Discovery and Characterization of Nav Modulatory Venom Peptides
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Examples of Successful Protein Expression with SUMO Reference Protein Type Family Kda System (Pubmed ID)
Examples of Successful Protein Expression with SUMO Reference Protein Type Family kDa System (PubMed ID) 23 (FGF23), human Growth factor FGF superfamily ~26 E. coli 22249723 SARS coronavirus (SARS-CoV) membrane 3C-like (3CL) protease Viral membrane protein protein 33.8 E. coli 16211506 5′nucleotidase-related apyrase (5′Nuc) Saliva protein (apyrase) 5′nucleotidase-related proteins 65 E. coli 20351782 Acetyl-CoA carboxylase 1 (ACC1) Cytosolic enzyme Family of five biotin-dependent carboxylases ~7 E. coli 22123817 Acetyl-CoA carboxylase 2 (ACC2) BCCP domain Cytosolic enzyme Family of five biotin-dependent carboxylases ~7 E. coli 22123817 Actinohivin (AH) Lectin Anti-HIV lectin of CBM family 13 12.5 E. coli DTIC Allium sativum leaf agglutinin (ASAL) Sugar-binding protein Mannose-binding lectins 25 E. coli 20100526 Extracellular matrix Anosmin protein Marix protein 100 Mammalian 22898776 Antibacterial peptide CM4 (ABP-CM4) Antibacterial peptide Cecropin family of antimicrobial peptides 3.8 E. coli 19582446 peptide from centipede venoms of Scolopendra Antimicrobial peptide scolopin 1 (AMP-scolopin 1) small cationic peptide subspinipes mutilans 2.6 E. coli 24145284 Antitumor-analgesic Antitumor-analgesic peptide (AGAP) peptide Multifunction scorpion peptide 7 E. coli 20945481 Anti-VEGF165 single-chain variable fragment (scFv) Antibody Small antibody-engineered antibody 30 E. coli 18795288 APRIL TNF receptor ligand tumor necrosis factor (TNF) ligand 16 E. coli 24412409 APRIL (A proliferation-inducing ligand, also named TALL- Type II transmembrane 2, TRDL-1 and TNFSF-13a) protein Tumor necrosis factor (TNF) family 27.51 E. coli 22387304 Aprotinin/Basic pancreatic trypsin inhibitor (BPTI) Inhibitor Kunitz-type inhibitor 6.5 E. -
Dna Sequence Data Indicates the Polyphyl Y of the Family Ctenidae (Araneae )
1993. The Journal of Arachnology 21 :194–201 DNA SEQUENCE DATA INDICATES THE POLYPHYL Y OF THE FAMILY CTENIDAE (ARANEAE ) Kathrin C . Huber', Thomas S . Haider2, Manfred W . Miiller2, Bernhard A . Huber' , Rudolf J. Schweyen2, and Friedrich G . Barth' : 'Institut fair Zoologie, Althanstr . 14; 1090 Wien; and 2lnstitut fur Mikrobiologie and Genetik; Dr. Bohrgasse 9 ; 1030 Wien (Vienna), Austria . ABSTRACT. Mitochondrial DNA fragments comprising more than 400 bases of the 16S rDNA from nine spider species have been sequenced: Cupiennius salei, C. getazi, C. coccineus and Phoneutria boliviensis (Ctenidae), Pisaura mirabilis, Dolomedes fimbriatus (Pisauridae), Pardosa agrestis (Lycosidae), Clubiona pallidula (Clubi- onidae) and Ryuthela nishihirai (syn. Heptathela nishihirai; Heptathelidae: Mesothelae). Sequence divergence ranges from 3–4% among Cupiennius species and up to 36% in pairwise comparisons of the more distantly related spider DNAs. Maximally parsimonious gene trees based on these sequences indicate that Phoneutri a and Cupiennius are the most distantly related species of the examined Lycosoidea . The monophyly of the family Ctenidae is therefore doubted ; and a revision of the family, which should include DNA-data, is needed . Cupiennius salei (Ctenidae) is one of the most get a high copy number of the DNA segment of extensively studied species of spiders (see Lach - interest. The PCR depends on the availability of muth et al. 1985). The phylogeny of the Ctenidae , oligonucleotides that specifically bind to the a mainly South and Central American family, i s flanking sequences of this DNA segment. These poorly understood ; and systematists propose oligonucleotides serve as primers for a polymer- highly contradicting views on its classification ization reaction that copies the segment in vitro. -
BAST1986050004005.Pdf
BASTERIA, 50: 93-150, 1986 Alphabetical revision of the (sub)species in recent Conidae. 9. ebraeus to extraordinarius with the description of Conus elegans ramalhoi, nov. subspecies H.E. Coomans R.G. Moolenbeek& E. Wils Institute of Taxonomic Zoology (Zoological Museum) University of Amsterdam INTRODUCTION In this ninth part of the revision all names of recent Conus taxa beginning with the letter e are discussed. Amongst these are several nominal species of tent-cones with a C.of close-set lines, the shell a darker pattern consisting very giving appearance (e.g. C. C. The elisae, euetrios, eumitus). phenomenon was also mentioned for C. castaneo- fasciatus, C. cholmondeleyi and C. dactylosus in former issues. This occurs in populations where with normal also that consider them specimens a tent-pattern are found, so we as colour formae. The effect is known shells in which of white opposite too, areas are present, leaving 'islands' with the tent-pattern (e.g. C. bitleri, C. castrensis, C. concatenatus and C. episco- These colour formae. patus). are also art. Because of a change in the rules of the ICZN (3rd edition, 1985: 73-74), there has risen a disagreement about the concept of the "type series". In cases where a museum type-lot consists of more than one specimen, although the original author(s) did not indicate that more than one shell was used for the description, we will designate the single originally mentioned and/or figured specimen as the "lectotype". Never- theless a number of taxonomists will consider that "lectotype" as the holotype, and disregard the remaining shells in the lot as type material. -
