1.3androthein1.4are 1.99±0.42Å,1.83±0.44Åand1.84±0.27Årespectively.Thisfurtherindicatesthat the peptide structures are largely extended, with a high degree of conformational flexibility. The RMSDs from the mean geometries are even greater for all backbone atoms,indicatingthattheNandCterminalaminoacidresidueshavethegreatestdegree offlexibility.ThestatisticsofthestructuresproducedfromRMDandSAcalculationsfor rothein1.3androthein1.4aresummarisedinTable7.6.

170 Chapter7–NMRofamphibianneuropeptides

Table 7.6 Structural statistics for rothein 1.3 and rothein 1.4 following RMD and SA calculations. The energies are derived from the mean of the 20 lowest energy structures. The RMSDs from the mean geometrieswereobtainedbybestfittingthebackboneatoms(N,αC,C')overtheselectedresidues2to10.

Energies (kcal.mol -1) rothein 1.3 rothein 1.4

Etotal 5.01±0.44 5.27±0.15

Ebond 0.13±0.03 0.15±0.03

Eangle 1.41±0.11 1.67±0.12

Eimproper 0.09±0.01 0.10±0.02

EVdW 3.37±0.39 3.34±0.40

ENOE 0.00±0.00 0.00±0.00

Ecdih 0.00±0.00 0.00±0.00 RMSD from mean geometry (Å) Allheavyatoms 3.68±0.56 3.66±0.31 Allbackboneatoms 2.63±0.56 2.45±0.32 HeavyatomsofSelectedbackbone(residues210) 2.64±0.45 2.97±0.26 Selectedbackboneatoms(residues210) 1.83±0.44 1.84±0.27 Thefinalstructuresforrothein1.3androthein1.4analoguesshowednoNOErestraint violations.ThissuggeststheresultantstructuresadequatelyrepresenttheNMRdata. Analysisoftheangularorderparameters( φandψdihedralangles,Svalues)forthefinal 20structuresofrothein1.3androthein1.4showednowelldefinedresidues.Theaverage backbone φandψdihedralanglesofthefinal20structuresforeachpeptideareplottedon RamachandranplotsinFigure7.10.Forrothein1.3,71%oftheaverage φandψdihedral angles are distributed into favoured regions, and the remaining 29 % into allowed regions.Thedihedralanglesaboutthecentralregion(Ser3Ser8)suggestβstrandorβ turnstructurewiththeexceptionofPro6(favouredαhelicalregion).Forrothein1.4,43 %oftheaverage φandψdihedralanglesaredistributedintofavouredregions,andthe remaining57%intoallowedregions,thedihedralanglesaboutthecentralregion(Asn4 Ala8)alsosuggestβstrandorβturnstructure,includingPro6.

171 Chapter7–NMRofamphibianneuropeptides

(a)

(b) Figure7.10 Ramachandranplotofaveragebackbone φ and ψ anglesfor(a)rothein1,(b)rothein1.3and

(c)rothein1.4inTFE/H 2O(1:1,v/v).Favouredandallowedregionsfor αhelicesarelabelledAanda, respectively.Favouredandallowedregionsfor βsheetslabelledBandb,respectively.Glycineandproline residuesareindicatedby and ,respectively;remainingaminoacidresiduesareindicatedby .

172 Chapter7–NMRofamphibianneuropeptides

The energy minimised average structures of rothein 1, rothein 1.3 and rothein 1.4 are illustratedinFigure7.7.Thestructuresofrothein1androthein1.3showsomefolding withincentralregions,withsharpbendsatthePro6backbone.Rothein1appearstobe themostfoldedintermsofsecondarystructure,androthein1.4appearstobethemost extended.ConsideringtheNandCterminiofeachofthestructuresshowahighdegree of variance, only minor differences across the central regions of each rothein peptide structurecanbedefined.

(a)

(b)

(c) Figure7.11 Ribbonrepresentationsoftheenergyminimisedaveragestructuresofrothein1(a),rothein1.3 (b)androthein1.4(c).

173 Chapter7–NMRofamphibianneuropeptides

7.2.2 SolidstateNMRofamphibianneuropeptideswithmembranes 7.2.2.1 31 PsolidstateNMR Solidstate 31 PNMRexperimentswereusedtoinvestigatetheeffectsofrothein1,riparin 1andsigniferin1onthemobilityandorderofphospholipidheadgroups.Static 31 PNMR spectraweretakenforunorientedlipidmultilayerscomprisedof1:1 d54 DMPC/DMPC mixtures alone and in the presence of rothein 1, riparin 1 and signiferin 1, at a lipid/peptideratioof10:1.Theresulting 31 PNMRspectraareshowninFigure7.12.

(d)

(c)

(b)

(a)

60 40 20 0 20 40 60 δδδ (ppm) 31 Figure7.12 PNMRspectraof d54 DMPC/DMPCMLV (a) alone,andinthepresenceof (b) rothein1, (c) riparin1and, (d) signiferin1. In all 31 P NMR spectra the unoriented line shapes show axially symmetric CSAs, 31 indicating the lipids are in the fluid or lamellar (L α) phase [335]. The P static NMR

174 Chapter7–NMRofamphibianneuropeptides spectraofDMPCalone(control)showedaCSAofapproximately44ppm,typicalfor unoriented MLV samples as shown in previous studies [285, 331, 332, 335]. The 31 P spectrum of DMPC MLV in the presence of rothein 1 showed an axially symmetric powderpattern,withaCSAofapproximately43ppm,indicatingthatthepeptidehas little effect on the phospholipid head group orientation. The addition of riparin 1 to DMPCMLVcausedaslightlyreducedCSAof41ppm,indicatingthepeptidecauses increasedheadgroupmobilityorachangeinorientation,possiblyduetoinsertionofthe peptideorasurfaceinteraction.Interestingly,theadditionofsigniferin1toDMPCMLV resulted in a broadened 31 P spectral lineshape, with two major overlapping lineshapes; CSAsofapproximately41and38ppmwereobserved.Thisindicatesthatsigniferin1 appearstocausesomedegreeoflateralphaseseparation,orincreasedcurvatureofthe membrane surface, as well as greater spacing between phospholipid headgroups. This effectcouldbetheresulteitheraninsertionofthepeptide,orasurfaceinteraction. Asummaryofallofthe 31 PspectraldataofamphibianneuropeptideswithDMPCMLVs isshowninTable7.7. Table7.7 31 PspectraldataforDMPCandDMPC/DMPGMLV,alone(control)andwiththeadditionof selectedamphibianneuropeptides. Sample 31 PCSA(ppm) a Control +rothein1 +riparin1 +signiferin1 DMPCCSA(ppm) 44 43 41 41 38 aCSAdetermined ±0.5ppm. bContributingCSAswerefittedusingtheDMFITprogram[440]. 7.2.2.2 2HsolidstateNMR DeuteratedDMPCwasusedin 2HNMRexperimentstoinvestigateifrothein1,riparin1 andsigniferin1disruptphospholipidacylchainmobility.Static 2HNMRspectrawere taken for unoriented lipid suspensions of 1:1 d54 DMPC/DMPC and 2:2:1 d54 DMPC/DMPC/DMPG mixtures alone and in the presence of peptide, at a 10:1 lipid/peptideratio.TheresultantspectrawereanoverlayofPakedoubletscorresponding 2 todeuteronsontheacylchainsof d54 DMPC.The Hspectraof1:1 d54 DMPC/DMPC

175 Chapter7–NMRofamphibianneuropeptides

MLValone(control)andinthepresenceofamphibianneuropeptidesisshowninFigure 7.13.

(d)

(c)

(b)

(a)

40 20 0 20 40 frequency (kHz) 2 Figure7.13 HNMRspectraof d54 DMPC/DMPCMLV (a) alone,andinthepresenceof (b) rothein1, (c) riparin1and, (d) signiferin1. 2 Thestatic HNMRspectraaretypicalforhydrated d54 DMPC/DMPCMLVsuspensions, withasmallcentralisotropicpeakduetoresidualdeuteriuminthebuffersolution[344, 434, 441]. The addition of rothein 1 showed little change in the 2H NMR spectrum relative to the control, showing the hydrophilic peptide has little effect on the hydrophobic core of the bilayer. The addition of signiferin 1 caused only minor narrowing in the 2H NMR spectrum relative to the control, and a slight increase of overlayedPakedoubletsontheouteredgesofthespectrum.The 2HNMRspectrumof DMPCMLVinthepresenceofriparin1showsasignificantnarrowingofthespectrum, indicating the peptide disrupts the hydrophobic core of the membrane leading to increasedacylchainmobility.

176 Chapter7–NMRofamphibianneuropeptides

The 2H quadrupolar spittings taken from static 2H NMR spectra were ‘dePaked’ to calculatetheorderparameters(S CD )(seeSection3.2.4.2)[312,344,442].TheS CD values were used to determine the order of CD 2/CD 3 groups along acyl chains of d54 DMPC

[307].TheSCD orderprofilesof1:1 d54 DMPC/DMPCMLValone(control)andinthe presenceofrothein1,riparin1andsigniferin1isshowninFigure7.14.

0.25 rothein 1 riparin 1 signiferin 1 DMPC

0.20 ) CD

0.15

0.10 Order Parameter (S OrderParameter

0.05

0.00 2 3 4 5 6 7 8 9 10 11 12 13 14 Carbon Position

Figure7.14Plotofthecarbondeuteriumbondorderparameters(S CD )againstacylchaincarbonposition forunorientedbilayersof1:1 d54 DMPC/DMPCalone(black),inthepresenceofrothein1(brown),riparin 1(green),andsigniferin1(blue),atalipid/peptideratioof10:1at30 °C.

TheS CD orderparametersdonotsignificantlychangeatallinthepresenceofrothein1, andonlyaminordecreaseinorderisobservedinthepresenceofsigniferin1across2 nd , rd th 3 , and 4 CD 2 positions. Thisindicates that signiferin 1 causes a minor decrease in

177 Chapter7–NMRofamphibianneuropeptides orderaboutthehydrophylicsurfaceoftheDMPCbilayer.Theorderparameterprofileof DMPCinthepresenceofriparin1showsavastdecreaseinorderacrossthemajorityof thelengthoftheacylchain.Indicatingthatriparin1interactswiththehydrophobiccore ofthebilayer,leadingtodisorderingoftheacylchains. Asummaryofthequadrupolarsplittingsofmeasuredfromthe 2HNMRspectraof1:1 d54 DMPC/DMPC MLV alone and in the presence of the selected amphibian neuropeptidesisshowninTable7.8. 2 Table7.8 The Hquadrupolarsplittings(±0.1kHz)measuredfor1:1 d54 DMPC/DMPCinthepresenceof rothein1(rot1),riparin1(rip1)andsigniferin1(sig1). 2HQuadrupolarsplittings(kHz) %Changefromlipidalone Carbon DMPC +rot1 +rip1 +sig1 +rot1 +rip1 +sig1 position 2 27.2 27.1 24.9 26.3 0 8 3 3 26.4 26.6 24.2 25.9 +1 8 2 4 26.1 26.4 24.1 25.7 +1 8 2 5 23.9 24.2 22.3 23.9 +1 7 0 6 22.4 22.4 20.8 22.1 0 7 1 7 20.1 19.7 18.2 19.8 2 9 1 8 18.9 18.6 17.3 18.6 2 8 2 9 16.9 16.9 15.6 16.9 0 8 0 10 14.9 14.9 13.8 14.9 0 7 0 11 12.5 12.4 12.6 12.4 1 +1 1 12 11.5 11.7 11.6 11.5 +2 +1 0 13 8.2 8.7 8.7 8.7 +6 +6 +6 14 3.6 3.6 3.4 3.6 0 6 0

178 Chapter7–NMRofamphibianneuropeptides

7.3 Discussion 7.3.1 Structureanalysisofrotheinanalogues

The1:1TFE/H 2Osolutionstructuresoftherothein1.3androthein1.4,derivedfromthe NMRdata,showextendedstructures(seeFigure7.7)[83].Rothein1.3androthein1.4 showsomedifferencesin3dimensionalstructurerelativetothestructureofrothein1, thoughthehydrophobicresiduesdoappeartoorientatethemselvesinsimilardirections withinthecentralregionofrothein1.3androthein1.4. Turnstructuressuchasβturnsoftendirectkeyresiduestowardtheexteriorofproteins andpeptides,andareessentialinthemolecularrecognitionprocessbyotherbiological moleculesintheformationofcomplexes[483].Rothein1doesappeartohavea‘βturn like’ structure as the Pro6αC to Ile9αCdistance is 7.16Å, and the generally excepted structuralfeatureofaβturnisαC itoαC i + 3 distanceoflessthan7Åinanonhelical region[484].Additionally,βturnsinpeptidestructuregenerallyshowhydrogenbonding ofanamideproton(NH i)tothecarbonylgrouponthethirdresidue(CO i+3 )aheadinthe peptidesequence[485].However,rothein1lacksthishydrogenbondingasthereisno amideprotononPro6.Theturnlikestructureofrothein1directsthechargedandpolar residuesGlu7andSer8towardonefaceofthepeptide(seeFigure7.7b),thisfeaturemay beinvolvedinmolecularrecognitionofthepeptidebytheCCK2receptor.Thesolution structureofrothein1.3alsoappearstohaveadefinedfoldingstructurespanningfrom Ile5 to Ile10 (see Figures 7.4b,7.5b),however toa lesserextent than the ‘βturn like’ structureofrothein1.ThisstructuredirectstheresiduesPro6,Ala7andSer8towardthe exteriorofthepeptide,aregionmuchlesspolarinnaturerelativetotheturnlikeregion ofrothein1.Thestructureofrothein1.4doesnotappeartohaveanyturnlikestructure about the central region. This indicates the peptides may undergo additional folding withintheircentralregionsuponbindingtotheCCK2receptorsite. Conformational structures of other known amphibian derived CCK2 receptor agonists suchasriparin1andsigniferin1peptidestendtoshow‘bell’shapedsolutionstructures,

179 Chapter7–NMRofamphibianneuropeptides with βturns stabilised by a disulfide bridge. Also an NMR derived model of non sulphated CCK8 (CCK8ns) in complex with the CCK2 receptor from solution structures of CCK8ns in complex with CCK2R(147), shows CCK8ns adopting a pseudohelicalstructureoverthefirstfourNterminalresiduesofthepeptideligand,with aβturntowardtheCterminusacrosstheresiduesGly4toGlu7(Figure7.8)[481,482].

Figure7.15 RibbonrepresentationofthesolutionstructureofCCK8nsincomplexwithCCK2R(147)in DPCmicellesfromNOErestraintMDandSAcalculations,determinedbyPellegrini etal. [481].pdbcode: 1d6g. OnekeyfeaturesharedbetweenCCKpeptidesandtherothein1peptidesisthepresence ofaCterminalphenylalanineresidue.Thismustbeessentialforthebindingofrothein1 peptides as rothein 1.5 (Phe11 substituted with Ala11) shows no activity. The phenylalanine must be essential for hydrophobic interactions with residues such as Pro114,Ile121andIle126ofthefirstextracellularloopofCCK2,aswellasestablishing ππ stacking interactions with Phe120. The phenylalanine residues of the rothein 1 peptides do face different directions (see Figure 7.7). However, they may easily reorientate themselves upon binding to CCK2 receptor due to initial conformational flexibility about the Cterminus, particularly considering a glycine residue precedes phenylalanine(seeFigure7.5). ThenotableCoulombic,hydrogenbondingandhydrophobicinteractionsbetweenCCK 8ns and the CCK2 receptor are listed in Table 7.9 [482], as well as some possible

180

 

A NOTE: This figure/table/image has been removed to comply with copyright regulations. It is included in the print copy of the thesis held by the University of Adelaide Library.

  

 Chapter7–NMRofamphibianneuropeptides

ThehydroxyloxygenofSer8(rothein1,1.3)orcarboxyloxygenofGlu7(rothein1,1.4) mayinteractwithAsn115inasimilarway. Ithasbeendocumentedfrombothsitedirectedmutagenesisandphotoaffinitylabelling studiesthatthesulphatedTyr2ofCCK8andCCK9undergoesaCoulombicinteraction with the guanidinium group of Arg57 residue within the Nterminal segment of the CCK2 receptor [478, 486]. In the proposed model by Giragossian et al. [482] the hydroxyloxygenofTyr2(CCK8ns)undergoeshydrogenbondingwiththeguanidinium hydrogensofArg57,thisweakerinteractionmayaccountforCCK8nsbeing~10fold less active than sulphated CCK8 [470]. Equivalent hydrogen bonding interactions are likelytoexistbetweenthehydroxyloxygensofSer1orSer3ofrothein1peptides,with Arg57oftheCCK2receptor. Thenoncovalentinteractionsofrothein1peptideswiththeCCK2receptorarepurely hypothetical. Further sitedirected mutagenesis, photoaffinity labelling, NMR and modelling studies would be required to completely analyse the structureactivity relationship. However, it is clear that the rothein 1 analogues show differences in structurerelativetorothein1.Withtheaidofthese studies, peptide structures can be generatedtodesignpeptidomimeticCCK2receptoragonists,whichretaintheactivities oftherothein1peptides. 7.3.2 SolidstateNMR Theadditionofrothein1toDMPCMLVcausedverylittlechangeinthe 31 PCSA, 2H

NMR,andS CD orderprofilesrelativetothecontrolsample.Rothein1isbothhydrophilic innatureandhasnegativechargeatapHof7,soitisunlikelythatitinsertsitselfintothe bilayerandessentiallyremainswithinthehydrophilicspacebetweentheDMPCbilayers. The solidstate NMR of the addition of riparin 1 to DMPC MLV revealed a very pronounced effect. The 31 P CSA of 41 ppm was significantly reduced relative to the control (44 ppm) indicating the peptide causes significant disorder within the surface regionofthebilayer,mostlikelyduetothepositivelychargedarginineresidueattheN

182 Chapter7–NMRofamphibianneuropeptides terminus interacting with the negatively charged phosphate groups. In addition to the disorderingwithinthehydrophilicsurfacesofthebilayers,the 2HNMRalsorevealedthat riparin 1 caused a large decrease in quadrupolar splittings (and S CD order parameters) relative to the control across the entire length of the acyl chains. This indicates that riparin1insertsitselfintothehydrophobiccoreofthebilayer,increasinglateralspacing between phospholipids leading to more mobile and disordered phospholipids. Similar observationshavebeenobservedinthesolidstateNMRofsomeantimicrobialpeptides believed to be pore forming within DMPC lipid suspensions, such as citropin and maculatin [331]. In other studies, such as those of fallaxidin 4.1a, suggest that pore forming antimicrobial peptides do not greatly affect the integrity of the core of the membraneandinfactincreasethequadrupolarsplittingsofacylCD 2/CD 3groups[82] (SeeChapter6).Howeverinthecaseofriparin1theinsertionisonlywithinoneleaflet ofthebilayer,ratherthanspanningtheentirebilayerlikeporeformingpeptides.ANMR study by Marcotte et. al. [487] of the opiate neuropeptide Methionineenkephalin with bicellar systems using deuterated lipids showed that the introduction of the peptide 2 causedadecreaseinthe HquadrupolarsplittingsacrossallCD 2/CD 3groupswithinthe lipid acyl chains. These studies were performed with zwitterionic lipid bicelles and bicelles enriched with anionic lipids. The Methionineenkephalin peptide showed differingeffectsonthequadrupolarsplittingsdependingonthedepthofpeptideinsertion intothebicellarmembranes. Collectively,thesolidstateNMRshowsthatriparin1iseasilyabletoinsertitselfinto thehydrophobiccoreofaphospholipidbilayerleadingtoadegreeofdisordering.The partofthepeptidewithinthecoreislikelytobethe‘hydrophobicloop’regionofthe peptide (amino acid residues 49). Additionally the polar/charged amino acid residues abouttheNandCterminiofthepeptideareabletointeractwiththezwitterioniclipid headgroups,reinforcingtheinsertionofthepeptideintothebilayer. The addition of signiferin 1 to DMPC MLV showed very different effects on lipid dynamicsandorderingrelativetothanriparin1,despitethepeptidessequencehomology andsimilarsecondarystructures.The 31 PNMRrevealedaverybroadpowderpattern,the

183 Chapter7–NMRofamphibianneuropeptides major contributing powder pattern had a CSA of approximately 41 ppm, and the remainingsuperimposedpowderpatternshadCSAsrangingfromapproximately41to 37ppm.Thisindicatessomedegreeoflateralphaseseparationwithinthelipidbilayer, andarangeofalteredheadgrouporderingand/ororientationinthepresenceofsigniferin 1.Interestingly,the 2HNMRrevealedonlyamajorchangeinacylchainordertowardthe head group region of the acyl chains. This effect has been observed in the solid state NMR of lipid suspensions with antimicrobial peptides that interact via a surface interaction(carpetmechanism),suchasfallaxidin4.lainzwitterionicMLVsuspensions (seechapter6)[82]. Thesefindingscanbeattributedtothefactthatsigniferin contains a polar amino acid Tyr6, that can participate in hydrogen bonding or ion dipole interactions with the zwitterionicPCheadgroupsonthesurfaceofthebilayer.Thiscanincreasethelateral spacingofthelipidheadgroupsandaffecttheirmobility.However,completeinsertionof the loop region of the peptide into the core of the bilayer may be inhibited under the conditions used. So, the solid state NMR of signiferin 1 in DMPC MLVs shows that signiferin1appearstoaccumulateonthesurfaceofzwitterionicmembranes. Anillustrationoftheinteractionsofrothein1,riparin1andsigniferin1withzwitterionic membranesbasedonthesolidstateNMRevidenceisshowninFigure7.16.

184 Chapter7–NMRofamphibianneuropeptides

Figure 7.16 Static interactions from the addition of (a) rothein 1, (b) riparin 1 and (c) signiferin 1 to zwitterionicphospholipidbilayers. The3dimensionalconformationsoftheneuropeptidesonabiologicalmembranesurface are important determinants forinvestigating their interactions with bilayers. Rothein 1 has an extended structure with a small degree of fine structure throughout the central regionofthepeptide.Incontrast,the2selectedpeptidesfromthe Crinia specieshave ‘turn’ structures reinforced by a single disulfide bond. Each of the amphibian neuropeptides in this study has a unique secondary structure in membrane mimicking solventsystems,aspreviouslydeterminedusing2DNMR[50,83].

Figure7.17 Ribbonrepresentationsoftheenergyminimisedaveragestructuresof(a) rothein1, (b) riparin 1and(c) signiferin1.Structuresweredeterminedpreviouslyusing2DNMR[50,83].

Thelackofdefinedstructureofrothein1inTFE/H2Oreflectsthemarginaleffectsithas onlipidconformationandmobilityasobservedwithsolidstateNMR.Thestructureof riparin1hasdefinedpolar/chargedandnonpolarregionsacrosstheterminiandcentral regions loop regions, respectively. The flexibility of the hydrophobic loop region illustrateshowitcouldeasilyinsertintothehydrophobiccoreofthebilayer.Incontrast toriparin1,signiferin1clearlyshowsabendintheloopregion,thatdirectsthepolar hydroxyl group of the central tyrosine residue toward one face of the peptide (Figure 7.17c),andtheremaininghydrophobicresiduestowardtheotherface.Thisbendinthe hydrophobic region illustrates that signiferin 1 is less likely to insert the entire ‘loop’ region within the hydrophobic core, but remain on the surface with the hydrophobic residuesdirectedtowardthebilayerinterior.So,thepeptidepartiallyinsertsdisrupting phospholipidheadgroupstheupperpartsoftheacylchainsatthebilayersurface.

185  M    

          !     " !    " # #     $  %    #    #   # # &            #     #    '(( )*$ +        !      ,  # # &   #"    #    '-.  /. ) !#*$                 "  # $.$

  0 #  # # !  12 ! $

A NOTE: This figure/table/image has been removed to comply with copyright regulations. It is included in the print copy of the thesis held by the University of Adelaide Library.

   3   4  ! !   #     #  !  5#      " # #      #  %   "  12   $     ! ! ##  " #     #           #   $ 0             12 !$    #    #  #      # #    #      "  12  $    #  !   6 '*           '*  #        "     1    12  7/./28$

   Chapter7–NMRofamphibianneuropeptides

Inadditiontopolarandhydrophobicinteractions,themembranepotentialofacellisan importantfactortoconsiderwithrespecttomembraneassistedbindingofhormonesto target receptors. Smooth muscle contraction via CCK2 activation occurs indirectly via CCK2 receptors on cholinergic nerves in the myenteric plexus, causing the release of acetylcholinefollowedbyactivationofmuscarinicreceptorsonsmoothmuscle.Neurons are known to have a resting membrane potential of approximately 70 mV [9]. The activation of CCK2 receptors occurs directly on the cellular surfaces of Jurkat lymphoblasts and Tlymphocytes, causing splenocyte proliferation [489491]. The membrane potentials of lymphoblasts and Tlymphocytes are in the order of 58 mV [492].Riparin1andsigniferin1bothcontainapositivenetchargeatphysiologicalpH, this may enhance their binding to both cholinergenic neurons and splenocytes. In contrast,rothein1hasanetnegativechargeatphysiologicalpH.Hencethepeptidemay notbindaseasilysuchcells,resultinginlowerbiologicalactivitiesrelativetoriparin1 andsigniferin1. Clearlythiscollectionofworkswithamphibianneuropeptidesisaworkinprogress,and the theorised interactionsof thepeptideswithbiologicalmembraneswouldneed tobe studiedinrealtimetoverifytheirmodeofactionuponapproachingamembranesurface. Methods such as QCMD, DPI and SPR could be utilised for this purpose using membranebilayerfilmsformedonsolidsurfaces,asperformedpreviouslyinstudiesof antimicrobialpeptideswithmembranes[325,332,437,493].

187 Chapter7–NMRofamphibianneuropeptides

7.4 Experimental 7.4.1 Preparationofsynthetisrothein1peptides The rothein 1 peptides were synthesised by Mimotopes (Clayton, Victoria, Australia) using Lamino acids via the standard NαFmoc method [376]. The purity of the synthesisedpeptideswasshowntobe≥95%and≥90%forrothein1.3androthein1.4 respectively,asdeterminedbyHPLCandESIMS.Rothein1.4(10.0mg,8.6mole)was dissolvedin d3TFEandH 2O(700l;1:1,v/v),givingafinalconcentrationof12.4mM, andapHof1.5.Thesamepreparativeprocedurewasusedfortherothein1.5sample, givingapHof2.4.ThepHwasrecordedusingaEutechCyberscanpH500meterwitha thinstem(183 x4mm)AEP331glassbodypHprobe.ThepHwasnotcorrectedfor eithersample. 7.4.2 NMRSpectroscopy NMR spectra were acquired using a Varian Inova600 NMR spectrometer with a 1H frequency of 600 MHz, at 25 °C. The 1H NMR resonances were referenced to the methyleneprotons(3.918ppm)oftheresidualunlabelledTFE.2DimensionalTOCSY, NOESYandDQFCOSYand 1HNMRexperimentswereconductedforeachrothein1 peptide. Presaturation was used to suppress the water resonance by centering the transmitter frequency on the water resonance and applying a low power continuous rf pulseduringtherelaxationdelay[294].IntheDQFCOSYexperiment,gradientmethods wereusedforwatersuppression[494].

Each 2D NMR experiment typically consisted of 256 t1 increments with 32 time averagedscansperincrement.TheFIDint 2consistedof2048datapointsoveraspectral widthof6154.3Hz.TheNOESYspectrawereacquiredwithmixingtimesof150or250 ms,andtheTOCSYexperimentswithaspinlocktimeof70ms.Highresolution1D 1H NMRspectrawerealsoacquiredwith0.125Hzperdigitalpointresolution,toobserve 3 JNHαH couplingconstants.

188 Chapter7–NMRofamphibianneuropeptides

Alloftheresulting2DNMRspectrawereprocessedonaSunMicrosystemsUltraSparc 1/170 workstation using VNMR software (VNMRJ version 6.1A). The data matrices weremultipliedbyaGaussianfunctioninbothdimensionsandzerofilledto2048data points prior to Fourier transformation. The resulting processed 2D NMR matrices 3 consistedof2048 x2048realdatapoints.The JNH αHvaluesweredeterminedfromthe highresolution1D 1HNMRspectra. 7.4.3 Crosspeakassignmentandstructurecalculations The 1Hresonancesinthe2DNMRspectrawereassignedusingSparkysoftware(version 3.106)viathestandardsequentialassignmentprocedure[229].Foreachsymmetricpair of crosspeaks, the peak of larger volume was used in the conversion to a distance restraint[400].Assignmentofdistancerestraintsofmethyleneandisopropylgroupswas 3 achieved using the floating chirality method [269]. JNHαH coupling constants were measured from the high resolution 1D NMR spectra and converted to backbone angle 3 3 restraintsasfollows: JNHαH <5Hz, φ=60°±30°,5Hz< JNHαH <6Hz, φ=60°±40°, 3 : JNHαH >8Hz, φ=120°±40° StructuresweregeneratedfromrandomstartingconformationsusingthestandardRMD and SA protocol of ARIA (version 1.2) [401] implemented with CNS (version 1.1) software[256].Foreachofthe8iterations,aninitial60structuresweregenerated.The 20lowestpotentialenergystructures(fromthefinal60ofthe8thiteration)wereselected for analysis. The program MOLMOL (version 2k.2) [404] was used to display the overlayedbackboneatomsofthe20lowestenergystructuresandVMDsoftware(version 1.8.2)[405]wasusedtodisplaytheenergyminimisedaveragestructures. 7.4.4 SamplePreparationofMLVsuspensions Thepeptidesrothein1,riparin1,andsigniferin1weresynthesisedwith Laminoacids using the standard NαFmoc method, by GenScript Corp. (Piscataway, NJ) [376] and shown to have greater than 90 % purity, as determined by HPLC and ESIMS. PhospholipidswereobtainedfromAvantiPolarLipids(Alabaster,AL)andusedwithout further purification. Peptides (~2.5 mg, 1 mole) were codissolved with either a 1:1

189 Chapter7–NMRofamphibianneuropeptides

molar mixture of d54 DMPC/DMPC or a 2:2:1 molar mixture of d54

DMPC/DMPC/DMPG (~ 7 mg, 10 mole) in 700 L of CHCl3/MeOH (9:1 v/v); producing a lipid/peptide ratio of 10:1. The organic solvent was removed via rotary evaporation(250mbar,30 °C)toformathinlipid/peptidefilminaroundbottomflask, andthesampleslyophilisedovernight.Thedriedsampleswerehydratedwith100lof 50mMMOPS(150mMNaCl,pH7)buffer,subjectedtofivefreezethaw/vortexcycles, andcentrifuged(1minute,4000rpm).Theresultantviscoustranslucentsuspensionswere transferredto5mmNMRtubesforNMRanalysis.Thecontrolsampleswerepreparedin asimilarmanner,withouttheadditionofpeptide. 7.4.5 31 PsolidstateNMR AllsolidstateNMRexperimentswereperformedonaVarian(PaloAlto,CA)Inova300 spectrometer, using a 5 mm Doty (Columbia, SC) MAS probe at 30 °C. Static proton decoupled 31 PNMRspectrawereobtainedatanoperatingfrequencyof121.5MHzusing aHahnspinechopulsesequencewitha5.8s90ºpulse,62sinterpulsedelayanda4s recycledelay. 31 PNMRspectrawereaveraged over60,000scansata spectralwidthof 125kHzwith100Hzexponentiallinebroadeninguponprocessing.Overlapped 31 Pline shapesweredeconvolutedusingtheDMFITprogram,employingthe‘CSAstatic’model [440]. 7.4.6 2HsolidstateNMR 2H NMR spectra were obtained at an operating frequency of 46.1 MHz using a quadrupolarechopulsesequencewitha3.8s90ºpulse,40sinterpulsedelayanda0.5 srecycledelay. 2HNMRspectrawereaveraged over160,000scansataspectralwidthof 500 kHzwith100Hzexponentiallinebroadening.TheoverlappingPakedoubletsfrom theunorienteddeuteriumspectrawere‘dePaked’usingsinglevaluedecomposition[313, 346, 452], numerical calculations were administered by GNU Scientific library v.1.11 [453],andgraphicaloutputsgeneratedwithgnuplotv4.2.4[454].

190 Chapter8–Summary

Chapter8 Summary 8.1 Thepeptideprofilesoftwo Litoriaewingii populations Thepeptideprofilesofsevenspecimensof Litoriaewingii takenfromRenmark,South Australia,weresuccessfullyanalysedonamonthlybasisusingHPLC,ESMSandEdman sequencing.Thepeptideprofileofthe L.ewingii includedanarrowspectrumantibiotic ewingiin 1.1, a unique pentapeptide tryptophyllin 6.3, and 3 unique peptides with unknown biological activity, ewingiins 2.2, 2.3 and2.4.Thepeptideprofilesofthe L. ewingii population showed no significant seasonal variance throughout the duration of thestudy. AcomparisonofthepeptideprofileoftheRenmarkL.ewingii population(populationB) toapreviouslystudiedpopulationfromtheAdelaidehills,SouthAustralia(population A),revealedasignificantdifferenceinthepeptideswithintheskinsecretions.Each L. ewingii population contained 6 peptides within their peptideprofiles,andonly2were commontobothspecies:ewingiin1andewingiin1.1.Thepeptideprofileofpopulation B showed one major pentapeptide, tryptophyllin 6.3. This peptide had 80% sequence homology (one amino acid residue difference) with tryptophyllin 6.2 isolated from population A. There were also 3 peptides: ewingiins 2.2, 2.3, and 2.4 isolated from populationB that exhibit sequence homology(7993%)withthepeptide ewingiin2.1 frompopulationA.Themostinterestingofthedifferencesinpeptideprofilesbetweenthe populations, was a lack of the peptide caerin 1 in the peptide profile of population B. Ewingiins2.2,2.3and2.4areyettobetestedforantimicrobialactivity,thoughtheydo not contain any amino acid residues such as lysine, arginine and histidine that are commonlyfoundinthesequencesofantimicrobialamphibianpeptides. The results from this study show that geographical isolation of these 2 L. ewingii populationshasleadtomutationsintheDNAencodingthehostdefenceskinpeptides overanextendedperiodoftime.Inadditiontothepeptideprofiles,closeexaminationof

191 Chapter8–Summary specimens from each L. ewingii population revealed slight differences in morphology betweenthem,namelyblackspotsontheposteriorsurfacesofthethighsonlyfoundon specimens within the Adelaide hills region. The collective evidence from this study suggeststhepopulationsrequiretaxonomicreclassification,andfurtherstudiesintothe DNAofeachpopulationwouldberequiredtosupportthis.Thisprofilingtechniquecan beappliedasanindicatorofevolutionarydivergenceformanyamphibianspecies. 8.2 Thesolutionstructuresmeucin13andmeucin18 Thesolutionstructuresofmeucin13andmeucin18,antimicrobialpeptidesisolatedfrom the venom of the ‘lesser Asian scorpion’ Mesobuthus eupeus mongolicus were determined,toclassifythemandelucidatetheirmechanism(s)ofactivity.Activitytests showedthatmeucin18wasthemoreactiveofthetwo(~2foldinmostcases),andboth peptides were cytolytic toward several Grampositive and Gramnegative bacteria, as wellasstrainsofyeastsandfungi.Using2dimensionalNMRspectroscopyandRMD calculations, both peptides were found to adopt αhelical structures, in a d3TFE/H 2O solventsystem. Thesolutionstructureofmeucin13washelicalaboutthecentralregionsfromresidues 613,howevertheNMRalsoshowedsignificantflexibilityelsewhere,notablyduetothe presenceofglycineswithintheaminoacidsequence,andalackofpolarorchargedside chains. The solution structure of meucin18 was helical across residues 517, with flexibilityabouttheNterminalregionofthepeptide.Thepresenceofcationicin the amino acid sequences of the meucin peptides meant that each peptide could be classified as a cationic helical peptide. Hence,the meucin peptides are likely to form poreswithinanionicmicrobialmembranes.Thegreaterporeformingactivityofmeucin 18 can be attributed to the greater length of the helical region, a greater proportion of polar amino acid residues, andnetpositive chargeatpH7. Theunderstandingof how thesestructuralcharacteristicsaffecttheantimicrobialactivitiesofpeptidesprovidesthe basisfordesigningpeptidebasedantibiotics.

192 Chapter8–Summary

8.3 Membraneinteractionsoftheantimicrobialpeptidefallaxidin4.1a Recently,theamidemodificationofanantimicrobialpeptideisolatedfrom Litoriafallax , fallaxidin4.1a,hasbeenshowntohavepotentantimicrobialactivityagainstanumberof Grampositivebacteria.SolidstateNMRwasusedtodeterminetheeffectsfallaxidin4.1a on zwitterionic d54 DMPC and anionic 2:1 d54 DMPC/DMPG MLVs, as models for eukaryotic and prokaryotic membranes respectively. The objective of the study was to determine if fallaxidin 4.1a had a selective effect depending on the membrane surface charge,andtodeterminethemechanismofitsantimicrobialactivity.In d54 DMPCalone, fallaxidin 4.1a caused a decrease in the 31 P CSA indicating some disordering of the phospholipid head groups, and the 2H NMR data indicated that the peptide caused 31 disordertowardtheupperregionsoftheacylchains.In d54 DMPC/DMPG,two PCSA lineshapeswereobserved,theminorCSAduetothePGenrichedcomponentdecreased relative to the control, indicating fallaxidin 4.1a had caused a degree of lateral phase separation, with a preference toward anionic DMPG head groups. In addition the 2H

NMRdatarevealedanincreaseinorderacrosstheentireacylchainsofthe d54 DMPC component,indicatinglessspaceforacylchainmovementasaresultoftransmembrane insertionandporeformation. QCMDexperimentswithDMPCand2:1DMPC/DMPGSLBscomplementedtheresults ofthesolidstateNMRexperiments.Itwasfoundthatfallaxidin4.1ahadadetergentlike effecttowardzwitterionicmembranes,causingdestructionoftheSLBsatconcentrations ≥5M.Incontrast,thepeptideunderwenttransmembraneinsertionwithinanionicSLBs at concentrations ≥ 1 M. Collectively the results show that fallaxidin 4.1a has great potential as an antibiotic peptide as it produces very different effects when interacting withzwitterionicandanionicmembranes. 8.4 The solutions structures of two analogues of rothein 1 and the membraneinteractionsofCCK2activeamphibianneuropeptides Recently, a number of analogues of rothein 1, have been shown to bind to CCK2 receptors,yetcanhavequitedifferentbiologicalactivities.Activitytestsshowedthat2of theanalogues,rothein1.3androthein1.4inducesmoothmusclecontractionsat10 8M

193 Chapter8–Summary concentrations,yetdonotinducelymphocyteproliferation.Incontrastrothein1hasbeen showntoinducelymphocyteproliferationat10 5M,yetdidnotshowanysmoothmuscle activity.The3Dsolutionstructuresofalaninesubstitutedrothein1.3(Glu7toAla7)and 1.4(Ser8toAla8)weregeneratedfrom2DNMRexperiments,todeterminewhetherany keystructuralfeaturescanprovidereasoningfordifferencesintheirbiologicalactivities relativetothenativepeptide.

Each rothein peptide had a similar 3D structure in TFE/H 2O, and the majority of the structureswerelargelyextendedwithsomefinestructureacrossthecentralpartsofthe peptides.Analysisofthebackbonedihedralanglesofrothein1.3revealedan‘open’β turnstructureaboutresidues510,similartothe3Dstructureofrothein1.Thesolution structureofrothein1.4wasthemostextendedandrandomofthepeptidestructures,and the dihedral angles across residues 48indicatedan extended ‘βstrand’type structure. Thedifferenceinthebiologicalactivitiesofrothein1andits’selectedanalogues,could not be defined directly from their flexible 3D solution structures. Differences in hydrophobicity,netcharge,andnoncovalentinteractionsbetweenthepeptidesandthe CCK2 receptor site are additional contributing factors to consider. Further studies to investigate peptide interactions with cellular membranes prior docking to the receptor, andmodellingofpeptidesdockingtheCCK2receptorsite,mayprovidefurtherreasoning forthepeptidesbiologicalactivities. Recently,the3Dsolutionstructuresandbiologicalactivitiesofriparin1andsigniferin1 have been studied. In a similar way to the rothein 1 peptides, each peptide has been shown to bind to mammalian CCK2 receptors (on guinea pig ileum and mouse splenocytes),yethavedifferentbiologicalactivities.Activitytestsshowedthatriparin1 inducedsplenocyteproliferationat≤10 7M,yetdidnotcausesignificantsmoothmuscle contractionofguineapigileum.Signiferin1causedsmoothmusclecontractionatalow concentrationof10 9M,yetonlycausedlymphocyteproliferationataconcentration≥ 10 5M.Theactivitiesofthepeptidewerewidelyvariedconsideringthehighdegreeof sequencehomologybetweenmouseandguineapigCCK2receptors.Itwasproposedthat membrane assisted binding of neuropeptides to receptors may reflect the differing

194 Chapter8–Summary biologicalactivitiesoftheamphibianneuropeptides.Thestudyinvolvedusing 31 Pand 2H solidstate NMR to analyse the membrane interactions of amphibian neuropeptides rothein1,riparin1,andsigniferin1withphospholipidbilayerscomprisedofdeuterated DMPC. The solidstate NMR of the addition of rothein 1 to DMPC MLV revealed very little effectonthemobilityofphospholipidheadgroups,andtheorderingofthedeuteratedacyl chainsof d54 DMPC.Rothein1isananionicpeptide(atpH7)withmanypolaramino acid residues, the low lymphocyte activity and lackofsmoothmuscleactivityismost likelyduetoaweakbindingaffinityforphospholipidmembranes. Solidstate NMR revealed the peptides riparin 1 and signiferin 1 showed a significant effect on the mobility of phospholipid membranes. Structural studies of the disulfide peptidesshowtheyarecationicattheNterminalregion,polarattheCterminalregion, withdistinctβturnstructuresdirectinghydrophobicresiduestowardtheexteriorofthe peptide.Theadditionofsigniferin1andriparin1toDMPCbilayerscauseddecreased CSAsinthe 31 Pspectrarelativetothecontrol.The 2Hspectrashowedadecreaseinorder towardtheupperpartoftheacylchainforsigniferin1,andalargedecreaseacrossthe majorityoftheacylchainforriparin1.Thisindicatedthatsigniferincausedahighdegree ofdisorderwithintheheadgroupsandupperacylchainsofDMPCbilayers,asaresultof the peptide coating the surface and/or partiallyinsertingintothebilayer,andriparin1 appears to insert itself deep in to hydrophobic region of the DMPC bilayer causing significantlateralspacingbetweenlipids,anddisorderingofacylchains. Theresultssuggestthatacombinationofhydrophobicandelectrostaticinteractionsdrive the Crinia peptidestowardcellularmembranesurfaces,whichmayexplaintheirgreater biological activities relative to rothein 1. The conformations of the peptides and the presence of key residues, such as tyrosine in the sequence of signiferin 1, are also important factors to be considered. Membrane association is a significant step to be consideredinthereceptorbindingofneuropeptides,andfurtherstudiesusingrealtime measurements could provide complementary evidence to support this. With further

195 Chapter8–Summary development in this field, hormone peptides can be designed for specified cellular receptorsbasedonboththeirstructureandaffinityforcellularmembranes. 8.5 Conclusion The collection of research presented in this thesis demonstrates how a range of biologicallyactivepeptidescanbeisolatedandcharacterisedusingchromatographyand massspectrometry.AVarietyifNMRbasedmethodshasbeenemployedtoprobethe structureandmembraneinteractionsofanumberofpeptides.Thedetailedstudiesassist in showingthe mechanisms of how peptides interactat amolecular level, andprovide innovativewaysofunderstandingtheirbiologicalactivities.

196 References

References 1.Lee,N.P.&Arriola,E.R.(1999)Poisonivy,oak,andsumacdermatitis., West.J. Med.171 ,354355. 2.Sheumack,D.,Howden,M.,Spence,I.&Quinn,R.(1978)Maculotoxin:a from the venom glands of the octopus Hapalochlaena maculosa identified as tetrodotoxin, Science.199 ,188189. 3.Habermehl,G.G.(1981) Venomousanimalsandtheirtoxins ,SpringerVerlag,Berlin. 4.Markland,F.S.(1998)Snakevenomsandthehemostaticsystem, Toxicon.36 ,1749 1800. 5. Rash, L. D. & Hodgson, W. C. (2002) Pharmacology and biochemistry of spider venoms, Toxicon.40 ,225254. 6.Polis,G.A.(1990) TheBiologyofScorpions ,StanfordUniversityPress,California. 7. Frokjaer, S. & Hovgaard, L. (2000) Pharmaceutical Formulation Development of PeptidesandProteins ,TaylorandFrancis,London. 8. Rang, H. P. & Lamb, P. (2003) Pharmacology , 5th edn, Churchill Livingstone, Edinburgh. 9.Campbell,N.A.(1999) Biology ,4thedn,BenjaminCummingsPub.Co.,California. 10.Sherwood,L.(2004) HumanPhysiology.FromCellstoSystems ,5thedn,Thomson LearningInc.,Minneapolis. 11.Wold,F.&Moldave,K.(1984) PostTranslationalModifications ,AcademicPress, Orlando. 12. Mann, M. & Jensen, O. N. (2003) Proteomic analysis of posttranslational modifications, NatureBiotechnol.21 ,255261. 13. Giovannini, M. G., Poulter, L., Gibson, B. W. & Williams, D. H. (1987) Biosynthesis and degradation of peptides derived from Xenopus laevis prohormones, Biochem.J.243 ,113120. 14. Alberts, B. (2008) Molecular biology of the cell , 5th edn, Garland Science, New York. 15.Zhou,M.,Liu,Y.,Chen,T.,Fang,X.,Walker,B.&Shaw,C.(2006)Componentsof thepeptidomeandtranscriptomepersistin linwapi :ThedriedskinoftheHeilongjiang

197 References brown frog ( Rana amurensis ) as used in traditional Chinese medicine, Peptides. 27 , 26882694. 16.Lee,H.M.&Chen,K.K.(1951)Theoccurrenceofnorepinephrineinchinesetoad venom, J.Pharmac.Exp.Ther.102 ,286290. 17. Lazarus, L. H. & Attila, M. (1993) The toad, ugly and venomous, wears yet a preciousjewelinhisskin, Prog.Neurobiol.41 ,473507. 18. MensahDwumah, M. & Daly,J. W. (1978) Pharmacological activityof alkaloids frompoisondartfrogs(Dendrobatidae), Toxicon.16 ,189194. 19.Erspamer,V.,Erspamer,G.F.,Severini,C.,Potenza,R.L.,Barra,D.,Mignogna,G. & Bianchi, A. (1993) Pharmacological studies of 'sapo' from the frog Phyllomedusa bicolor skin:AdrugusedbythePeruvianMatsesIndiansinshamanichuntingpractices, Toxicon.31 ,10991111. 20.Daly,J.,Caceres,J.,Moni,R.,Gusovsky,F.,Moos,M.,Seamon,K.,Milton,K.& Myers,C.(1992)FrogsecretionsandhuntingmagicintheupperAmazon:Identification ofapeptidethatinteractswithanadenosinereceptor, Proc.Natl.Acad.Sci.89 ,10960 10963. 21.Bick,R.J.,Poindexter,B.J.,Sweney,R.R.&Dasgupta,A.(2002)EffectsofChan Su,atraditionalChinesemedicine,onthecalciumtransientsofisolatedcardiomyocytes: duetomorethanNa,KATPaseblocking, LifeSci.72 ,699709. 22.Erspamer,V.,Bertaccini,G.&Cei,J.M.(1962) Occurrence of an like polypeptide(physalaemin)inskinextractsof Physalaemusfuscumaculatus , Experientia. 18 ,562563. 23. Erspamer, V., Bertaccini, G. & Cei, J. M. (1962) Occurrence of bradykininlike substancesintheamphibianskin, Experientia.18 ,563564. 24. Cei, J. M., Erspamer, V. & Rosechini, M. (1967) Taxonomic and evolutionary significance of biogenic amines and polypeptides occurring in amphibian skin. I. Neotropical leptodactylid frogs, Syst.Zool.16 ,328342. 25. Cunha Filho, G. A., Schwartz, C. A., Resck, I. S., Murta, M. M., Lemos, S. S., Castro, M.S., Kyaw,C., Pires, J., Osmindo R. & Leite, J.R. S. (2005)Antimicrobial activity of the bufadienolides marinobufagin and telocinobufagin isolated as major componentsfromskinsecretionofthetoad Buforubescens , Toxicon.45 ,777782. 26.Daly,J.W.(1998)Thirtyyearsofdiscoveringalkaloidsinamphibianskin, J.Nat.Prod.61 ,162172.

198 References

27.Erspamer,V.&Melchiorri,P.(1980)Activepolypeptides:Fromamphibianskinto thegastrointestinaltractandbrainofmammals, TrendsPharmacol.Sci.1 ,391395. 28.Pukala,T.L.,Bowie,J.H.,Maselli,V.M.,Musgrave,I.F.&Tyler,M.J.(2006) Hostdefensepeptidesfromtheglandularsecretionsofamphibians:structureandactivity, NaturalProductReports.23 ,368393. 29.Jacob,L.S.&Zasloff,M.(1994)Potentialtherapeuticapplicationsofmagaininsand otherantimicrobialagentsofanimalorigin.in AntimicrobialPeptides.CibaFoundations Symposium 186 (Marsh, J. & Goode, J. A., eds) pp. 197223, John Wiley and Sons, London. 30.Grenard,S.(1994)Frogsandtoadsin MedicalHerpetology pp.2127,Reptilesand AmphibianMagazine,Pottsville. 31.Baker,M.A.,Maloy,W.L.,Zasloff,M.&Jacob,L.S.(1993)Anticancerefficacy ofmagainin2andanaloguepeptides, CancerRes.53 ,30523057. 32.Tyler,M.J.(1987)Frogandcanetoadskinsecretionsin ToxicPlantsandAnimals. AGuideforAustralia. (Covacevich,J.,ed)pp.329339,QueenslandMuseum,Brisbane. 33.Anastasi,A.,Erspamer,V.&Endean,R.(1968)Isolationandaminoacidsequence of caerulein, the active decapeptide of the skin of Hyla caerulea , Arch. Biochem. Biophys.125 ,5768. 34.Bannon,A.W.,Decker,M.W.,Holladay,M.W.,Curzon,P.,DonnellyRoberts,D., Puttfarcken,P.S.,Bitner,R.S.,Diaz,A.,Dickenson,A.H.,Porsolt,R.D.,Williams,M. & Arneric, S. P. (1998) Broadspectrum, nonopioid analgesic activity by selective modulationofneuronalnicotinicacetylcholinereceptors, Science.279 ,7781. 35.Zasloff,M.(1987)Magainins,aclassofantimicrobialpeptidesfromXenopusskin: Isolation,characterizationoftwoactiveforms,andpartialcDNAsequenceofprecursor, Proc.Natl.Acad.Sci.84 ,54495453. 36. Zasloff, M., Martin, B. & Chen, H. (1988) Antimicrobial activity of synthetic magaininpeptidesandseveralanalogues, Proc.Natl.Acad.Sci.85 ,910913. 37.Bowie,J.H.,Chia,B.C.S.&Tyler,M.J.(1998)Hostdefencepeptidesfromthe skinglandsofAustralianamphibians:Apowerfulchemicalarsenal, Pharmacol.News. 5,1621. 38. Pouny, Y., Rapaport, D., Mor, A., Nicolas, P. & Shai, Y. (1992) Interaction of antimicrobial dermaseptin and its fluorescently labeled analogues with phospholipid membranes, Biochem.31 ,1241612423.

199 References

39.Boman,H.G.(1995)Peptideantibioticsandtheirroleininnateimmunity, Ann.Rev. Immunol.13 ,9192. 40.Dockray,G.&Hopkins,C.(1975)Caeruleinsecretionbydermalglandsin Xenopus laevis , J.CellBiol.64 ,724733. 41.Toledo,R.C.&Jared,C.(1995)Cutaneousgranularglandsandamphibianvenoms, Comp.Biochem.Physiol.A.111 ,129. 42.Carraway,R.E.&Cochrane,D.E.(1987) J.Biol.Chem.261 ,1588615889. 43.Erspamer,V.,Erspamer,G.F.,Mazzanti,G.&Endean,R.(1984)Activepeptidesin the skins of one hundred amphibian species from Australia and Papua New Guinea, Comp.Biochem.Physiol.C.77 ,99108. 44.Tyler,M.J.,Stone,D.J.M.&Bowie,J.H.(1992)Anovelmethodfortherelease andcollectionofdermal,glandularsecretionsfromtheskinoffrogs, J.Pharm.Toxicol. Methods.28 ,199200. 45. Resnick, N. M., Maloy, W. L., Guy, H. R. & Zasloff, M. (1991) A novel endopeptidasefrom Xenopus thatrecognises αhelicalsecondarystructure, Cell.66 ,541 554. 46.Wegener,K.L.,Wabnitz,P.A.,Carver,J.A.,Bowie,J.H.,Chia,B.C.S.,Wallace, J.C.&Tyler,M.J.(1999)HostdefencepeptidesfromtheskinglandsoftheAustralian BlueMountainstreefrog Litoriacitropa .Solutionstructureoftheantibacterialpeptide citropin1.1, Eur.J.Biochem.265 ,627637. 47.Frost,D.R.(2009)AmphibianSpeciesoftheWorld:anOnlineReference.Version 5.3,AmericanMuseamofNaturalHistory,NewYork. http://research.amnh.org/herpetology/amphibia/ 48.Apponyi,M.A.,Pukala,T.L.,Brinkworth,C. S., Maselli, V. M., Bowie, J. H., Tyler, M. J., Booker, G. W., Wallace, J. C., Carver, J. A., Separovic, F., Doyle, J. & Llewellyn, L. E. (2004) Hostdefence peptides of Australian anurans: Structure, mechanismofactionandevolutionarysignificance,Peptides.25 ,10351054. 49.Pukala,T.L.,Urathamakul,T.,Watt,S.J.,Beck,J.L.,Jackway,R.J.&Bowie,J.H. (2008)BindingstudiesofnNOSactiveamphibianpeptidesandCa 2+ calmodulin,using negativeionelectrosprayionisationmassspectrometry, RapidCommun.MassSpectrom. 22 ,35013509. 50.Jackway,R.J.,Pukala,T.L.,Maselli,V.M.,Musgrave,I.F.,Bowie,J.H.,Liu,Y., SurinyaJohnson,K.H.,Donnellan,S.C.,Doyle,J.R.,Llewellyn,L.E.&Tyler,M.J. (2008)Disulfidecontainingpeptidesfromtheglandularskinsecretionsoffrogletsofthe genusCrinia:Structure,activityandevolutionarytrends, Regul.Pept.151 ,8087.

200 References

51.Perriman,A.W.,Apponyi,M.A.,Buntine,M.A.,Jackway,R.J.,Rutland,M.W., White,J.W.&Bowie,J.H.(2008)Surfacemovement in water of splendipherin, the aquaticmalesexpheromoneofthetreefrog Litoriasplendida , FEBSJ.275 ,33623374. 52. Rozek, T., Bowie, J. H., Wallace, J. C. & Tyler, M. J. (2000) The antibiotic and anticanceractiveaureinpeptidesfromtheAustralianbellfrogs Litoriaaurea and Litoria raniformis .Part2.Sequencedeterminationusingelectrospraymassspectrometry, Rapid Commun.MassSpectrom.14 ,20022011. 53.Wabnitz,P.A.,Bowie,J.H.,Tyler,M.J.,Wallace, J. C. & Smith, B. P. (2000) Differences in the skin peptides of the male and female Australian tree frog Litoria splendida thediscoveryoftheaquaticmalesexpheromonesplendipherin,togetherwith Phe8caeruleinandanewantibioticpeptidecaerin1.10, Eur.J.Biochem.267 ,269275. 54.Stone,D.J.M.,Waugh,R.J.,Bowie,J.H.,Wallace,J.C.&Tyler,M.J.(1993) PeptidesfromAustralianfrogs.Thestructuresofthe caerins from Litoria caerulea , J. Chem.Res.(S).138 ,(M)910936. 55.Waugh,R.J.,Stone,D.J.M.,Bowie,J.H.,Wallace,J.C.&Tyler,M.J.(1993) PeptidesfromAustralianfrogs.Thestructuresofthecaerinsandcaeridinsfrom Litoria gilleni , J.Chem.Res.(S).139 ,(M)937961. 56. Steinborner, S. T., Waugh, R. J., Bowie, J. H., Wallace, J. C., Tyler, M. J. & Ramsay, S. L. (1997) New caerin antibacterial peptides from the skin glands of the Australiantreefrog Litoriaxanthomera , J.Pept.Sci.3 ,1815. 57.Steinborner,S.T.,Currie,G.J.,Bowie,J.H.,Wallace,J.C.&Tyler,M.J.(1998) New antibiotic caerin 1 peptides from the skin secretion of the Australian tree frog Litoria chloris .Comparisonoftheactivitiesofthecaerin1peptides from the genus Litoria , J.Pept.Res.51 ,121126. 58.Erspamer,V.(1994)Bioactivesecretionsintheamphibianintegumentin Amphibian Biology:TheIntegument (Heatwole,H.&Barthalmus,G.T.,eds)pp.178350,Surrey, BeattyandSons,ChippingNorton. 59.Wegener,K.L.,Brinkworth,C.S.,Bowie,J.H.,Wallace,J.C.&Tyler,M.J.(2001) BioactivedahleinpeptidesfromtheskinsecretionsoftheAustralianaquaticfrog Litoria dahlii : Sequence determination by electrospray mass spectrometry, Rapid Commun. MassSpectrom.15 ,17261734. 60.Wabnitz,P.A.,Bowie,J.H.,Wallace,J.C.&Tyler,M.J.(1999)Peptidesfromthe skin glands of the Australian buzzing tree frog Litoria electrica . Comparison with the skinpeptidesoftheredtreefrog Litoriarubella , Aust.J.Chem.52 ,639645.

201 References

61.Bradford,A.M.,Raftery,M.J.,Bowie,J.H.,Wallace,J.C.&Tyler,M.J.(1993) Peptides from Australian frogs the structures of the dynastins from Limnodynastes salmini andfletcherinfrom Limnodynastesfletcheri , Aust.J.Chem.46 ,12351244. 62.Waugh,R.J.,Raftery,M.J.,Bowie,J.H.,Wallace,J.C.&Tyler,M.J.(1996)The structuresofthefrenatinpeptidesfromtheskinsecretionsofthegianttreefrog, Litoria infrafrenata , J.Pept.Sci.2 ,117124. 63.Doyle,J.,Llewellyn,L.E.,Brinkworth,C.S.,Bowie,J.H.,Wegener,K.L.,Rozek, T.,Wabnitz,P.A.,Wallace,J.C.&Tyler,M.J.(2002)Amphibianpeptidesthatinhibit neuronalnitricoxidesynthase:Theisolationoflesueurinfromtheskinsecretionofthe Australianstonycreekfrog Litorialesueuri , Eur.J.Biochem.269 ,100109. 64.Rozek,T.,Waugh,R.J.,Steinborner,S.T.,Bowie,J.H.,Tyler,M.J.&Wallace,J. C. (1998) The maculatin peptides from the skin glands of the tree frog Litoria genimaculata acomparisonofthestructuresandantibacterialactivitiesofmaculatin1.1 andcaerin1.1, J.PeptideSci.4 ,111115. 65.Brinkworth,C.S.,Bowie,J.H.,Tyler,M.J.&Wallace,J.C.(2002)Acomparison ofthehostdefenceskinpeptidesoftheNewGuineatreefrog( Litoriagenimaculata) and thefringedtreefrog( Litoriaeucnemis ).Thelinkbetweenthecaerinandthemaculatin antimicrobialpeptides, Aust.J.Chem.55 ,605610. 66.Maselli,V.M.,Bilusich,D.,Bowie,J.H.&Tyler,M.J.(2006)Hostdefenceskin peptides of the Australian streambank froglet Crinia riparia : Isolation and sequence determination by positive and negative ion electrospray mass spectrometry, Rapid Commun.MassSpectrom.20 ,797803. 67. Brinkworth, C. S., Bowie, J. H., Bilusich, D. & Tyler, M. J. (2005) The rothein peptides from the skin secretion of Roth's tree frog Litoria rothii . Sequence determination using positive and negative ion electrospray mass spectrometry, Rapid Commun.MassSpectrom.19 ,27162724. 68.Steinborner,S.T.,Gao,C.W.,Raftery,M.J.,Waugh,R.J.,Blumenthal,T.,Bowie, J.H.,Wallace,J.C.&Tyler,M.J.(1994)Thestructuresoffourtryptophyllinandthree rubellidinpeptidesfromtheAustralianredtreefrog Litoriarubella , Aust.J.Chem.47 , 20992108. 69.Maselli,V.M.,Brinkworth,C.S.,Bowie,J.H.&Tyler,M.J.(2004)Hostdefence skinpeptidesoftheAustraliancommonfroglet Criniasignifera :Sequencedetermination andnegativeionelectrospraymassspectra, RapidCommun.MassSpectrom.18 ,2155 2161. 70.Bradford,A.M.,Raftery,M.J.,Bowie,J.H.,Tyler,M.J.,Wallace,J.C.,Adams,G. W.&Severini,C.(1996)NoveluperinpeptidesfromthedorsalglandsoftheAustralian floodplaintoadlet Uperoleiainundata , Aust.J.Chem.49 ,475484.

202 References

71.Rozek,T.,Wegener,K.L.,Bowie,J.H.,Olver,I.N.,Carver,J.A.,Wallace,J.C.& Tyler, M. J. (2000) The antibiotic and anticancer active aurein peptides from the Australian bell frogs Litoria aurea and Litoria raniformis . The solution structure of aurein1.2, Eur.J.Biochem.267 ,53305341. 72.Lamb,H.M.,Wiseman,L.R.(1998)Pexigananacetate, Drugs.56 ,10471052. 73. Hancock, R. E. W. (2000) Cationic antimicrobial peptides: towards clinical applications, ExpertOpin.Invest.Drugs.9 ,17231729. 74.Andres,E.,Dimarcq(2004)Cationicpeptides:updateofclinicaldevelopment, J.Int. Med.255 ,519520. 75.Epand,R.M.,Shai,Y.,Segrest,J.P.&Anantharamaiah,G.M.(1995)Mechanisms for the modulation of membrane bilayer properties by amphipathic helical peptides, Biopolymers.37 ,31938. 76.Sansom,M.S.P.(1991)Thebiophysicsofpeptidemodelsofionchannels, Prog. Biophys.Mol.Biol.55 ,139235. 77. Shai, Y. (1999) Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by αhelical antimicrobial and cell nonselective membranelyticpeptides, Biochim.Biophys.Acta.1462 ,5570. 78. Shai, Y. & Oren, Z. (2001) From "carpet" mechanism to denovo designed diastereomericcellselectiveantimicrobialpeptides, Peptides.22 ,16291641. 79. Andreu, D., Ubach, J., Boman, A., Wahlin, B., Wade, D., Merrifield, R. B. & Boman,H.G.(1992)ShortenedcecropinAmelittinhybridssignificantsizereduction retainspotentantibioticactivity, FEBSLett.296 ,190194. 80.Livermore,D.(2004)Canbetterprescribingturnthetideofresistance?, Nat.Rev. Microbiol.2 ,738. 81. Wegener, K. L. (2001) Amphibian Peptides: Their Structures and Bioactivities , ChemistryPh.D.Thesis,TheUniversityofAdelaide,Adelaide. 82. Sherman, P. J., Jackway, R. J., Gehman, J. D., Praporski, S., McCubbin, G. A., Mechler,A.,Martin,L.L.,Separovic,F.&Bowie,J.H.(2009)Solutionstructureand membraneinteractionsoftheantimicrobialpeptidefallaxidin4.1a:AnNMRandQCM study, Biochemistry.48 ,1189211901. 83. Sherman, P. J., Jackway,R. J., Nicholson,E., Musgrave, I. F., Boontheung, P.& Bowie,J.H.(2009)Activitiesofseasonablyvariablecaeruleinandrotheinskinpeptides fromthetreefrogs Litoriasplendida and Litoriarothii , Toxicon.54 ,828835.

203 References

84.Noble,F.,Wank,S.A.,Crawley,J.N.,Bradwejn,J.,Seroogy,K.B.,Hamon,M.& Roques,B.P.(1999)Structure,distributionandfunctionsofcholecystokininreceptors, Pharmacol.Rev.51 ,745781. 85.Sargent,D.F.&Schwyzer,R.(1986)Membranelipidphaseascatalystforpeptide receptorinteractions, Proc.Natl.Acad.Sci.USA.83 ,57745778. 86. Gremlich, H. U., Sargent, D. F. & Schwyzer, R. (1981) The adsorption of adrenocorticotropin(124)tetracosapeptide to lecithin bilayer membranes formed from liposomes, Eur.Biophys.J.8 ,6165. 87. Schwyzer, R. (1986) Molecular mechanism of opioid receptor selection, Biochemistry.25 ,63356342. 88. Sargent, D. F., Bean, J. W., Kosterlitz, H. W. & Schwyzer, R. (1988) Cation dependenceofopioidreceptorbindingsupportstheoryonmembranemediatedreceptor selectivity, Biochemistry.27 ,49744977. 89.Deber,C.M.&Behnam,B.A.(1984)Roleofmembranelipidsinpeptidehormone function:bindingofenkephalinstomicelles, Proc.Natl.Acad.Sci.USA.81 ,61. 90.Kaiser,E.T.&Kezdy,F.J.(1983)Secondarystructuresofproteinsandpeptidesin amphiphilicenvironments.(Areview), Proc.Natl.Acad.Sci.USA.80 ,1137. 91.Stone,D.J.M.,Bowie,J.H.,Tyler,M.J.&Wallace,J.C.(1992)Thestructureof caerin 1.1,a novelantibiotic peptide from Australiantree frogs., J.Chem.Soc.Chem. Commun. ,12241225. 92.Waugh,R.J.,Stone,D.J.M.,Bowie,J.H.,Wallace,J.C.&Tyler,M.J.(1993) Peptides from Australian frogs. Structures of the caeridins from Litoria caerulea , J. Chem.Soc.PerkinTrans.1 ,573576. 93.Fet,V.&Soleglad,M.V.(2005)Contributionstoscorpionsystematics.I.Onrecent changesinhighleveltaxonomy, Euscorpius.31 ,113. 94.Braddy,S.J.,Poschmann,M.&Tetlie,O.E.(2008)Giantclawrevealsthelargest everarthropod, BiologyLetters.4 ,106109. 95. Polis, G. A. & Brownell, P. (2001) Scorpion biology and research , Oxford UniversityPress,NewYork. 96. Gao, B., Tian, C. & Zhu, S. (2007) Inducible antibacterial response of scorpion venomgland, Peptides.28 ,22992305.

204 References

97. Miranda, F. & Lissitzky, S. (1961) Scorpamins: the Toxic Proteins of Scorpion Venoms, Nature.190 ,443444. 98.Miranda,F.,Rochat,H.&Lissitzky,S.(1964)Surlesneurotoxinesdedeuxespeces de scorpions nordafricains. I Purification des neurotoxines (scorpamines) d' Androctonusaustralis (L.)etde Buthusoccitanus (Am.), Toxicon.2 ,5160. 99.Miranda,F.,Rochat,H.&Lissitzky,S.(1964)Surlesneurotoxinesdedeuxespeces descorpionsnordafricains.IIIDeterminationspreliminairesauxetudesdestructuresur les neurotoxines (Scorpamines) d' Androctonus australis (L.) et de Buthus occitanus (Am.), Toxicon.2 ,123138. 100. Miranda, F., Rochat, H. & Lissitzky, S. (1964) Sur les neurotoxines de deux especes de scorpions nordafricains. II Proprietes des neurotoxines (Scorpamines) d' Androctonusaustralis (L.)etde Buthusoccitanus (Am.), Toxicon.2 ,113121. 101.Kopeyan,C.,Martinez,G.&Rochat,H.(1979)Aminoacidsequenceofneurotoxin IIIofthescorpion AndroctonusaustralisHector , Eur.J.Biochem.94 ,609615. 102.Rochat,H.,Rochat,C.,Miranda,F.&Lissitzki,S.(1984)Theaminoacidsequence ofneurotoxinIof AndroctonusaustralisHector , Eur.J.Biochem.17 ,262266. 103.Rochat,H.,Rochat,C.,Sampieri,F.,Miranda,F.&Lissitzky,S.(1972)Theamino acid sequence of neurotoxin II of Androctonus australis Hector , Eur. J. Biochem. 28 , 381388. 104. Gregoire, J. & Rochat, H. (1983) Covalent structure of toxins I and II from the scorpion Buthusoccitanustunetanus , Toxicon.21 ,153162. 105.Zeng,X.C.,Li,W.X.,Wang,S.X.,Zhu,S.Y.&Luo,F.(2001)Precursorofa Novel Scorpion Venom Peptide (BmKn1) with no Disulfide Bridge from Buthus martensiiKarsch , IUBMBLife.51 ,117120. 106. Bosmans, F. & Tytgat, J. (2007) Voltagegated sodium channel modulation by scorpion αtoxins, Toxicon.49 ,142158. 107.Zlotkin,E.,Fishman,Y.&Elazar,M.(2000)AaIT:Fromneurotoxintoinsecticide, Biochimie.82 ,869881. 108.Zeng,X.,Corzo,G.&Hahin,R.(2005)Scorpionvenompeptideswithoutdisulfide bridges, IUBMBLife.57 ,1321. 109.Habermann,E.&Zeuner,G.(1971)Comparativestudiesofnativeandsynthetic melittins, NaunynSchmiedeberg'sArch.Pharmacol.270 ,19.

205 References

110.Wong,H.,Bowie,J.H.&Carver,J.A.(1997)Thesolutionstructureandactivityof caerin 1.1, an antimicrobial peptide from the Australian green tree frog, Litoria splendida , Eur.J.Biochem.247 ,545557. 111. KuhnNentwig, L., Müller, J., Schaller, J., Walz, A., Dathe, M. & Nentwig, W. (2002)Cupiennin1,anewfamilyofhighlybasicantimicrobialpeptidesinthevenomof thespider Cupienniussalei (Ctenidae), J.Biol.Chem.277 ,1120811216. 112.Pukala,T.L.,Boland,M.P.,Gehman,J.D.,KuhnNentwig,L.,Separovic,F.& Bowie,J.H.(2007)Solutionstructureandinteractionofcupiennin1a,aspidervenom peptide,withphospholipidbilayers, Biochemistry.46 ,35763585. 113.Gao,B.,Sherman,P.,Luo,L.,Bowie,J.&Zhu,S.(2009)Structuralandfunctional characterization of two genetically related meucin peptides highlights evolutionary divergenceandconvergenceinantimicrobialpeptides, FASEBJ.23 ,12301245. 114. LarabaDjebari, F., Legros, C., Crest, M.,Céard,B., Romi, R.,Mansuelle, P., Jacquet, G., van Rietschoten, J., Gola, M. & Rochat, H. (1994) The kaliotoxin family enlarged.Purification,characterization,andprecursornucleotidesequenceofKTX2from Androctonusaustralis venom, J.Biol.Chem.269 ,3283532843. 115.Grishin,E.V.(1981)Structureandfunctionof Buthuseupeus scorpionneurotoxins, J.Quant.Chem.20 ,291298. 116.Ovchinnikov,Y.A.(1984)Bioorganicchemistryofpolypeptideneurotoxins, Pure Appl.Chem.56 ,10491068. 117.YongHua,J.,Mansuelle,P.,Terakawa,S.,Kopeyan,C.,Yanaihara,N.,Ke,H.& Rochat,H.(1996)Twoneurotoxins(BmKIandBmKII)fromthevenomofthescorpion ButhusmartensiKarsch :purification,aminoacidsequencesandassessmentofspecific activity, Toxicon.34 ,9871001. 118.Srinivasan,K.N.,Nirthanan,S.,Sasaki,T.,Sato,K.,Cheng,B.,Gwee,M.C.E., Kini, R. M. & Gopalakrishnakone, P. (2001) Functional site of bukatoxin, an αtype sodiumchannelneurotoxinfromtheChinesescorpion( ButhusmartensiKarsch )venom: probableroleofthe52PDKVP56loop, FEBSLett.494 ,145149. 119.Zeng,X.,Wang,S.,Zhu,Y.,Zhu,S.&Li,W.(2004)Identificationandfunctional characterizationofnovelscorpionvenompeptideswithnodisulfidebridgefrom Buthus martensiiKarsch , Peptides.25 ,143150. 120.RomiLebrun,R.,Lebrun,B.,MartinEauclaire,M.F.,Ishiguro,M.,Escoubas,P., Wu,F.Q.,Hisada,M.,Pongs,O.&Nakajima,T.(1997)Purification,Characterization, andSynthesisofThreeNovelToxinsfromtheChineseScorpion Buthusmartensi ,which actonK +Channels, Biochemistry.36 ,1347313482.

206 References

121.Zhijian,C.,Yun,X.,Chao,D.,Shunyi,Z.,Shijin,Y.,Yingliang,W.&Wenxin,L. (2006)CloningandcharacterizationofanovelcalciumchanneltoxinlikegeneBmCa1 fromChinesescorpion MesobuthusmartensiiKarsch , Peptides.27 ,12351240. 122.Vargas,O.,Martin,M.F.&Rochat,H.(1987)Characterizationofsixtoxinsfrom thevenomoftheMoroccanscorpion Buthusoccitanusmardochei , Eur.J.Biochem.162 , 589599. 123.Cestèle,S.,Stankiewicz,M.,Mansuelle,P.,Waard,M.D.,Dargent,B.,Gilles,N., Pelhate,M.,Rochat,H.,MartinEauclaire,M.F.&Gordon,D.(1999)Scorpion βlike toxins,toxictobothmammalsandinsects,differentiallyinteractwithreceptorsite3on voltagegatedsodiumchannelsinmammalsandinsects,Eur.J.Neurosci.11 ,975985. 124. Chuang,R. S.I.,Jaffe, H.,Cribbs,L.,PerezReyes, E. & Swartz, K. J. (1998) Inhibition of Ttype voltagegated calcium channels by a new scorpion toxin, Nature Neurosci.1 ,668674. 125.Sautière,P.,Cestèle,S.,Kopeyan,C.,Martinage,A.,Drobecq,H.,Doljansky,Y.& Gordon, D. (1998) New toxins acting on sodium channels from the scorpion Leiurus quinquestriatushebraeus suggestacluetomammalianvsinsectselectivity, Toxicon.36 , 11411154. 126.Garcia,M.L.,GarciaCalvo,M.,Hidalgo,P., Lee, A. & MacKinnon, R. (1994) PurificationandCharacterizationofThreeInhibitorsofVoltageDependentK +Channels from LeiurusQuinquestriatusHebraeus Venom, Biochemistry.33 ,68346839. 127.Ullrich,N.,Gillespie,G.Yancey.,Sontheimer,Harald.(1996)Humanastrocytoma cellsexpressauniquechloridecurrent Neuroreport.7 ,10201024. 128.DeBin,J.A.&Strichartz,G.R.(1991)Chloridechannelinhibitionbythevenomof thescorpion Leiurusquinquestriatus , Toxicon.29 ,14031408. 129. DeBin, J. A., Maggio, J. E. & Strichartz, G. R. (1993) Purification and characterization of chlorotoxin, a chloride channel ligand from the venom of the scorpion, Am.J.Physiol.CellPhysiol.264 ,C361369. 130.Bechis,G.,Sampieri,F.,Yuan,P.M.,Brando,T.,Martin,M.F.,Diniz,C.R.& Rochat,H.(1984)AminoacidsequenceoftoxinVII,aβtoxinfromthevenomofthe scorpion Tityusserrulatus , Biochem.Biophys.Res.Commun.122 ,11461153. 131. Possani, L. D., Martin, B.M., Fletcher, M.D., Fletcher, P.L. (1991) Discharge effects on pancreatic exocrine secretion produced by toxins purified from Tityus serrulatusscorpionvenom, J.Biol.Chem.266 ,3178–3185. 132. Crest, M., Jacquet, G., Gola, M., Zerrouk, H., Benslimane, A., Rochat, H., Mansuelle,P.&MartinEauclaire,M.F.(1992)Kaliotoxin,anovelpeptidylinhibitorof

207 References neuronal BKtype Ca 2+ activated K + channels characterized from Androctonus mauretanicusmauretanicus venom, J.Biol.Chem.267 ,16401647. 133. GarciaCalvo, M., Leonard, R. J., Novick, J., Stevens, S. P., Schmalhofer, W., Kaczorowski, G. J. & Garcia, M. L. (1993) Purification, characterization, and biosynthesis of margatoxin, a component of Centruroides margaritatus venom that selectively inhibits voltagedependent potassium channels, J. Biol. Chem. 268 , 18866 18874. 134.Sitges,M.,Possani,L.&Bayon,A.(1986)Noxiustoxin,ashortchaintoxinfrom the Mexican scorpionCentruroidesnoxius, induces transmitter releasebyblockingK+ permeability, J.Neurosci.6 ,15701574. 135. GarciaValdes, J., Zamudio, F. Z., Toro, L. & Possan, L. D. (2001) , αKTx1.11,anewscorpionpeptideblockerofMaxiKchannelsthatdifferentiatesbetween αand α+β(β1or β4)complexes, FEBSLett.505 ,369373. 136.Jaravine,V.A.,Nolde,D.E.,Reibarkh,M.J.,Korolkova,Y.V.,Kozlov,S.A., Pluzhnikov,K.A.,Grishin,E.V.&Arseniev,A.S.(1997)ThreeDimensionalStructure of Toxin OSK1 from Orthochirus scrobiculosus Scorpion Venom, Biochemistry. 36 , 12231232. 137.Batista,C.V.F.,GómezLagunas,F.,Lucas,S.&Possani,L.D.(2000)Tc1,from Tityuscambridgei ,isthefirstmemberofanewsubfamilyofscorpiontoxinthatblocks K+channels, FEBSLett.486 ,117120. 138. Batista, C. V. F., GómezLagunas, F., Rodríguez de la Vega, R. C., Hajdu, P., Panyi, G., Gáspár, R. & Possani,L. D. (2002) Two novel toxins from the Amazonian scorpion Tityuscambridgei thatblockKv1.3andShakerBK +channelswithdistinctly differentaffinities, BBAProteinsProteom.1601 ,123131. 139. Corzo, G., Escoubas, P., Villegas, E., Barnham,K.J.,He,W.,Norton,R.S.& Nakajima,T.(2001)Characterizationofuniqueamphipathicantimicrobialpeptidesfrom venomofthescorpion Pandinusimperator , Biochem.J.359 ,3545. 140.Valdivia,H.H.,Kirby,M.S.,Lederer,W.J. & Coronado, R. (1992) Scorpion toxins targeted against the sarcoplasmic reticulum Ca 2+ release channel of skeletal and cardiacmuscle, Proc.Natl.Acad.Sci.89 ,1218512189. 141.Fajloun,Z.,Kharrat,R.,Chen,L.,Lecomte,C.,DiLuccio,E.,Bichet,D.,ElAyeb, M., Rochat, H., Allen, P. D., Pessah, I. N., De Waard, M. & Sabatier, J. M. (2000) Chemicalsynthesisandcharacterizationofmaurocalcine,ascorpiontoxinthatactivates Ca 2+ releasechannel/ryanodinereceptors, FEBSLett.469 ,179185. 142. Moerman, L., Bosteels, S., Noppe, W., Willems, J., Clynen, E., Schoofs, L., Thevissen,K.,Tytgat,J.,Eldere,J.V.,Walt,J.v.d.&Verdonck,F.(2002)Antibacterial

208 References andantifungalpropertiesof αhelical,cationicpeptidesinthevenomofscorpionsfrom southernAfrica, Eur.J.Biochem.269 ,47994810. 143.Zhu,S.,Darbon,H.,Dyason,K.,Verdonck,F.&Tytgat,J.(2003)Evolutionary originofinhibitorcystineknotpeptides, FASEBJ.17 ,17651767. 144. Dai, L., Corzo, G., Naoki, H., Andriantsiferana, M. & Nakajima, T. (2002) Purification, structurefunction analysis, and molecular characterization of novel linear peptides from scorpion Opisthacanthus madagascariensis , Biochem. Biophys. Res. Commun.293 ,15141522. 145. Zhao, Z.,Ma,Y.,Dai,C., Zhao,R., Li, S., Wu, Y., Cao, Z. & Li, W. (2009) Imcroporin, a New Cationic Antimicrobial Peptide from the Venom of the Scorpion Isometrusmaculates , Antimicrob.AgentsChemother.53 ,34723477. 146.TorresLarios,A.,Gurrola,G.B.,Zamudio,F.Z.&Possani,L.D.(2000)Hadrurin, anewantimicrobialpeptidefromthevenomofthescorpion Hadrurusaztecus , Eur.J. Biochem.267 ,50235031. 147.Possani,L.D.,Merino,E.,Corona,M.,Bolivar,F.&Becerril,B.(2000)Peptides andgenescodingforscorpiontoxinsthataffectionchannels, Biochimie.82 ,861868. 148. Thomson, J. J. (1913) Rays of Positive Electricity and Their Application to ChemicalAnalyses ,Longmans,GreenandCo.,London. 149.Mattauch,J.&Herzog,R.(1934)Aboutanewmassspectrograph, Z.Physik.89 , 786795. 150.Dempster,A.J.(1918)Anewmethodofpositiverayanalysis, Phys.Rev.11 ,316 325. 151.Beynon,J.H.,Cooks,R.G.,Amy,J.W.,Baitinger,W.E.&Ridley,T.Y.(1973) Design and performance of a massanalyzed ion kinetic energy (MIKE) spectrometer, Anal.Chem.45 ,1023A1031A. 152. Stephens, W. E. (1946) A pulsed mass spectrometer with time dispersion, Phys. Rev.69 ,691. 153. Wiley, W. C. & McLaren, I. H. (1955) TimeofFlight Mass Spectrometer with ImprovedResolution, Rev.Sci.Inst.26 ,11501157. 154. Cotter, R. J. (1994) Timeofflight mass spectrometry in TimeofFlight Mass Spectrometry (Cotter,R.J.,ed)pp.1648,AmericanChemicalSociety,Washington. 155. Paul, W. (1990) Electromagnetic traps for charged and neutral particles, Angew. Chem.Int.Ed.29 ,739748.

209 References

156.Cooks,R.G.&Kaiser,R.E.(1990)Quadrupoleiontrapmassspectrometry, Acc. Chem.Res.23 ,213219. 157.Rose,M.E.(1982) MassSpectrometryforChemistsandBiochemists ,Cambridge UniversityPress,Cambridge. 158.Harrison,A.G.&Cotter,R.J.(1990)Methodsofionization, MethodsEnzymol. 193 ,336. 159.Munson,M.S.B.&Field,F.H.(1966)Chemicalionizationmassspectrometry.1. Generalintroduction, J.Am.Chem.Soc.88 ,26212630. 160.Harrison,A.G.(1983) ChemicalIonizationMassSpectrometry ,CRCPress,Boca Raton. 161. Karas, M., Bachmann, D., Bahr, U. & Hillenkamp, F. (1987) Matrixassisted ultraviolet laser desorption of nonvolatile compounds, Int. J. Mass Spectrom. Ion Processes.78 ,5368. 162. Karas, M. & Hillenkamp, F. (1988) Laser desorption ionization of proteins with molecularmassesexceeding10000daltons, Anal.Chem.60 ,2299A2301A. 163.Tanaka,K.,Waki,H.,Ido,Y.,Akita,S.,Yoshida,Y.,Yoshida,T.&Matsuo,T. (1988)Proteinandpolymeranalysesupto m/z 100000bylaserionizationtimeofflight massspectrometry, RapidCommun.MassSpectrom.2 ,151153. 164.Yamashita,M.&Fenn,J.B.(1984)Electrosprayionsource.Anothervariationon thefreejettheme, J.Phys.Chem.88 ,44514459. 165.Griffiths,W.J.,Jonsson,A.P.,Liu,S.,Rai,D.K.&Wang,Y.(2001)Electrospray andtandemmassspectrometryinbiochemistry, Biochem.J.355 ,545561. 166.Dole,M.,Mach,L.L.,Hines,R.L.,Mobley,R.C.,Ferguson,L.D.&Alice,M.B. (1968)Molecularbeamsofmacroions, J.Chem.Phys.49 ,22102247. 167. Shukla, A. K. & Futrell, J. H. (1993) Collisional activation and dissociation of polyatomicions, MassSpectrom.Rev.12 ,211255. 168.Cooks,R.G.(1978) CollisionSpectroscopy ,PlenumPress,NewYork. 169. Haynes, R. & Gross, M. L. (1990) Collisioninduced dissociation, Methods Enzymol.193 ,237263.

210 References

170.Syka,J.E.P.,Coon,J.J.,Schroeder,M.J.,Shabanowitz,J.&Hunt,D.F.(2004) Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry, Proc.Natl.Acad.Sci.USA.101 ,95289533. 171.Mikesh,L.M.,Ueberheide,B.,Chi,A.,Coon,J.J.,Syka,J.E.P.,Shabanowitz,J. &Hunt,D.F.(2006)TheutilityofETDmassspectrometryinproteomicanalysis, BBA ProteinsProteom.1764 ,18111822. 172.Little,D.P.,Speir,J.P.,Senko,M.W.,O'Connor, P. B. & McLafferty, F. W. (2002) Infrared Multiphoton Dissociation of Large Multiply Charged Ions for BiomoleculeSequencing, Anal.Chem.66 ,28092815. 173.Morris,H.R.,Paxton,T.,Dell,A.,Langhorne,J.,Berg,M.,Bordoli,R.S.,Hoyes, J. & Bateman, R. H. (1996) High sensitivity collisionallyactivated decomposition tandemmassspectrometryonanovelquadrupole/orthogonalaccelerationtimeofflight massspectrometer, RapidCommun.MassSpectrom.10 ,889896. 174.Wysocki,V.H.,Resing,K.A.,Zhang,Q.&Chen,G.(2005)Massspectrometryof peptidesandproteins, Methods.35 ,211222. 175. Dawson, P. H. (1976) Quadrupole Mass Spectrometry and its Applications , Elsevier,Amsterdam. 176.Steel,C.&Henchman,M.(1998)Understandingthequadrupolemassfilterthrough computersimulation, J.Chem.Ed.75 ,10491054. 177.Cooks,R.G.,Beynon,J.H.,Caprioli,R.M.&Lester,G.R.(1973) Metastable Ions ,Elsevier,Amsterdam. 178.deHoffmann,E.(1996)Tandemmassspectrometry:Aprimer, J.MassSpectrom. 31 ,129137. 179.Shukla,A.K.&Futrell,J.H.(2000)Tandemmassspectrometry:Dissociationof ionsbycollisionalactivation, J.MassSpectrom.35 ,10691090. 180.Cooks,R.G.(2005)Collisioninduceddissociation:Readingsandcommentary, J. MassSpectrom.30 ,12151221. 181.Mamyrin,B.A.,Krataev,V.I.,Shmikk,D.V.&Zagulin,V.A.(1973)Themass reflectron, a new nonmagnetic timeofflight mass spectrometer with high resolution, Sov.Phys.JETP.37 ,4548. 182.Mamyrin,B.A.(1994)Laserassistedreflectrontimeofflightmassspectrometry, Int.J.MassSpectrom.IonProc.131 ,119.

211 References

183.Chernushevich,I.V.,Loboda,A.V.&Thompson,B.A.(2001)Anintroductionto quadrupoletimeofflightmassspectrometry, J.MassSpectrom.36 ,849865. 184. Fenn, J. B., Mann, M., Meng, C. K., Wong, S. F. & Whitehouse, C. M. (1989) Electrosprayionizationformassspectrometryoflargebiomolecules, Science.246 ,6471. 185. Fenn, J. B., Mann, M., Meng, C. K., Wong, S. F. & Whitehouse, C. M. (1990) Electrosprayionizationprinciplesandpractice,MassSpectrom.Rev.9 ,3770. 186.Taylor,G.I.(1964)Disintegrationofwaterdropsinanelectricfield, Proc.Royal Soc.Lond.A.280 ,383397. 187.Williams,D.H.&Fleming,I.(1995) SpectroscopicMethodsinOrganicChemistry , McGrawHillBookCo.,London. 188. Kebarle, P. (2000) A brief overview of the present status of the mechanisms involvedinelectrospraymassspectrometry, J.MassSpectrom.35 ,804817. 189.Mant,C.T.&Hodges,R.S.(1991) HighPerformanceLiquidChromatographyof PeptidesandProteins.Separation,AnalysisandConformation ,CRCPress,BocaRaton. 190.García,M.C.(2005)Theeffectofthemobilephaseadditivesonsensitivityinthe analysis of peptides and proteins by highperformance liquid chromatography electrospraymassspectrometry, J.Chromatogr.B.825 ,111123. 191.Yoshida,T.(2004)Peptideseparationbyhydrophilicinteractionchromatography: Areview, J.Biochem.Biophys.Methods.60 ,265280. 192.Henschen,A.,Hupe,K.,Lottspeich,F.&Voelter,W.(1985) HighPerformance LiquidChromatographyinBiochemistry ,VCHPublishers,Weinheim. 193.Yalcin,T.,Khouw,C.,Csizmadia,I.G.,Peterson,M.R.&Harrison,A.G.(1995) WhyAreBIonsStableSpeciesinPeptideSpectra?,J.Am.Soc.MassSpectrom.6 ,1165 1174. 194.Polce,M.J.,Ren,D.&Wesdemiotis,C.(2000)Dissociationofthepeptidebondin protonatedpeptides, J.MassSpectrom.35 ,13911398. 195.Paizs,B.&Suhai,S.(2004)Towardsunderstandingthetandemmassspectraof protonatedoligopeptides.1:mechanismofamidebondcleavage, J.Am.Soc.MassSpec. 15 ,103113. 196. Paizs, B. & Sándor, S. (2005) Fragmentation pathways of protonated peptides, MassSpectrom.Rev.24 ,508548.

212 References

197. Maclean, M. J., Brinkworth, C. S., Bilusich, D., Bowie, J. H., Doyle, J. R., Llewellyn, L. E. & Tyler, M. J. (2006) New caerin antibiotic peptides from the skin secretionoftheDaintyGreenTreeFrogLitoriagracilenta.Identificationusingpositive andnegativeionelectrospraymassspectrometry, Toxicon.47 ,664675. 198. Bradford, A. M., Waugh, R. J. & Bowie, J. H. (1995) Characterization of underivatizedtetrapeptidesbynegativeion fastatom bombardment mass spectrometry, RapidCommun.MassSpectrom.9 ,677685. 199.Biemann,K.&Martin,S.A.(1987)Massspectrometricdeterminationoftheamino acidsequenceofpeptidesandproteins, MassSpectrom.Rev.6 ,176. 200.Eckersley,M.,Bowie,J.H.&Hayes,R.N.(1989)Collisioninduceddissociations ofdeprotonatedpeptides,dipeptidesandtripeptideswithhydrogenandalkyl αgroups. Anaidtostructuredetermination., Org.MassSpectrom.24 ,597602. 201. Waugh, R., Bowie, J. & Gross, M. (1993) CollisionInduced Dissociations of DeprotonatedPeptides.DipeptidesContainingAsn,ArgandLys, Aust.J.Chem.46 ,693 702. 202.Bahr,U.,Karas,M.&Kellner,R.(1998)Differentiation of lysine/glutamine in peptide sequence analysis by electrospray ionization sequential mass spectrometry coupledwithaquadrupoleiontrap, RapidCommun.MassSpectrom.12 ,13821388. 203.Johnson,R.S.,Martin,S.A.,Biemann,K.,Stults,J.T.&Watson,J.T.(2002) Novelfragmentationprocessofpeptidesbycollisioninduceddecompositioninatandem massspectrometer:differentiationofleucineandisoleucine, Anal.Chem.59 ,26212625. 204.Edman,P.&Begg,G.(1967)Aproteinsequenator, Eur.J.Biochem.1 ,8091. 205.Hunkapiller,M.W.,Hewick,R.M.,Dreyer,W.J.&Hood,L.E.(1983)High sensitivitysequencingwithagasphasesequenator, MethodsEnzymol.91 ,399413. 206.Bodanszky,M.(1988) PeptideChemistry.APracticalTextbook ,SpringerVerlag, Berlin. 207. Gevaert, K. & Vandekerckhove, J. (2000) Protein identification methods in proteomics, Electrophoresis.21 ,11451154. 208.Blundell,T.L.&Johnson,L.N.(1976) ProteinCrystallography ,AcademicPress, NewYork. 209. Glusker, J. P. (1981) Structural Crystallography in Chemistry and Biology, HutchinsonRossPub.Co.,Stroudsburg.

213 References

210.Rabi,I.I.,Zacharias,J.R.,Millman,S.& Kusch, P. (1938) A New Method of MeasuringNuclearMagneticMoment, Phys.Rev.53 ,318. 211.Bloch,F.,Hansen,W.W.&Packard,M.(1946)NuclearInduction, Phys.Rev.69 , 127. 212. Purcell, E. M., Torrey, H. C. & Pound, R. V. (1946) Resonance Absorption by NuclearMagneticMomentsinaSolid, Phys.Rev.69 ,37. 213.Jacobson,B.,Anderson,W.A.&Arnold,J.T.(1954)Aprotonmagneticresonance studyofthehydrationofdeoxyribonucleicacid., Nature.17 ,772773. 214.Takeda,M.&Jardetzky,O.(1957)ProtonMagneticResonanceofSimpleAmino AcidsandDipeptidesinAqueousSolution, J.Chem.Phys.26 ,13461347. 215.Bovey,F.A.&Tiers,G.V.D.(1959)ProtonN.S.R.Spectroscopy.V.Studiesof AminoAcidsandPeptidesinTrifluoroaceticAcid, J.Am.Chem.Soc.81 ,28702878. 216.Wüthrich,K.(1976) NMRinBiologicalResearch:PeptidesandProteins ,North HollandPub.Co.,Amsterdam. 217.Freeman,R.(1995)AshorthistoryofNMR, Chem.Heterocycl.Comp.31 ,1004 1005. 218.Nelson,F.A.&Weaver,H.E.(1964)NuclearMagneticResonanceSpectroscopy inSuperconductingMagneticFields, Science.146 ,223232. 219.Aue,W.P.,Bartholdi,E.&Ernst,R.R.(1976) Two dimensional spectroscopy. Applicationtonuclearmagneticresonance., J.Chem.Phys.64 ,22292246. 220. Ernst, R. R. & Anderson, W. A. (1966) Application of Fourier transform spectroscopytomagneticresonance, Rev.Sci.Inst.37 ,93102. 221.Wider,G.(2000)Structuredeterminationofbiologicalmacromoleculesinsolution usingnuclearmagneticresonancespectroscopy, Biotechniques.29 ,12781294. 222.Sanders,C.R.&Hunter,B.K.(1993) ModernNMRSpectroscopy:AGuidefor Chemists ,OxfordUniversityPress,NewYork. 223.Gunther,H.(1994) NMRspectroscopy:basicprinciples,concepts,andapplications inchemistry ,Wiley,NewYork. 224.Evans,J.N.S.(1995) BiomolecularNMRSpectroscopy ,OxfordUniversityPress, Oxford.

214 References

225.Silverstein,R.M.&Webster,F.X.(1998) SpectrometricIdentificationofOrganic Compounds ,6thedn,JohnWileyandSons,NewYork. 226. Lambert, J. B. & Mazzola, E. P. (2004) Nuclear Magnetic Resonance: An IntroductiontoPrinciples,ApplicationsandExperimentalMethods ,PearsonEducation, NewJersey. 227.Friebolin,H.(1991) BasicOneandTwoDimensionalNMRSpectroscopy ,VCH Publishers,Weinheim. 228. Braun, S., Kalinoski, H.O. & Berger, S. (1998) 150 and More Basic NMR Experiments ,WileyVCH,Weinhim,Germany. 229.Wüthrich, K. (1986) NMRofProteinsandNucleicAcids , JohnWileyandSons, NewYork. 230.Bax,A.(1981)Animprovedmethodforheteronuclearchemicalshiftcorrelationby twodimensionalNMR, J.Magn.Res.42 ,501505. 231. Sørensen, O. W., Eich, G. W., Levitt,M. H., Bodenhausen, G. & Ernst, R. R. (1983)ProductoperatorformalismforthedescriptionofNMRpulseexperiments, Prog. Nucl.Magn.Reson.Spectrosc.16 ,163192. 232. Kriwacki, R. W. & Pitner, T. P. (1989) Current aspects of practical two dimensional (2D) nuclear magnetic resonance (NMR) spectroscopy: Applications to structureelucidation., Pharm.Res.6 ,531554. 233. Rance, M., Sørensen, O. W., Bodenhausen, G., Wagner, G., Ernst, R. R. & Wüthrich,K.(1983)ImprovedspectralresolutioninCOSY 1HNMRspectraofproteins viadoublequantumfiltering, Biochem.Biophys.Res.Commun.117 ,479485. 234.Keeler,J.(2010) UnderstandingNMRspectroscopy ,2ndedn,JohnWileyandSons, Chichester,U.K. 235.Davis,D.G.&Bax,A.(1985)Assignmentofcomplex 1HNMRspectraviatwo dimensionalhomonuclearHartmannHahnspectroscopy, J.Am.Chem.Soc.107 ,2820 2821. 236.Bax,A.(1989)HomonuclearHartmannHahnexperiments, MethodsEnzymol.176 , 151168. 237.Wishart,D.S.,Bigam,C.G.,Holm,A.,Hodges,R.S.&Sykes,B.D.(1995) 1H, 13 C and 15 N random coil NMR chemical shifts of the common amino acids. I. Investigationsofnearestneighboreffects, J.Biomol.NMR.5 ,6781.

215 References

238.Wüthrich,K.(1989)Proteinstructuredeterminationinsolutionbynuclearmagnetic resonancespectroscopy, Science.243 ,4550. 239.Jeener,J.(1979)Investigationofexchangeprocesses by twodimensional NMR spectroscopy, J.Chem.Phys.71 ,45464553. 240.Clore,G.M.&Gronenborn,A.M.(1998)Newmethodsofstructurerefinementfor macromolecularstructuredeterminationbyNMR, Proc.Natl.Acad.Sci.95 ,58915898. 241. Clore, G. M. & Gronenborn, A. M. (1989) Determination of threedimensional structures of proteins and nucleic acids in solution by nuclear magnetic resonance spectroscopy, Crit.Rev.Biochem.Mol.Biol.24 ,479564. 242. Neuhaus, D. & Williamson, M. P. (1989) The Nuclear Overhauser Effect in StructuralandConformationalAnalysis ,VCHPublishers,NewYork. 243. Gronenborn, A. M. & Clore, G. M. (1990) Protein structure determination in solution by twodimensional and threedimensional nuclear magnetic resonance spectroscopy, Anal.Chem.62 ,215. 244.Sutcliffe,M.J.(1993)StructuredeterminationfromNMRdataII.Computational approachesin NMRofMacromolecules:APracticalApproach (Roberts,G.C.K.,ed) pp.359390,OxfordUniversityPress,NewYork. 245. Wüthrich, K., Billeter, M. & Braun, W. (1984) Polypeptide secondary structure determination by nuclear magnetic resonance observation of short protonproton distances, J.Mol.Biol.180 ,715740. 246.Dalgarno,D.C.,Levine,B.A.&Williams,R.J.P.(1983)Structuralinformation fromNMRsecondarychemicalshiftsofpeptide α CHprotonsinproteins, Biosci.Rep. 3,443452. 247.Wishart,D.S.,Sykes,B.D.&Richards,F.M.(1991)Relationshipbetweennuclear magnetic resonance chemical shift and protein secondary structure, J. Mol. Biol. 222 , 311333. 248.Kuntz,I.D.,Kosen,P.A.&Craig,E.C.(1991)Amidechemicalshiftsinmany helicesinpeptidesandproteinsareperiodic, J.Am.Chem.Soc.113 ,14061408. 249.Hol,W.G.J.(1985)Theroleofthe αhelixdipoleinproteinfunctionandstructure, Prog.Biophys.Mol.Biol.45 ,149195. 250. Blundell, T., Barlow, D., Borkakoti, N. & Thornton, J. (1983) Solventinduced distortionsandthecurvatureof αhelices, Nature.306 ,281283.

216 References

251.Macomber,R.S.(1998) ACompleteIntroductiontoModernNMRSpectroscopy , JohnWileyandSons,NewYork. 252.Pardi,A.,Billeter,M.&Wüthrich,K.(1984)Calibrationoftheangulardependence 3 oftheamideprotonCαcouplingconstants, JHN α,inaglobularprotein, J.Mol.Biol.180 , 741751. 253.Bystrov,V.F.,Ivanov,V.T.,Portnova,S.L.,Balashova,T.A.&Ovchinnikov,Y. A.(1973)RefinementoftheangulardependenceofthepeptidevicinalNHCαHcoupling constant, Tetrahedron.29 ,873877. 254.Kim,Y.&Prestegard,J.H.(1989)Measurementofvicinalcouplingsfromcross peaksinCOSYspectra, J.Magn.Res.84 ,913. 255. Nilges, M. & O'Donoghue, S. I. (1998) Ambiguous NOEs and automated NOE assignment, Prog.Nucl.Magn.Reson.Spectrosc.32 ,107139. 256.Brünger,A.T.,Adams,P.D.,Clore,G.M.,DeLano, W. L., Gros, P., Grosse Kunstleve,R.W.,Jiang,J.S.,Kuszewski,J.,Nilges,M.,Pannu,N.S.,Read,R.J.,Rice, L.M.,Simonson,T.&Warren,G.L.(1998)Crystallography&NMRSystem:a new softwaresuiteformacromolecularstructuredetermination, ActaCryst.D.D54 ,905921. 257. Barsukov, I. L. & Lian, L. (1993) Structure determination from NMR data. I. AnalysisofNMRdatain NMRofMacromolecules:APracticalApproach (Roberts,G. C.K.,ed)pp.315357,OxfordUniversityPress,NewYork. 258.Kaptein,R.,Boelens,R.,Scheek,R.M.&van Gunsteren,W. F. (1988) Protein structuresfromNMR, Biochem.27 ,53895395. 259.Habeck,M.,Rieping,W.,Linge,J.P.&Nilges,M.(2004)NOEassignmentwith ARIA2.0thenutsandboltsin ProteinNMRTechniques (Downing,A.K.,ed)pp.379 402,HumanaPress,Totowa. 260.Linge,J.P.,Habeck,M.,Rieping,W.&Nilges,M.(2003)ARIA:AutomatedNOE assignmentandNMRstructurecalculation, Bioinformatics.19 ,315316. 261. Havel, T. F. (1991) An evaluation of computational strategies for use in the determinationofproteinstructurefromdistanceconstraintsobtainedbynuclearmagnetic resonance, Prog.Biophys.Mol.Biol.56 ,4378. 262. Nilges, M. (1995) Calculation of protein structures with ambiguous distance restraints. Automated assignment of ambiguous NOE crosspeaks and disulphide connectivities, J.Mol.Biol.245 ,645660.

217 References

263. Güntert, P., Berndt, K. D. & Wüthrich, K. (1993) The program ASNO for computersupported collection of NOE upper distance constraints as input for protein structuredetermination, J.Biomol.NMR.3 ,601606. 264.Nilges,M.,Clore,G.M.&Gronenborn,A.M. (1988) Determination of three dimensionalstructuresofproteinsfrominterprotondistancedatabydynamicalsimulated annealing from a random array of atoms circumventing problems associated with folding, FEBSLett.239 ,129136. 265.Fletcher,C.M.,Jones,D.N.M.,Diamond,R.&Neuhaus,D.(1996)Treatmentof NOE constraints involving equivalent or nonstereoassigned protons in calculations of biomacromolecularstructures, J.Biomol.NMR.8 ,292310. 266. Güntert, P., Werner, B., Gilleter, M. & Wüthrich, K. (1989) Automated stereospecific proton NMR assignments and their impact on the precision of protein structuredeterminationsinsolution, J.Am.Chem.Soc.111 ,39974004. 267. Driscoll, P. C., Gronenborn, A. M. & Clore, G. M. (1989) The influence of stereospecific assignments on the determination of threedimensional structures of proteinsbynuclearmagneticresonancespectroscopy:Applicationtotheseaanemone proteinBDSI, FEBSLett.243 ,223233. 268.Zuiderweg,E.R.P.,Boelens,R.&Kaptein,R.(1985)Stereospecificassignments of 1HNMR methyl lines and conformation of valyl residues in the lac repressor headpiece, Biopolymers.24 ,601611. 269.Folmer,R.H.A.,Hilbers,C.W.,Konings,R.N.H.&Nilges,M.(1997)Floating stereospecific assignment revisited application to an 18 kDa protein and comparison withJcouplingdata, J.Biomol.NMR.9 ,245258. 270. Weber, P. L., Morrison, R. & Hare, D. (1988) Determining stereospecific 1H nuclear magnetic resonance assignments from distance geometry calculations, J. Mol. Biol.204 ,483487. 271.Clore,G.M.,Gronenborn,A.M.,Brunger,A.T.&Karplus,M.(1985)Solution conformationofaheptadecapeptidecomprisingtheDNAbindinghelixFofthecyclic AMP receptor protein of Escherichia coli : Combined use of 1H nuclear magnetic resonanceandrestrainedmoleculardynamics, J.Mol.Biol.186 ,435455. 272. Brünger, A. T., Clore, G. M., Gronenborn, A. M.&Karplus,M.(1986)Three dimensional structure of proteins determined by molecular dynamics with interproton distancerestraints:Applicationtocrambin, Proc.Natl.Acad.Sci.83 ,38013805. 273.Kaptein,R.,Zuiderweg,E.R.P.,Scheek,R.M.,Boelens,R.&vanGunsteren,W. F. (1985) A protein structure from nuclear magnetic resonance data: lac repressor headpiece, J.Mol.Biol.182 ,179182.

218 References

274.Karplus,M.&Petsko,G.A.(1990)Moleculardynamicssimulationsinbiology, Nature.347 ,631639. 275.Bax,A.(1989)TwodimensionalNMRandproteinstructure, Annu.Rev.Biochem. 58 ,22356. 276. Nilges, M., Gronenborn, A. M., Brunger, A. T. & Clore, G. M. (1988) Determinationofthethreedimensionalstructuresproteinsbysimulatedannealingwith interprotondistancerestraints, ProteinEng.2 ,2738. 277.Kang,R.S.,Daniels,C.M.,Francis,S.A.,Shih,S.C.,Salerno,W.J.,Hicke,L.& Radhakrishnan, I. (2003) Solution structure of a CUEubiquitin complex reveals a conservedmodeofubiquitinbinding, Cell.113 ,621630. 278.Nabburs,S.B.,Spronk,C.A.E.M.,Vriend,G.&Vuister,G.W.(2004)Concepts andtoolsforNMRrestraintanalysisandvalidation, ConceptsMag.Reson.A.22 ,90105. 279.Hyberts,S.G.,Goldberg,M.S.,Havel,T.F.&Wagner,G.(1992)Thesolution structureofeglinCbasedonmeasurementsofmanyNOEsandcouplingconstantsand itscomparisonwithXraystructures, ProteinSci.1 ,736751. 280.Pallaghy,P.K.,Duggan,B.M.,Pennington,M.W.&Norton,R.S.(1993)Three dimensional structure in solution of the calcium channel blocker ω, J. Mol. Biol.234 ,405420. 281. Ramachandran, G. N., Ramakrishnan, C. & Sasisekharan, V. (1963) Stereochemistryofpolypeptidechainconfigurations, J.Mol.Biol.7 ,9599. 282.Morris,A.L.,MacArthur,M.W.,Hutchinson, E. G. & Thornton, J. M. (1992) Stereochemicalqualityofproteinstructurecoordinates, Protein.Struct.Funct.Genet.12 , 345364. 283.Epand,R.M.&Vogel,H.J.(1999)Diversityofantimicrobialpeptidesandtheir mechanismsofaction, BBABiomembranes.1462 ,1128. 284.Bechinger,B.(2000)Understandingpeptideinteractionswiththelipidbilayer:A guidetomembraneproteinengineering, Curr.Opin.Chem.Biol.4 ,639644. 285.Bonev,B.,Watts,A.,Bokvist,M.&Grobner,G.(2001)Electrostaticpeptidelipid interactionsofamyloidβpeptideandpentalysinewithmembranesurfacesmonitoredby 31 PMASNMR, Phys.Chem.Chem.Phys.3 ,29042910. 286. Inooka, H., Ohtaki, T., Kitahara, O., Ikegami, T., Endo, S., Kitada, C., Ogi, K., Onda,H.,Fujino,M.&Shirakawa,M.(2001)Conformationofapeptideligandboundto itsGproteincoupledreceptor, Nat.Struct.Biol.8 ,161165.

219 References

287. Moroder, L. & Romano, R. (1994) Synthesis, conformational and biological properties of lipophilic derivatives of gastrin and cholecystokinin peptides, Pure Appl. Chem.66 ,21112114. 288.Lauterwein,J.,Bosch,C.,Brown,L.R.&Wüthrich,K.(1979)Physicochemical studiesoftheproteinlipidinteractionsinmelittincontainingmicelles, Biochim.Biophys. Acta.556 ,244264. 289.Rajan,R.&Balaram,P.(1996)Amodelfortheinteractionoftrifluoroethanolwith peptidesandproteins, Int.J.Pept.ProteinRes.48 ,328336. 290. Nelson, J. W. & Kallenbach, N. R. (1986) Stabilisation of the ribonuclease S peptide αhelixbytrifluoroethanol, Protein.Struct.Funct.Genet.1 ,211217. 291.Mendz,G.L.,Moore,W.J.,Brown,L.R.&Martenson,R.E.(1984)Interactionof myelinbasicproteinwithmicellesofdodecylphosphocholine, Biochem.23 ,60416046. 292.Jesson,J.P.,Meakin,P.&Kneissel,G.(1973)Homonucleardecouplingandpeak eliminationinFouriertransformnuclearmagneticresonance, J.Am.Chem.Soc.95 ,618 620. 293.Wider,G.,Hosur,R.J.&Wüthrich,K.(1983)Suppressionofthesolventresonance in2DNMRspectraofproteinsinH 2Osolution., J.Magn.Res.52 ,130135. 294.Gueron,M.,Plateau,P.&Decorps,M.(1991)SolventsignalsuppressioninNMR, Prog.Nucl.Magn.Reson.Spectrosc.23 ,135209. 295.Smallcombe,S.H.,Patt,S.L.&Kiefer,P.A.(1995)WETsolventsuppressionand itsapplicationtoLCNMRandhighresolutionNMRspectroscopy, J.Magn.Res.117 , 295303. 296.Ogg,R.J.,Kingsley,P.B.&Taylor,J.S.(1994)WET,aT1andB1insensitive watersuppressionmethodforinvivolocalised 1HNMRspectroscopy, J.Magn.Res.B. 104 ,110. 297.Piotto,M.,Saudek,V.&Sklenár,V.(1992)Gradienttailoredexcitationforsingle quantumNMRspectroscopyofaqueoussolutions, J.Biomol.NMR.2 ,661665. 298. Liu, M., Mao, X., Ye, C., Huang, H., Nicholson, J. K. & Lindon, J. C. (1998) ImprovedWATERGATEpulsesequencesforsolventsuppressioninNMRspectroscopy, J.Magn.Res.132 ,125129. 299.Reiersen,H.&Rees,A.R.(2000)Trifluoroethanolmayformasolventmatrixfor assistedhydrophobicinteractionsbetweenpeptidesidechains, ProteinEng.13 ,739743.

220 References

300. Hong, D. P., Hoshino, M., Kuboi, R. & Goto, Y. (1999) Clustering of fluorine substituted alcohols as a factor responsible for their marked effects on proteins and peptides, J.Am.Chem.Soc.121 ,84278433. 301. Hirota, N., Mizuno, K. & Goto, Y. (1998) Group additive contributions to the alcoholinducedalphahelixformationofmelittinimplicationforthemechanismofthe alcoholeffectsonproteins, J.Mol.Biol.275 ,365378. 302.Sönnichsen,F.D.,VanEyk,J.A.,Hodges,R.S.&Sykes,B.D.(1992)Effectof trifluoroethanolonproteinsecondarystructure:AnNMRandCDstudyusingasynthetic actinpeptide, Biochem.31 ,87908798. 303.Santiveri,C.M.,PantojaUceda,D.,Rico,M.&Jiméne,M.A.(2005) βHairpin formation in aqueous solution and in the presence of trifluoroethanol: A 1H and 13 C NMRconformationalstudyofdesignedpeptides, Biopolymers.79 ,15062. 304.Kuwata,K.,Hoshino,M.,Era,S.,Batt,C.A.&Goto,Y.(1998) αβtransitionof αlactoglobulinasevidencedbyheteronuclearNMR.,J.Mol.Biol.283 ,731739. 305. Narhi, L. O., Philo, J. S., Li, T., Zhang, M., Samal, B. & Arakawa, T. (1996) Induction of αhelix in the βsheet protein tumor necrosis factorα: Thermal and trifluoroethanolinduceddenaturationatneutralpH, Biochemistry.35 ,1144711453. 306.Dong,A.,Matsuura,J.,Manning,M.C.&Carpenter,J.F.(1998)Intermolecular β sheet results from trifluoroethanolinduced nonnative αhelical structure in βsheet predominant proteins infrared and circular dichroism spectroscopic study, Arch. Biochem.Biophys.355 ,275281. 307.Fyfe,C.A.(1983) SolidStateNMRforChemists ,CFCPress,Ontario. 308. Bechinger, B. (1999) The structure, dynamics and orientation of antimicrobial peptides in membranes by multidimensional solidstate NMR spectroscopy, BBA Biomembranes.1462 ,157183. 309.Hennel,J.&Klinowski,J.(2005)Magicanglespinning:Ahistoricalperspectivein NewtechniquesinsolidstateNMR (Klinowski,J.,ed)pp.114,SpringerVerlag,Berlin. 310.Pake,G.E.(1948)Nuclearresonanceabsorptioninhydratedcrystals:Finestructure oftheprotonline., J.Chem.Phys.16 ,327336. 311. Kentgens, A. P. M. (1997) A practical guide to solidstateNMR of halfinteger quadrupolar nuclei with some applications to disordered systems, Geoderma. 80 , 271 306. 312. Davis, J. H. (1983) The description of membrane lipid conformation, order and dynamicsby 2HNMR, BBARev.Biomembranes.737 ,117171.

221 References

313. Davis, J. H., Jeffrey, K. R., Bloom, M., Valic, M. I. & Higgs, T. P. (1976) Quadrupolar echo deuteron magnetic resonance spectroscopy in ordered hydrocarbon chains, Chem.Phys.Lett.42,390394. 314.Hodgkinson,P.&Emsley,L.(1999)Theaccuracy of distance measurements in solidstateNMR, J.Magn.Res.139 ,4656. 315.Pines,A.,Gibby,M.G.&Waugh,J.S.(1973)Protonenhancednuclearmagnetic resonanceofdilutespinsinsolids, J.Chem.Phys.59 ,569590. 316.Pines,A.,Gibby,M.G.&Waugh,J.S.(1972)Protonenhancednuclearinduction spectroscopy.AmethodforhighresolutionNMRofdilutespinsinsolids, J.Chem.Phys. 56 ,17761777. 317.Finean,J.B.&Michell,R.H.(1981)Isolation,compositionandgeneralstructure of membranes. in MembraneStructure (Finean, J. B. &Michell,R. H., eds) pp.136, Elsevier,Amsterdam. 318. Dowhan, W. & Bogdanov, M. (2002) Functional role of lipids in membranes in BiochemistryofLipids,LipoproteinsandMembranes(Vance,D.E.&Vance,J.E.,eds) pp.135,ElsevierScience,Amsterdam. 319.Rouser,G.,Nelson,G.J.,Fleischer,S.&Simon,G.(1968)Lipidcompositionof animalcellmembranes,organellesandorgansin BiologicalMembranes:PhysicalFact andFunction (Chapman,D.,ed)pp.569,AcademicPress,London. 320. Bocian, D. F. & Chan, S. I. (1978) NMR studies of membrane structure and dynamics, Ann.Rev.Phys.Chem.29 ,307335. 321.Singer,S.G.&Nicolson,G.L.(1972)Thefluidmosaicmodelofthestructureof cellmembranes, Science.175 ,720731. 322.Danielli,J.F.&Davson,H.(1935)Acontributiontothetheoryofpermeabilityof thinfilms, J.Cell.Comp.Phys.5 ,495. 323. TristramNagle, S.,Liu, Y.,Legleiter, J. & Nagle, J. F. (2002) Structure of gel phaseDMPCdeterminedbyXRaydiffraction, Biophys.J.83 ,33243335. 324. Nagle, J. F. & TristramNagle, S. (2000) Structure of lipid bilayers, BBA Rev. Biomembranes.1469 ,159195. 325.Lee,T.H.,Heng,C.,Swann,M.J.,Gehman,J.D.,Separovic,F.&Aguilar,M.I. (2010) Realtime quantitative analysis of lipid disordering by aurein 1.2 during membraneadsorption,destabilisationandlysis, BBABiomembranes.1798 ,19771986.

222 References

326.Mashaghi,A.,Swann,M.,Popplewell,J.,Textor,M.&Reimhult,E.(2008)Optical Anisotropy of Supported Lipid Structures Probed by Waveguide Spectroscopy and Its Application to Study of Supported Lipid Bilayer Formation Kinetics, Anal. Chem. 80 , 52765276. 327.Burnell,E.E.,Cullis,P.R.&deKruijff,B.(1980)Effectsoftumblingandlateral diffusion on phosphatidylcholine model membrane 31 PNMR lineshapes, BBA Biomembranes.603 ,6369. 328.Bechinger,B.,Aisenbrey,C.&Bertani,P.(2004) The alignment, structure and dynamicsofmembraneassociatedpolypeptidesbysolidstateNMRspectroscopy, BBA Biomembranes.1666 ,190204. 329.Auguste,F.,Douliez,J.P.,Bellocq,A.M.,Dufourc,E.J.&GulikKrzywicki,T. (1997) Evidence for multilamellar vesicles in the lamellar phase of an electrostatic lyotropicternarysystem.Asolidstate 2HNMRandfreezefractureelectronmicroscopy study, Langmuir.13 ,666672. 330. Diat, O. & Roux, D. (1993) Preparation of monodisperse multilayer vesicles of controlledsizeandhighencapsulationratio, J.Phys.II.3 ,914. 331. Balla, M. S., Bowie, J. H. & Separovic, F. (2004) Solidstate NMR study of antimicrobialpeptidesfromAustralianfrogsinphospholipidmembranes, Eur.Biophys. J.33 ,109116. 332.Gehman,J.D.,Luc,F.,Hall,K.,Lee,T.H.,Boland,M.P.,Pukala,T.L.,Bowie,J. H., Aguilar, M.I. & Separovic, F. (2008) Effect of antimicrobial peptides from Australiantreefrogsonanionicphospholipidmembranes, Biochemistry.47 ,85578565. 333. Smith, I. C. P. & Ekiel, I. H. (1984) Phosphorus31 NMR of phospholipids in membranesin Phosphorus31NMR.PrinciplesandApplications (Garenstein,D.G.,ed) pp.447475,AcademicPressInc.,London. 334.Yeagle,P.L.(1987) 31 PNMRandthephospholipidheadgroupsofmembranesin PhosphorusNMRinBiology (Burt,C.T.,ed)pp.95113,CRCPress,Florida. 335.Seelig,J.(1978) 31 Pnuclearmagneticresonanceandtheheadgroupstructureof phospholipidsinmembranes, Biochim.Biophys.Acta.515 ,105140. 336. Balla, M. S., Bowie, J. H. & Separovic, F. (2004) Solidstate NMR study of antimicrobialpeptidesfromAustralianfrogsinphospholipidmembranes, Eur.Biophys. J.33 ,10916. 337.Wieprecht,T.,Dathe,M.,Beyermann,M.,Krause,E.,Maloy,W.L.,MacDonald, D.L.&Bienert,M.(1997)Peptidehydrophobicitycontrolstheactivityandselectivityof magainin2amideininteractionwithmembranes, Biochem.36 ,61336140.

223 References

338.Carr,H.Y.&Purcell,E.(1954)Effectsofdiffusiononfreeprecessioninnuclear magneticresonanceexperiments, Phys.Rev.94 ,630638. 339.Hahn,E.(1950)Spinechos, Phys.Rev.80 ,580594. 340.Rance,M.&Byrd,R.A.(1983)Obtaininghighfidelityspin1/2powderspectrain anisotropicmedia:phasecycledHahnechospectroscopy, J.Magn.Reson. 341.Niederberger,W.&Seelig,J.(1976)Phosphorus31chemicalshiftanisotropyin unsonicatedphospholipidbilayers, J.Am.Chem.Soc.98 ,37043706. 342. Lee, K. H., Fitton, J. E. & Wüthrich, K. (1987) Nuclear magnetic resonance investigation of the conformation of δhaemolysin bound to dodecylphosphocholine micelles, Biochim.Biophys.Acta.911 ,144153. 343. Lafleur, M., Cullis, P. R., Fine, B. & Bloom, M. (1990) Comparison of the orientationalorderoflipidchainsintheL αandH II Phases, Biochemistry.29 ,83258333. 344. Lafleur, M., Fine, B., Sternin,E., Cullis,P. R. & Bloom, M. (1989) Smoothed orientationalorderprofileoflipidbilayersby 2Hnuclearmagneticresonance, Biophys.J. 56 ,103741. 345. Bloom, M., Davis, J. H. & MacKay, A. L. (1981) Direct determination of the orientedsampleNMRspectrumfromthepowderspectrumforsystemswithlocalaxial symmetry, Chem.Phys.Lett.80 ,198202. 346.Sternin,E.,Bloom,M.&MacKay,A.L.(1983)DePakeingofNMRspectra, J. Magn.Reson.55 ,274282. 347.Burnett,L.J.&Muller,B.H.(1971)Deuteronquadrupolecouplingconstantsin three solid deuterated paraffin hydrocarbons: C 2D6, C 4D10 , C 6D14 , J. Chem. Phys. 55 , 58295831. 348. Bechinger, B., Zasloff, M. & Opella, S. J. (1992) Structure and interactions of magaininantibioticpeptidesinlipidbilayers:Asolidstatenuclearmagneticresonance investigation, Biophys.J.62 ,1214. 349.Yamaguchi,S.,Huster,D.,Waring,A.,Lehrer,R.I.,Kearney,W.,Tack,B.F.& Hong, M. (2001) Orientation and dynamics of an antimicrobial peptide in the lipid bilayerbysolidstateNMRspectroscopy., Biophys.J.81 ,22032214. 350.dePlanque,M.R.R.,Greathouse,D.V.,Koeppe,R.E.,Schafer,H.,Marsh,D.& Killian,J.A.(1998)Influenceoflipid/peptidehydrophobicmismatchonthethicknessof diacylphosphatidylcholine bilayers. A 2H NMR and ESR study using designed transmembrane αhelicalpeptidesandgramicidinA., Biochem.37 ,93339345.

224 References

351. Banerjee, U., Zidovetzki, R., Birge, R. R. & Chan, S. I. (1985) Interaction of alamethicinwithlecithinbilayers:A 31 Pand 2HNMRstudy, Biochem.24 ,76217627. 352.Duer,M.J.(2002)EssentialTechniquesforSpin1/2Nucleiin SolidstateNMR spectroscopy: principles and applications (Duer, M. J., ed) pp. 73110, Blackwell ScienceLtd.,London. 353.Tyler,M.J.&Knight,F.(2009) FieldGuidetoTheFrogsofAustralia ,CSIRO, Melbourne. 354.Watson,G.F.,LoftusHills,J.J.&Littlejohn, M. J. (1971) The Litoriaewingii complex (Anura: Hylidae) in southeastern Australia.1.AnewspeciesfromVictoria, Aust.J.Zool.901 ,401416. 355.Anstis,M.(1974)Australianfrogs.Part2.ThebehaviourandlifehistoryofLitoria verreauxi(Hylidae), Bull.Herpet.1 ,1921. 356.McCann,C.(1961)TheintroducedfrogsofNewZealand, Tuatara.8 ,107120. 357. Steinborner, S. T., Waugh, R. J., Bowie, J. H., Wallace, J. C., Tyler, M. J. & Ramsay, S. L. (1997) New caerin antibacterial peptides from the skin glands of the Australiantreefrog Litoriaxanthomera , J.Pept.Sci.3 ,181185. 358.Stone,D.J.M.,Waugh,R.J.,Bowie,J.H.,Wallace,J.C.&Tyler,M.J.(1992) Peptides from Australian frogs. Structures of the caerins and caeridin 1 from Litoria splendida , J.Chem.Soc.PerkinTrans.1 ,31733178. 359. Nix, H. A. & Kalma, J. D. (1972) Climate as a dominant control in the biogeographyofnorthernAustraliaandNewGuineain Bridgeandbarrier:thenatural and cultural history of Torres Strait (Walker, D., ed) pp. 6691, Research School of PacificStudies.AustralianNationalUniversityPublicationBG/3. 360.Steinborner,S.T.,Wabnitz,P.A.,Waugh,R.J.,Bowie,J.H.,Gao,C.W.,Tyler, M.J.&Wallace,J.C.(1996)ThestructuresofnewpeptidesfromtheAustralianredtree frog Litoria rubella the skin peptide profile as a probe for the study of evolutionary trendsofamphibians, Aust.J.Chem.49 ,955963. 361.Duméril,A.M.C.&Bibron,G.(1841) Érpetogiegénéraleouhistoirenaturelle completedesreptiles. ,Roret,Paris. 362.Tyler,M.J.(1971)Thephylogeneticsignificanceofvocalsacstructureinhylid frogs, Univ.KansasPubl.Mus.Nat.Hist.19 ,319360. 363.Peters,W.C.H.(1875)Lasuberneueamphibien., MbBA.1874 ,616624.

225 References

364. Ahl, E. (1935) Beschreibung eines neuen Laubfrosches aus Sudaustralien, ZoologischeAnzeiger.109 ,252253. 365.Moore,J.A.(1961)ThefrogsofeasternNewSouthWales, Bull.Am.Mus.Nat. His.121 ,149386. 366.Copeland,S.J.(1957)Australianfrogsofthegenus Hyla , Proc.LinneanSoc.NSW. 82 ,9108. 367. Jackway, R. J., Pukala, T. L., Donnellan, S. C., Sherman, P. J., Tyler, M. J. & Bowie,J.H.(2011)SkinpeptideandcDNAprofilingofAustraliananurans:Genusand speciesidentificationandevolutionarytrends, Peptides.32 ,161172. 368.Steinborner,S.T.,Bowie,J.H.,Tyler,M.J.&Wallace,J.C.(1997)Anunusual combination of peptides from the skin glands of Ewings tree frog, Litoria ewingi sequencedeterminationandantimicrobialactivity,Aust.J.Chem.50 ,889894. 369.Pukala,T.L.,Bowie,J.H.,Maselli,V.M.,Musgrave,I.F.&Tyler,M.J.(2006) Hostdefence peptides from the glandular secretions of amphibians: Structure and activity, Nat.Prod.Rep.23 ,368393. 370. Montecucchi, P. C. (1985) Isolation and primary structure determination of amphibianskintryptophyllins, Peptides.6 ,187195. 371.Brinkworth,C.S.,Dua,S.,McAnoy,A.M.&Bowie,J.H.(2001)Negativeion fragmentationsofdeprotonatedpeptides:backbonecleavagesdirectedthroughbothAsp andGlu., RapidCommun.MassSpectrom.15 ,19651973. 372.Baudinette,R.V.,Boontheung,P.,Musgrave,I.F.,Wabnitz,P.A.,Maselli,V.M., Skinner, J., Alewood, P. A., Brinkworth, C. S. & Bowie, J. H. (2005) Eugenin: an immunomodulatorusedtoprotectyounginthepouchofthetammarwallaby Macropus eugenii , FEBSJ.272 ,433439. 373.Jackway,R.J.,Maselli,V.M.,Musgrave,I.F.,Maclean,M.,Tyler,M.J.&Bowie, J. H. (2009) Skin peptides from anurans of the Litoria rubella Group: sequence determination using electrospray mass spectrometry. Opioid activity of two major peptides, RapidCommun.MassSpectrom.23 ,11891195. 374.Tyler,M.J.Unpublishedobservations. 375.Mirgorodskaya,O.A.,Shevchenko,A.A.,Chernushevich,I.V.,Dodonov,A.F.& Miroshnikov, A. I. (1994) Electrospray ionization timeofflight mass spectrometry in proteinchemistry, Analyt.Chem.66 ,99107. 376.Maeji,N.J.,Bray,A.M.,Valerio,R.M.&Wang,W.(1995)Largerscalemultipin peptidesynthesis, J.Pept.Res.8 ,3338.

226 References

377.Kosterlitz,H.W.&Watt,A.J.(1968)Kineticparametersofnarcoticagonistsand antagonist, with particular reference to Nallynoroxymorphine (naloxone), Br. J. Pharmacol.33 ,266276. 378.Birula,A.A.(1911)ArachnologischeBeitrage.I.ZurScorpionenundSolifugen FaunadesChinesischenReiches, RevueRussed'Entomologie.11 ,195199. 379.Teruel,R.(2002)Firstrecordof Mesobuthuseupeus (Koch,1839)fromwestern Turkey(Scorpions:Buthidae), Rev.Iber.Aracnol.5 ,7576. 380. Shi, C.M., Huang, Z.S., Wang, L., He, L.J. & Hua, Y.P. (2007) Geograpical distributionoftwospeciesof Methobuthus (scorpiones,buthidae)inChina:Insightsfrom systematicfieldsurveysandpredictivemodels, J.Arachnol.35 ,215226. 381.VolkovaT.M.,G.A.F.,TelezhinskaiaI.N.,PotapenkoN.A.,GrishinE.V.(1985) NeurotoxinsfromthevenomoftheCentralAsianscorpionButhuseupeus, Bioorg.Khim. 11 ,14451456. 382.GrishinE.V.,S.L.N.,SoldatovN.M.,KostetskyP.V.,OvchinnikovY.A.(1979) Amino acid sequence of insectotoxin I2 from central Asia scorpion Buthus eupeus venom., Bioorg.Khim.5 . 383.Tytgat,J.,Debont,T.,Rostoll,K.,Müller,G.J.,Verdonck,F.,Daenens,P.,vander Walt,J.J.&Possani,L.D.(1998)Purificationandpartialcharacterizationofa`short' insectotoxinlikepeptidefromthevenomofthescorpionParabuthusschlechteri, FEBS Lett.441 ,387391. 384.Lomize,A.L.,MaĭorovV.N.,ArsenievA.S.(1991)Determinationofthespatial structureofinsectotoxinI5AfromButhuserpeusby 1HNMRspectroscopydata, Bioorg. Khim.17 ,16131632. 385. Adamovich T.B., N. I.V.,Grishin E.V.,Ovchinnikov Y.A. (1977) Amino acid sequence of insectotoxin I1 from the venom of middleasian scorpion Buthus epeus, Bioorg.Khim.3 ,485493. 386.Korolkova,Y.V.,Kozlov,S.A.,Lipkin,A.V.,Pluzhnikov,K.A.,Hadley,J.K., Filippov, A. K., Brown, D. A., Angelo, K., Strøbaek, D., Jespersen, T., Olesen, S. P., Jensen, B. S. & Grishin, E. V. (2001) An ERG channel inhibitor from the scorpion Buthuseupeus, J.Biol.Chem.276 ,98689876. 387.Gao,B.,Xu,J.,delCarmenRodriguez,M.,LanzMendoza,H.,HernándezRivas, R.,Du,W.&Zhu,S.(2010)Characterizationoftwolinearcationicantimalarialpeptides inthescorpionMesobuthuseupeus, Biochimie.92 ,350359.

227 References

388. Gao, B., Peigneur, S., Tytgat, J. & Zhu, S. (2010) A potent potassium channel blockerfromMesobuthuseupeusscorpionvenom, Biochimie.InPress,CorrectedProof . 389.ZhuS.,G.B.,AumelasA.,DelCarmenRodriguezM.,LanzMendozaH.,Peigneur S., DiegoGarcia E., MartinEauclaire M.F., Tytgat J., Possani L.D. (2010) MeuTXKbeta1, a scorpion venomderived twodomain potassium channel toxinlike peptidewithcytolyticactivity, Biochim.Biophys.Acta.1804 ,872883. 390.Hultmark,D.(1998)Quantificationofantimicrobialactivity,usingtheinhibition zoneassayin TechniquesinInsectImmunology (Wiesner,A.,Dumphy,A.G.,Marmaras, V.J.,Morishima,I.,Sugumaran,M.,Yamakawa,M.,ed)pp.103107,SOSPublications, NewJersey. 391. Dempsey, C. E. (1990) The actions of melittin on membranes, BBA Rev. Biomembranes.1031 ,143161. 392.Smith,R.,Separovic,F.,Milne,T.J.,Whittaker,A.,Bennett,F.M.,Cornell,B.A. &Makriyannis,A.(1994)Structureandorientationoftheporeformingpeptide,melittin, inlipidbilayers, J.Mol.Biol.241 ,45666. 393. Schiffer, M. & Edmundson, A. B. (1967) Use of helical wheels to represent the structuresofproteinsandtoidentifysegmentswithhelicalpotential, Biophys.J.7 ,121 135. 394.Wüthrich,K.&Wider,G.(1982)Sequentialresonanceassignmentsasabasisfor determination of spatial protein structures by high resolution proton nuclear magnetic resonance, J.Mol.Biol.155 ,311319. 395.Zhou,N.E.,Zhu,B.,Sykes,B.D.&Hodges,R.S.(1992)Relationshipbetween amideprotonchemicalshiftsandhydrogenbondinginamphipathic αhelicalpeptides, J. Am.Chem.Soc.114 ,43204326. 396.Pukala,T.L.,Doyle,J.R.,Llewellyn,L.E.,KuhnNentwig,L.,Apponyi,M.A., Separovic, F. & Bowie, J. H. (2007) Cupiennin 1a, an antimicrobial peptide from the venomoftheneotropicalwanderingspider Cupienniussalei ,alsoinhibitstheformation ofnitricoxidebyneuronalnitricoxidesynthase,FEBSJ.274 ,17781784. 397.Wegener,K.L.,Carver,J.A.&Bowie,J.H.(2003)Thesolutionstructuresand activity of caerin 1.1 and caerin 1.4 in aqueous trifluoroethanol and dodecylphosphocholinemicelles, Biopolymers.69 ,4259. 398.Pukala,T.L.,Brinkworth,C.S.,Carver,J.A.&Bowie,J.H.(2004)Investigating theimportanceoftheflexiblehingeincaerin1.1:Solutionstructuresandactivityoftwo syntheticallymodifiedcaerinpeptides, Biochemistry.43 ,937944.

228 References

399.Wuthruch,K.(1986) NMRofProteinsandnucleicacids. ,JohnWileyandSons, NewYork. 400. Nilges, M., Macias, M. J., Odonoghue, S. I. & Oschkinat, H.(1997) Automated NOESY interpretation with ambiguous distance restraints the refined NMR solution structureofthepleckstrinhomologydomainfrom βspectrin, J.Mol.Biol.269 ,408422. 401. Nilges, M. & O'Donoghue, S. I. (1998) Ambiguous NOEs and automated NOE assignment, Prog.Nucl.Magn.Reson.Spectrosc.32 ,107139. 402. Monne, M., Nilsson, I., Elofsson, A. & von Heijne, G. (1999) Turns in transmembranehelices: Determinationof theminimal lengthof a 'helicalhairpin' and derivationofafinegrainedturnpropensityscale, J.Mol.Biol.293 ,807814. 403. KuhnNentwig, L. (2003) Antimicrobial and cytolytic peptides of venomous arthropods, Cell.Mol.LifeSci.60 ,26512668. 404.Koradi,R.,Billeter,M.&Wüthrich,K.(1996)MOLMOLaprogramfordisplay andanalysisofmacromolecularstructures, J.Mol.Graphics.14 ,5155. 405. Humphrey, W., Dalke, A. & Schulten, K. (1996) VMD visual molecular dynamics, J.Mol.Graphics.14 ,3338. 406.Boman,H.G.(2003)Antibacterialpeptides:Basicfactsandemergingconcepts, J. Int.Med.254 ,197215. 407.Putsep,K.,Branden,C.,Boman,H.G.&Normark,S.(1999)Antibacterialpeptides from H.pylori , Nature.398 ,671672. 408. Mor, A., Hani, K. & Nicolas, P. (1994) The vertebrate peptide antibiotics dermaseptinshaveoverlappingstructuralfeaturesbuttargetspecificmicroorganisms, J. Biol.Chem.269 ,3163531641. 409. Smet, K. & Contreras, R. (2005) Human antimicrobial peptides: Defensins, cathelicidinsandhistatins, Biotechnol.Lett.27 ,13371347. 410. Sitaram, N. & Nagaraj, R. (2002) The therapeutic potential of hostdefense antimicrobialpeptides, Curr.DrugTargets.3 ,259267. 411.Giuliani,A.,Pirri,G.&Nicoletto,S.(2007)Antimicrobialpeptides:anoverviewof apromisingclassoftherapeutics, Cent.Eur.J.Biol.2 ,133. 412.Lai,R.,Liu,H.,HuiLee,W.&Zhang,Y.(2002)Ananionicantimicrobialpeptide fromtoad Bombinamaxima , Biochem.Biophys.Res.Commun.295 ,796799.

229 References

413.Zasloff,M.(1987)Magainins,aclassofantimicrobialpeptidesfrom Xenopusskin: Isolation, characterization of two active forms, and partial cDNA sequence of a precursor, Proc.Natl.Acad.Sci.84 ,54495453. 414.Strandberg,E.,Tiltak,D.,Ieronimo,M.,Kanithasen,M.,Wadhwani,P.&Ulrich, A. S. (2007) Influence of Cterminal amidation on the antimicrobial and haemolytic activitiesofcationic αhelicalpeptides, PureAppl.Chem.79 ,717728. 415. Giangaspero, A., Sandri, L. & Tossi, A. (2001) Amphipathic alpha helical antimicrobialpeptides, Eur.J.Biochem.268 ,55895600. 416.Zelezetsky,I.&Tossi,A.(2006)Alphahelical antimicrobialpeptides usinga sequencetemplatetoguidestructureactivityrelationshipstudies, BBABiomembranes. 1758 ,14361449. 417.Shai,Y.(1995)Molecularrecognitionbetweenmembranespanningpolypeptides, TrendsBiochem.Sci.20 ,460464. 418. Epand, R. M., Shai, Y. C., Segrest, J. P. & Anantharamaiah, G. M. (1995) Mechanismsforthemodulationofmembranebilayerpropertiesbyamphipathichelical peptides, Biopolymers.37 ,319338. 419. Huang, H. W. (2000) Action of antimicrobial peptides: Twostate model, Biochemistry.39 ,83478352. 420. Ludtke, S. J., He, K., Heller, W. T., Harroun, T. A., Yang, L. & Huang, H. W. (1996)Membraneporesinducedbymagainin, Biochemistry.35 ,1372313728. 421.Brogden,K.A.(2005)Antimicrobialpeptides:poreformersormetabolicinhibitors inbacteria?, Nat.Rev.Micro.3 ,238250. 422.Cornell,B.A.,Separovic,F.,Baldassi,A.J.&Smith,R.(1988)Conformationand orientation of gramicidin A in oriented phospholipid bilayers measured by solid state carbon13NMR, Biophys.J.53 ,6776. 423.DiRienzo,J.M.,Nakamura,K.&Inouye,M.(1978)Theoutermembraneproteins ofGramnegativebacteria:biosynthesisassemblyandfunctions, Ann.Rev.Biochem.47 , 481532. 424.Niederweis,M.(2003)Mycobacterialporins–newchannelproteinsinuniqueouter membranes, Mol.Microbiol.49 ,11671177. 425.Matsuzaki,K.,Sugishita,K.,Fujii,N.&Miyajima,K.(1995)Molecularbasisfor membrane selectivityof an antimicrobialpeptide, magainin 2, Biochemistry.34 ,3423 3429.

230 References

426. Stankowski, S., Schwartz, U. D. & Schwartz, G. (1988) Voltagedependent pore activityofthepeptidealamethicincorrelatedwithincorporationinthemembrane:Salt andcholesteroleffects, BBABiomembranes.941 ,1118. 427.Mattila,K.,Kinder,R.&Bechinger,B.(1999)Thealignmentofavoltagesensing peptide in dodecylphosphocholine micelles and in oriented lipid bilayers by nuclear magneticresonanceandmolecularmodeling, Biophys.J.77 ,21022113. 428.Jackway,R.J.,Bowie,J.H.,Bilusich,D.,Musgrave,I.F.,SurinyaJohnson,K.H., Tyler,M.J.&Eichinger,P.C.(2008)Thefallaxidinpeptidesfromtheskinsecretionof the Eastern Dwarf Tree Frog Litoria fallax . Sequence determination by positive and negativeionelectrospraymassspectrometry:antimicrobialactivityandcDNAcloningof thefallaxidins, RapidCommun.MassSpectrom.22 ,32113519. 429.Wang,Z.&Wang,G.(2004)APD:Theantimicrobialpeptidedatabase, Nucleic AcidsRes.32 ,D590D592. 430.Jackway,R.J.(2008) Biologically Active Peptides from Australian Amphibians , ChemistryPh.D.Thesis,TheUniversityofAdelaide. 431.Bechinger,B.(2005)Detergentlikepropertiesofmagaininantibioticpeptides:a 31 PsolidstateNMRspectroscopystudy, BBABiomembranes.1712 ,101108. 432. Lu, J., Damodaran, K., Blazyk, J. & Lorigan, G. A. (2005) Solidstate nuclear magnetic resonance relaxation studies of the interaction mechanism of antimicrobial peptideswithphospholipidbilayersystems, Biochemistry.44 ,1020810217. 433.Spooner,P.J.R.&Watts,A.(1991)ReversibleunfoldingofcytochromeCupon interaction with cardiolipin bilayers. II. Evidence from phosphorus31 NMR measurements, Biochemistry.30 ,38803885. 434.Lu,D.,Vavasour,I.&Morrow,M.R.(1995)Smoothedacylchainorientational order parameter profiles in dimyristoylphosphatidylcholine distearoylphosphatidylcholinemixtures:a 2HNMRstudy, Biophys.J.68 ,57483. 435. Watts, A. (1998) Solidstate NMR approaches for studying the interaction of peptidesandproteinswithmembranes, BBARev.Biomembranes.1376 ,297318. 436.Tiburu,E.K.,Karp,E.S.,Birrane,G.,Struppe,J.O.,Chu,S.,Lorigan,G.A., Avraham,S.&Avraham,H.K.(2006) 31 Pand 2HrelaxationstudiesofhelixVIIandthe cytoplasmic helix of the human cannabinoid receptors utilizing solidstate NMR techniques, Biochemistry.45 ,73567365. 437.Mechler,A.,Praporski,S.,Atmuri,K.,Boland,M.,Separovic,F.&Martin,L.L. (2007) Specific and selective peptidemembrane interactions revealed using Quartz CrystalMicrobalance, Biophys.J.93 ,39073916.

231 References

438.Mechler,A.,Praporski,S.,Piantavigna,S.,Heaton,S.M.,Hall,K.N.,Aguilar,M. I. & Martin, L. L. (2009) Structure and homogeneity of pseudophysiological phospholipidbilayersandtheirdepositioncharacteristicsoncarboxylicacidterminated selfassembledmonolayers, Biomaterials.30 ,682689. 439.Piantavigna,S.,Czihal,P.,Mechler,A.,Richter,M.,Hoffmann,R.&Martin,L. (2009) Cell penetrating apidaecin peptide interactions with biomimetic phospholipid membranes, Int.J.Pept.Res.Therapeut.15 ,139146. 440.Massiot,D.,Fayon,F.,Capron,M.,King,I.,Calvé,S.L.,Alonso,B.,Durand,J. O.,Bujoli,B.,Gan,Z.&Hoatson,G.(2002)Modellingoneandtwodimensionalsolid stateNMRspectra, Magn.Reson.Chem.40 ,7076. 441.Otten,D.,Brown,M.F.&Beyer,K.(2000)Softeningofmembranebilayersby detergentselucidatedbydeuteriumNMRspectroscopy, J.Phys.Chem.B.104 ,12119 12129. 442.Boden,N.,Jones,S.A.&Sixl,F.(1991)Ontheuseofdeuteriumnuclearmagnetic resonanceasaprobeofchainpackinginlipidbilayers, Biochemistry.30 ,214655. 443.Du,B.Y.&Johanssmann,D.(2004)Operationofthequartzcrystalmicrobalancein liquids:derivationoftheelasticcomplianceofafilmfromtheratioofbandwidthshift andfrequencyshift, Langmuir.20 ,28092812. 444. Gunasekaran, K., Nagarajaram, H. A., Ramakrishnan, C. & Balaram, P. (1998) Stereochemical punctuation marks in protein structures:glycine and prolinecontaining helixstopsignals, J.Mol.Biol.275 ,917932. 445.Woolfson,D.N.&Williams,D.H.(1990)Theinfluenceofprolineresidueson α helicalstructure, FEBSLett.277 ,185188. 446.Kim,S.,Jacobs,R.E.&White,S.H.(1985)Preparationofmultilamellarvesicles ofdefinedsizedistributionbysolventspheruleevaporation, BBABiomembranes.812 , 793801. 447.Kohler,S.J.&Klein,M.P.(1977)Orientationanddynamicsofphospholipidhead groups in bilayers and membranes determined from 31 P nuclear magnetic resonance chemicalshieldingtensors, Biochemistry.16 ,51926. 448.Yang,L.,Harroun,T.A.,Weiss,T.M.,Dong,L.&Huang,H.W.(2001)Barrel stave model or toroidal model? A case study on melittin pores, Biophys. J. 81 , 1475 1485.

232 References

449.Castle,M.,Nazarian,A.,Yi,S.S.&Tempst,P.(1999)Lethaleffectsofapidaecin on Escherichiacoli involvesequentialmolecularinteractionswithdiversetargets, J.Biol. Chem.274 ,3255532564. 450.Ambroggio,E.E.,Separovic,F.,Bowie,J.H.,Fidelio,G.D.&Bagatolli,L.A. (2005)Direct Visualizationof Membrane Leakage InducedbytheAntibiotic Peptides: Maculatin,Citropin,andAurein, Biophys.J.89 ,18741881. 451. Han, M., Mei, Y., Khant, H. & Ludtke, S. J. (2008) Pore Formation by AntimicrobialPeptide,Magainin2,inPhospholipdVesiclesDetectedandVisualizedby CryoElectronMicroscopy, Microsc.Microanal.14 ,16101611. 452. Whittall, K. P., Sternin, E., Bloom, M. & Mackay, A. L. (1989) Time and frequencydomain"dePakeing"usinginversetheory,J.Mag.Reson.84 ,6471. 453.Galassi,M.,Davies,J.,Theiler,J.,Gough,B.,Jungman,G.,Booth,M.&Rossi,F. (2008) GNUScientificLibrary ,1.11edn. 454.Williams,T.,Kelley,C.,Campbell,J.,Kotz,D.&Lang,R.(2007) gnuplot, An InteractivePlottingProgram ,TheFreeSoftwareFoundation. 455.Ahmed,S.A.,Gogal,R.M.&Walsh,J.E.(1994)Anewrapidandsimplenon radioactive assay to monitor and determine the proliferation of lymphocytes: An alternativeto[ 3H]thymidineincorporationassay, J.Immunol.Methods.170 ,211224. 456. Wank, S. A., Pisegna, J. R. & De Weerth, A. (1994) Cholecystokinin receptor family: molecular cloning, structure, and functional expression in rat, guinea pig and human, Ann.N.Y.Acad.Sci.713 ,4966. 457.Lay,J.M.,Jenkins,C.,FriisHansen,L.&Samuelson,L.C.(2000)Structureand developmentalexpressionof the mouse CCKB receptorgene, Biochem.Biophys.Res. Commun.272 ,837842. 458. Gysin, B. & Schwyzer, R. (1983) Liposomemediated labeling of adrenocorticotropinfragmentsparallelstheirbiologicalactivity, FEBSLett.158 ,1216. 459.Schoch,P.,Sargent,D.F.&Schwyzer,R.(1979)Hormonereceptorinteractions: Corticotropin(124)tetracosapeptidespansartificiallipidbilayermembranes, Biochem. Soc.Trans.7 ,846849. 460. Gremlich, H. U., Sargent, D. F. & Schwyzer, R. (1981) The adsorption of adrenocorticotropin(124)tetracosapeptide to lecithin bilayer membranes formed from liposomes, Eur.Biophys.J.8 ,6165.

233 References

461.Gysin,B.&Schwyzer,R.(1983)Headgroupandstructurespecificinteractionsof enkephalinsanddynorphinwithliposomes:Investigationbyhydrophobicphotolabeling, Arch.Biochem.Biophys.225 ,467474. 462.Gremlich,H.U.,Fringeli,U.P.&Schwyzer,R.(1983)Conformationalchangesof adrenocorticotropinpeptidesuponinteractionwithlipidmembranesrevealedbyinfrared attenuatedtotalreflectionspectroscopy, Biochemistry.22 ,42574264. 463. Gremlich, H. U., Fringeli, U. P. & Schwyzer, R. (1984) Interaction of adrenocorticotropin(1124)tetradecapeptide with neutral lipid membranes revealed by infraredattenuatedtotalreflectionspectroscopy,Biochemistry.23 ,18081810. 464.Erne,D.,Sargent,D.F.&Schwyzer,R.(1985)Preferredconformation,orientation, and accumulation of dynorphin A(113)tridecapeptide on the surface of neutral lipid membranes, Biochemistry.24 ,42614263. 465.Spector,A.A.&Yorek,M.A.(1985)Membranelipidcompositionandcellular function, J.LipidRes.26 ,101535. 466.Hiramatsu,K.&Arimori,S.(1982)Rapiddeterminationoflipidsinhealthyhuman lymphocytes, J.Chromatogr.B.227 ,423431. 467.Mitchell,T.W.,Ekroos,K.,Blanksby,S.J.,Hulbert,A.J.&Else,P.L.(2007) Differences in membrane acyl phospholipid composition between an endothermic mammal and an ectothermic reptile are not limited to any phospholipid class, J. Exp. Biol.210 ,34403450. 468.Seelig,A.,Seelig,J.&Robert,A.M.(2001)Membranestructurein Encyclopedia ofphysicalscienceandtechnology pp.355367,AcademicPress,NewYork. 469.Daleke,D.L.(2003)Regulationoftransbilayer plasma membrane phospholipid asymmetry, J.LipidRes.44 ,233242. 470.Wank,S.A.(1998)GProteinCoupledreceptorsingastrointenstinalphysiologyI. CCKreceptors:anexemplaryfamily, Am.J.Physiol.Gastrointest.LiverPhysiol.274 , G607613. 471.Noble,F.&Roques,B.P.(1999)CCKBreceptor:Chemistry,molecularbiology, biochemistryandpharmacology, Prog.Neurobiol.58 ,349379. 472.Lignon,M.F.,Bernad,N.&Martinez,J.(1991)Pharmacologicalcharacterisation oftypeBcholecystokininbindingsitesonthehumanJURKATTlymphocytecellline, Mol.Pharmacol.39 ,615620. 473.Lignon,M.F.,Bernad,N.&Martinez,J.(1994)Cholecystokininreceptorsincells oftheimmunesystem, Ann.N.Y.Acad.Sci.713 ,334336.

234 References

474.Sacerdote,P.,Wiedermann,C.J.,Wahl,L.M.,Pert,C.B.&Ruff,M.R.(1991) Visualization of cholecystokinin receptors on a subset of human monocytes and in rat spleen, Peptides.12 ,167176. 475.Roosenburg,S.,Laverman,P.,vanDelft,F.&Boerman,O.(2011)Radiolabeled CCK/gastrin peptides for imaging and therapy of CCK2 receptorexpressing tumors, AminoAcids.41 ,10491058. 476.Palczewski,K.,Kumasaka,T.,Hori,T.,Behnke,C.A.,Motoshima,H.,Fox,B.A., Trong,I.L.,Teller,D.C.,Okada,T.,Stenkamp,R.E.,Yamamoto,M.&Miyano,M. (2000)Crystalstructureofrhodopsin:AGproteincoupledreceptor, Science.289 ,739 745. 477.Wank,S.A.(1995)Cholecystokininreceptors, Am.J.Physiol.Gastrointest.Liver Physiol.269 ,G628646. 478.Galés,C.,Poirot,M.,Taillefer,J.,Maigret,B.,Martinez,J.,Moroder,L.,Escrieut, C.,Pradayrol,L.,Fourmy,D.&SilventePoirot,S.(2003)Identificationoftyrosine189 andasparagine358ofthecholecystokinin2receptorindirectinteractionwiththecrucial Cterminalamideofcholecystokininbymolecularmodeling,sitedirectedmutagenesis, andstructure/affinitystudies, Mol.Pharmacol.63 ,973982. 479.Jagerschmidt,A.,Guillaume,N.,Roques,B.P.&Noble,F.(1998)Bindingsites and transduction process of the cholecystokinin B receptor: Involvement of highly conservedaromaticresiduesofthetransmembranedomains evidenced by sitedirected mutagenesis, Mol.Pharmacol.53 ,878885. 480. Stone, S. R., Giragossian, C., Mierke, D. F. & Jackson, G. E. (2007) Further evidencefor a Cterminal structural motifinCCK2 receptor active peptide hormones, Peptides.28 ,22112222. 481.Pellegrini,M.&Mierke,D.F.(1999)Molecularcomplexofcholecystokinin8and NterminusofthecholecystokininAreceptorbyNMRSpectroscopy, Biochemistry.38 , 1477514783. 482. Giragossian, C. & Mierke, D. F. (2002) Intermolecular interactions between cholecystokinin8 and the third extracellular loop of the choloecystokinin2 receptor, Biochemistry.41 ,45604566. 483.Rose,G.D.,Gierasch,L.M.&Smith,J.S.(1985)Turnsinpeptidesandproteins, Adv.ProteinChem.37 ,1109. 484. Richardson, J. S. (1981) The anatomy and taxonomy of protein structure, Adv. ProteinChem.34 ,167339.

235 References

485. Panasik, N., Fleming, P. J. & Rose, G. D. (2005) Hydrogenbonded turns in proteins:Thecaseforarecount, ProteinSci.14 ,29102914. 486.SilventePoirot,S.,Escrieut,C.,Galés,C.,Fehrentz,J.A.,Escherich,A.,Wank,S. A., Martinez, J., Moroder, L., Maigret, B., Bouisson, M., Vaysse, N. & Fourmy, D. (1999)EvidenceforadirectinteractionbetweenthepenultimateCterminalasparticacid of cholecystokinin and histidine 207 located in the second extracellular loop of the cholecystokininBreceptor, J.Biol.Chem.274 ,2319123197. 487.Marcotte,I.,Dufourc,E.J.,Ouellet,M.&Auger, M. (2003) Interaction of the neuropeptidemetenkephalinwithZwitterionicandnegativelychargedbicellesasviewed by 31 Pand 2HsolidstateNMR, Biophys.J.85 ,328339. 488. Eisenberg, D. (1984) Threedimensional structure of membrane and surface proteins, Annu.Rev.Biochem.53 ,595623. 489.Cuq,P.,Gross,A.,Terraza,A.,Fourmy,D.,Clerc,P.,Donand,J.&Magous,R. (1997) mRNAs encoding CCK B but not CCK A receptors are expressed in human T lymphocytesandJurkatlymphoblastoidcells, LifeSci.61 ,543555. 490.Dornard,J.,Roche,S.,Michel,T.,Bali,J.P.&Magous,R.(1995)GastrinCCKB typereceptorsonhumanTlymphobastoidJurgatcells, Am.J.Physiol.268 ,G552G529. 491. Iwara, N., Marayama, T., Matsumori, Y., Ito, M., Nagata, A., Taniguchi, T., Chikara, K., Matsuo, Y., Minowada, J. & Matsui, T. (1996) Autocrine loop through CCKB/gastrin receptors involved in the growth of human leukemia cells, Blood. 88 , 26832689. 492.Sarkadi,B.,Tordai,A.&Gárdos,G.(1990)Membranedepolarizationselectively inhibits receptoroperated calcium channels in human T (Jurkat) lymphoblasts, BBA Biomembranes.1027 ,130140. 493.Mozsolits,H.,Wirth,H.J.,Werkmeister,J.&Aguilar,M.I.(2001)Analysisof antimicrobialpeptideinteractionswithhybridbilayer membrane systems using surface plasmonresonance, BBABiomembranes.1512 ,6476. 494.John,B.K.,Plant,D.,Webb,P.&Hurd,R.E.(1992)Effectivecombinationof gradientsandcraftedRFpulsesforwatersuppression in biological samples, J. Magn. Res.98 ,200206.

236 Appendices

Appendices AppendixA The20commonaminoacids,abbreviationsandnominalmasses. Alanine Arginine Asparagine Asparticacid O O O O

H2N CH C OH H2N CH C OH H2N CH C OH H2N CH C OH

CH3 CH2 CH2 CH2

CH2 C O C O

CH2 NH2 OH NH

C NH

NH2 Ala(A) Arg(R) Asn(N) Asp(D) 71Da 156Da 114Da 115Da Cystine Glutamicacid Glutamine Glycine O O O O

H2N CH C OH H2N CH C OH H2N CH C OH H2N CH C OH

CH2 CH2 CH2 H

SH CH2 CH2 C O C O

OH NH2 Cys(C) Glu(E) Gln(Q) Gly(G) 103Da 129Da 128Da 57Da

237 Appendices

Histidine Isoleucine Leucine Lysine O O O O

H2N CH C OH H2N CH C OH H2N CH C OH H2N CH C OH

CH2 CH CH3 CH2 CH2

CH2 CH CH3 CH2 N CH3 CH3 CH2 NH CH2

NH2 His(H) Ile(I) Leu(L) Lys(K) 147Da 113Da 113Da 128Da Methionine Phenylalanine Proline Serine O O O O

H2N CH C OH H2N CH C OH HN OH H2N CH C OH

CH2 CH2 CH2 CH2 OH S

CH3 Met(M) Phe(F) Pro(P) Ser(S) 131Da 147Da 97Da 71Da Threonine Tryptophane Tyrosine Valine O O O O

H2N CH C OH H2N CH C OH H2N CH C OH H2N CH C OH

CH OH CH2 CH2 CH CH3

CH3 CH3

HN OH Thr(T) Trp(W) Tyr(Y) Val(V) 101Da 186Da 163Da 99Da

238 Appendices

AppendixB Amino acid sequence alignment of human (CCKBR), mouse (MUCCKBR) and guinea pig (GPCCKRB) type II cholecystokinin receptors. >Protein alignment 2 Alignment of 2 sequences: GPCCKRB, MCCKBR

Score = 2061.0, Identities = 398/455 (87%), Positives = 420/455 (92%), Gaps = 4/455 (0%)

GPCCKRB 1 MELLKLNRSLQGPGPGPGAPLCRPAGPLLNSSGAGNLSCETPRIRGAGTRELELAIRITL 60 M+LLKLNRSLQGPGPG G+ LCRP LLNSS AGNLSCETPRIRG GTRELEL IRITL MCCKBR 1 MDLLKLNRSLQGPGPGSGSSLCRPGVSLLNSSSAGNLSCETPRIRGTGTRELELTIRITL 60

GPCCKRB 61 YAVIFLMSVGGNMLIIVVLGLSRRLRTVTNAFLLSLAVSDLLLAVACMPFTLLPNLMGTF 120 YAVIFLMSVGGN+LIIVVLGLSRRLRTVTNAFLLSLAVSDLLLAVACMPFTLLPNLMGTF MCCKBR 61 YAVIFLMSVGGNVLIIVVLGLSRRLRTVTNAFLLSLAVSDLLLAVACMPFTLLPNLMGTF 120

GPCCKRB 121 IFGTVICKAVSYLMGVSVSVSTLSLVAIALERYSAICRPLQARVWQTRSHAARVIVATWL 180 IFGTVICKAVSYLMGVSVSVSTL+L AIALERYSAICRPLQARVWQTRSHAARVI+ATWL MCCKBR 121 IFGTVICKAVSYLMGVSVSVSTLNLAAIALERYSAICRPLQARVWQTRSHAARVILATWL 180

GPCCKRB 181 LSGLLMVPYPVYTVVQPVGPRVLQCVHRWPSARVRQTWSVLLLLLLFFVPGVVMAVAYGL 240 LSGLLMVPYPVYTVVQPVGPR+LQC+H WPS RV+Q WSVLLL+LLFF+PGVVMAVAYGL MCCKBR 181 LSGLLMVPYPVYTVVQPVGPRILQCMHLWPSERVQQMWSVLLLILLFFIPGVVMAVAYGL 240

GPCCKRB 241 ISRELYLGLRFDGDADSESQSRVRGRGGLSG--SAPGPAHQNGRCRPESGLSGEDSDGCY 298 ISRELYLGLRFDGD DSE+QSRVR +GGL G +APGP HQNG CR + L+GEDSDGCY MCCKBR 241 ISRELYLGLRFDGDNDSETQSRVRNQGGLPGGAAAPGPVHQNGGCRHVTSLTGEDSDGCY 300

GPCCKRB 299 VQLPRSRPALELSALAASTPAPGPGSRPTQAKLLAKKRVVRMLLVIVVLFFLCWLPVYSA 358 VQLPRSR LE++ L T PGPG RP QAKLLAKKRVVRMLLVIV+LFF+CWLPVYSA MCCKBR 301 VQLPRSR--LEMTTLTTPTTGPGPGPRPNQAKLLAKKRVVRMLLVIVLLFFVCWLPVYSA 358

GPCCKRB 359 NTWRAFDGPGAHRALSGAPISFIHLLSYASACVNPLVYCFMHRRFRQACLETCARCCPRP 418 NTWRAFDGPGA RAL+GAPISFIHLLSY SAC NPLVYCFMHRRFRQACL+TCARCCPRP MCCKBR 359 NTWRAFDGPGARRALAGAPISFIHLLSYTSACANPLVYCFMHRRFRQACLDTCARCCPRP 418

GPCCKRB 419 PRARPRPLPEEDPPTPSIASLSRLSYTTISTLGPG 453 PRARPRPLP+EDPPTPSIASLSRLSYTTISTLGPG MCCKBR 419 PRARPRPLPDEDPPTPSIASLSRLSYTTISTLGPG 453

239 Appendices

>Protein alignment 3 Alignment of 2 sequences: GPCCKRB, HUCCKBR

Score = 2162.0, Identities = 423/453 (93%), Positives = 431/453 (95%), Gaps = 6/453 (1%)

GPCCKRB 1 MELLKLNRSLQGPGPGPGAPLCRPAGPLLNSSGAGNLSCETPRIRGAGTRELELAIRITL 60 MELLKLNRS+QG GPGPGA LCRP PLLNSS GNLSCE PRIRGAGTRELELAIRITL HUCCKBR 1 MELLKLNRSVQGTGPGPGASLCRPGAPLLNSSSVGNLSCEPPRIRGAGTRELELAIRITL 60

GPCCKRB 61 YAVIFLMSVGGNMLIIVVLGLSRRLRTVTNAFLLSLAVSDLLLAVACMPFTLLPNLMGTF 120 YAVIFLMSVGGNMLIIVVLGLSRRLRTVTNAFLLSLAVSDLLLAVACMPFTLLPNLMGTF HUCCKBR 61 YAVIFLMSVGGNMLIIVVLGLSRRLRTVTNAFLLSLAVSDLLLAVACMPFTLLPNLMGTF 120

GPCCKRB 121 IFGTVICKAVSYLMGVSVSVSTLSLVAIALERYSAICRPLQARVWQTRSHAARVIVATWL 180 IFGTVICKAVSYLMGVSVSVSTLSLVAIALERYSAICRPLQARVWQTRSHAARVIVATWL HUCCKBR 121 IFGTVICKAVSYLMGVSVSVSTLSLVAIALERYSAICRPLQARVWQTRSHAARVIVATWL 180

GPCCKRB 181 LSGLLMVPYPVYTVVQPVGPRVLQCVHRWPSARVRQTWSVLLLLLLFFVPGVVMAVAYGL 240 LSGLLMVPYPVYTVVQPVGPRVLQCVHRWPSARVRQTWSVLLLLLLFF+PGVVMAVAYGL HUCCKBR 181 LSGLLMVPYPVYTVVQPVGPRVLQCVHRWPSARVRQTWSVLLLLLLFFIPGVVMAVAYGL 240

GPCCKRB 241 ISRELYLGLRFDGDADSESQSRVRGRGGLSGSAPGPAHQNGRCRPESGLSGEDSDGCYVQ 300 ISRELYLGLRFDGD+DS+SQSRVR +GGL PG HQNGRCRPE+G GEDSDGCYVQ HUCCKBR 241 ISRELYLGLRFDGDSDSDSQSRVRNQGGL----PGAVHQNGRCRPETGAVGEDSDGCYVQ 296

GPCCKRB 301 LPRSRPALELSALAASTPAPGPGSRPTQAKLLAKKRVVRMLLVIVVLFFLCWLPVYSANT 360 LPRSRPALEL+AL A P PG GSRPTQAKLLAKKRVVRMLLVIVVLFFLCWLPVYSANT HUCCKBR 297 LPRSRPALELTALTA--PGPGSGSRPTQAKLLAKKRVVRMLLVIVVLFFLCWLPVYSANT 354

GPCCKRB 361 WRAFDGPGAHRALSGAPISFIHLLSYASACVNPLVYCFMHRRFRQACLETCARCCPRPPR 420 WRAFDGPGAHRALSGAPISFIHLLSYASACVNPLVYCFMHRRFRQACLETCARCCPRPPR HUCCKBR 355 WRAFDGPGAHRALSGAPISFIHLLSYASACVNPLVYCFMHRRFRQACLETCARCCPRPPR 414

GPCCKRB 421 ARPRPLPEEDPPTPSIASLSRLSYTTISTLGPG 453 ARPR LP+EDPPTPSIASLSRLSYTTISTLGPG HUCCKBR 415 ARPRALPDEDPPTPSIASLSRLSYTTISTLGPG 447

240 Appendices

>Protein alignment 4 Alignment of 2 sequences: HUCCKBR, MCCKBR

Score = 2034.0, Identities = 399/455 (87%), Positives = 417/455 (91%), Gaps = 10/455 (2%)

HUCCKBR 1 MELLKLNRSVQGTGPGPGASLCRPGAPLLNSSSVGNLSCEPPRIRGAGTRELELAIRITL 60 M+LLKLNRS+QG GPG G+SLCRPG LLNSSS GNLSCE PRIRG GTRELEL IRITL MCCKBR 1 MDLLKLNRSLQGPGPGSGSSLCRPGVSLLNSSSAGNLSCETPRIRGTGTRELELTIRITL 60

HUCCKBR 61 YAVIFLMSVGGNMLIIVVLGLSRRLRTVTNAFLLSLAVSDLLLAVACMPFTLLPNLMGTF 120 YAVIFLMSVGGN+LIIVVLGLSRRLRTVTNAFLLSLAVSDLLLAVACMPFTLLPNLMGTF MCCKBR 61 YAVIFLMSVGGNVLIIVVLGLSRRLRTVTNAFLLSLAVSDLLLAVACMPFTLLPNLMGTF 120

HUCCKBR 121 IFGTVICKAVSYLMGVSVSVSTLSLVAIALERYSAICRPLQARVWQTRSHAARVIVATWL 180 IFGTVICKAVSYLMGVSVSVSTL+L AIALERYSAICRPLQARVWQTRSHAARVI+ATWL MCCKBR 121 IFGTVICKAVSYLMGVSVSVSTLNLAAIALERYSAICRPLQARVWQTRSHAARVILATWL 180

HUCCKBR 181 LSGLLMVPYPVYTVVQPVGPRVLQCVHRWPSARVRQTWSVLLLLLLFFIPGVVMAVAYGL 240 LSGLLMVPYPVYTVVQPVGPR+LQC+H WPS RV+Q WSVLLL+LLFFIPGVVMAVAYGL MCCKBR 181 LSGLLMVPYPVYTVVQPVGPRILQCMHLWPSERVQQMWSVLLLILLFFIPGVVMAVAYGL 240

HUCCKBR 241 ISRELYLGLRFDGDSDSDSQSRVRNQGGLPGA------VHQNGRCRPETGAVGEDSDGCY 294 ISRELYLGLRFDGD+DS++QSRVRNQGGLPG VHQNG CR T GEDSDGCY MCCKBR 241 ISRELYLGLRFDGDNDSETQSRVRNQGGLPGGAAAPGPVHQNGGCRHVTSLTGEDSDGCY 300

HUCCKBR 295 VQLPRSRPALELTALTAP--GPGSGSRPTQAKLLAKKRVVRMLLVIVVLFFLCWLPVYSA 352 VQLPRSR LE+T LT P GPG G RP QAKLLAKKRVVRMLLVIV+LFF+CWLPVYSA MCCKBR 301 VQLPRSR--LEMTTLTTPTTGPGPGPRPNQAKLLAKKRVVRMLLVIVLLFFVCWLPVYSA 358

HUCCKBR 353 NTWRAFDGPGAHRALSGAPISFIHLLSYASACVNPLVYCFMHRRFRQACLETCARCCPRP 412 NTWRAFDGPGA RAL+GAPISFIHLLSY SAC NPLVYCFMHRRFRQACL+TCARCCPRP MCCKBR 359 NTWRAFDGPGARRALAGAPISFIHLLSYTSACANPLVYCFMHRRFRQACLDTCARCCPRP 418

HUCCKBR 413 PRARPRALPDEDPPTPSIASLSRLSYTTISTLGPG 447 PRARPR LPDEDPPTPSIASLSRLSYTTISTLGPG MCCKBR 419 PRARPRPLPDEDPPTPSIASLSRLSYTTISTLGPG 453

241

Publications Publicationsrelevanttothisthesis Gao, B., Sherman, P., Luo, L., Bowie, J. & Zhu, S. (2009) Structural and functional characterization of two genetically related meucin peptides highlights evolutionary divergenceandconvergenceinantimicrobialpeptides, FASEBJ.23 ,12301245. Sherman,P.J.,Jackway,R.J.,Gehman,J.D.,Praporski,S.,McCubbin,G.A.,Mechler, A.,Martin,L.L.,Separovic,F.&Bowie,J.H.(2009)Solutionstructureandmembrane interactions of the antimicrobial peptide fallaxidin 4.1a: An NMR and QCM study, Biochemistry.48 ,1189211901. Sherman,P.J.,Jackway,R.J.,Nicholson,E.,Musgrave,I.F.,Boontheung,P.&Bowie, J.H.(2009)Activitiesofseasonablyvariablecaeruleinandrotheinskinpeptidesfromthe treefrogs Litoriasplendida and Litoriarothii , Toxicon.54 ,828835. Jackway,R.J.,Pukala,T.L.,Donnellan,S.C.,Sherman,P.J.,Tyler,M.J.&Bowie,J. H.(2011)SkinpeptideandcDNAprofilingofAustralian anurans: Genus and species identificationandevolutionarytrends, Peptides.32 ,161172. Otherpublications Maclean,M.J.,Walker,S.,Wang,T.,Eichinger,P.C.H.,Sherman,P.J.&Bowie,J.H. (2009) Diagnostic fragmentations of adducts formed between carbanions and carbon disulfide in the gas phase. A joint experimental and theoretical study, Org. Biomol. Chem.8 ,371377. Wang,T.,Andreazza,H.J.,Pukala,T.L.,Sherman,P.J.,Calabrese,A.N.&Bowie,J. H. (2011) Histidinecontaining hostdefence skin peptides of anurans bind Cu 2+ . An electrospray ionisation mass spectrometry and computational modelling study, Rapid Commun.MassSpectrom.25 ,12091221.

242 A Gao, B., Sherman, P., Luo, L., Bowie, J. & Zhu, S. (2009) Structural and functional characterization of two genetically related meucin peptides highlights evolutionary divergence and convergence in antimicrobial peptides. The FASEB Journal, v. 23(4), pp. 1230-1245

NOTE: This publication is included on pages 243-258 in the print copy of the thesis held in the University of Adelaide Library.

It is also available online to authorised users at:

http://dx.doi.org/10.1096/fj.08-122317

A Sherman, P.J., Jackway, R.J., Gehman, J.D., Praporski, S., McCubbin, G.A., Mechler, A., Martin, L.L., Separovic, F. & Bowie, J.H. (2009) Solution structure and membrane interactions of the antimicrobial peptide Fallaxidin 4.1a: an NMR and QCM study. Biochemistry, v. 48(50), pp. 11892-11901

NOTE: This publication is included on pages 259-268 in the print copy of the thesis held in the University of Adelaide Library.

It is also available online to authorised users at:

http://dx.doi.org/10.1021/bi901668y

A Sherman, P.J., Jackway, R.J., Nicholson, E., Musgrave, I.F., Boontheung, P. & Bowie, J.H. (2009) Activities of seasonably variable caerulein and rothein skin peptides from the tree frogs Litoria splendida and Litoria rothii. Toxicon, v. 54(6), pp. 828-835

NOTE: This publication is included on pages 269-276 in the print copy of the thesis held in the University of Adelaide Library.

It is also available online to authorised users at:

http://dx.doi.org/10.1016/j.toxicon.2009.06.009

A Jackway, R.J., Pukala, T.L., Donellan, S.C., Sherman, P.J., Tyler, M.J. & Bowie, J.H. (2011) Skin peptide and cDNA profiling of Australian anurans: genus and species identification and evolutionary trends. Peptides, v. 32(1), pp. 161-172

NOTE: This publication is included on pages 277-288 in the print copy of the thesis held in the University of Adelaide Library.

It is also available online to authorised users at:

http://dx.doi.org/10.1016/j.peptides.2010.09.019