Using the Deadly M-Conotoxins As Probes of Voltage-Gated Sodium Channels
Toxicon 44 (2004) 117–122 www.elsevier.com/locate/toxicon Mini-review Using the deadly m-conotoxins as probes of voltage-gated sodium channels Ronald A. Li*, Gordon F. Tomaselli The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 871, Baltimore, MD 21205, USA Accepted 23 March 2004 Available online 19 June 2004 Abstract m-Conotoxins (m-CTX) are potent Na channel inhibitory peptides isolated from the venom of the predatory marine snail Conus geographus. m-CTXs exert their biological action by physically occluding the ion-conducting pore of voltage-gated Na (Nav) channels with a 1:1 stoichiometry in an all-or-none fashion. This article reviews our current knowledge of the mechanism of m-CTX and the associated structural and functional insights into its molecular target—Nav channels. q 2004 Elsevier Ltd. All rights reserved. Keywords: Na channel; Pore; m-Conotoxin Contents 1. Well-defined primary and 3-dimensional structures of m-CTX .............................. 117 2. Molecular target of m-CTX: voltage-gated Naþ channels . ................................. 119 3. m-CTX-pore interactions are site-specific.............................................. 119 4. Docking orientation of m-CTX ..................................................... 119 5. Isoform-specificity of m-CTX block ................................................. 121 6. m-CTX versus Kþ channel pore-blocking toxins ........................................ 121 7. Conclusion.................................................................... 121 Acknowledgements -
A Transcriptomic Survey of Ion Channel-Based Conotoxins in the Chinese Tubular Cone Snail (Conus Betulinus)
marine drugs Article A Transcriptomic Survey of Ion Channel-Based Conotoxins in the Chinese Tubular Cone Snail (Conus betulinus) Yu Huang 1,2,†, Chao Peng 2,†, Yunhai Yi 1,2, Bingmiao Gao 3 and Qiong Shi 1,2,4,* 1 BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China; [email protected] (Y.H.); [email protected] (Y.Y.) 2 Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China; [email protected] 3 Hainan Provincial Key Laboratory of Research and Development of Tropical Medicinal Plants, Hainan Medical University, Haikou 571199, China; [email protected] 4 Laboratory of Aquatic Genomics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China * Correspondence: [email protected]; Tel.: +86-185-6627-9826 † These authors contributed equally to this work. Received: 31 May 2017; Accepted: 13 July 2017; Published: 18 July 2017 Abstract: Conotoxins in the venom of cone snails (Conus spp.) are a mixture of active peptides that work as blockers, agonists, antagonists, or inactivators of various ion channels. Recently we reported a high-throughput method to identify 215 conotoxin transcripts from the Chinese tubular cone snail, C. betulinus. Here, based on the previous datasets of four transcriptomes from three venom ducts and one venom bulb, we explored ion channel-based conotoxins and predicted their related ion channel receptors. Homologous analysis was also performed for the most abundant ion channel protein, voltage-gated potassium (Kv; with Kv1.1 as the representative), and the most studied ion channel receptor, nicotinic acetylcholine receptor (nAChR; with α2-nAChR as the representative), in different animals. -
Animal Venom Derived Toxins Are Novel Analgesics for Treatment Of
Short Communication iMedPub Journals 2018 www.imedpub.com Journal of Molecular Sciences Vol.2 No.1:6 Animal Venom Derived Toxins are Novel Upadhyay RK* Analgesics for Treatment of Arthritis Department of Zoology, DDU Gorakhpur University, Gorakhpur, UP, India Abstract *Corresponding authors: Ravi Kant Upadhyay Present review article explains use of animal venom derived toxins as analgesics of the treatment of chronic pain and inflammation occurs in arthritis. It is a [email protected] progressive degenerative joint disease that put major impact on joint function and quality of life. Patients face prolonged inappropriate inflammatory responses and bone erosion. Longer persistent chronic pain is a complex and debilitating Department of Zoology, DDU Gorakhpur condition associated with a large personal, mental, physical and socioeconomic University, Gorakhpur, UttarPradesh, India. burden. However, for mitigation of inflammation and sever pain in joints synthetic analgesics are used to provide quick relief from pain but they impose many long Tel: 9838448495 term side effects. Venom toxins showed high affinity to voltage gated channels, and pain receptors. These are strong inhibitors of ion channels which enable them as potential therapeutic agents for the treatment of pain. Present article Citation: Upadhyay RK (2018) Animal Venom emphasizes development of a new class of analgesic agents in form of venom Derived Toxins are Novel Analgesics for derived toxins for the treatment of arthritis. Treatment of Arthritis. J Mol Sci. Vol.2 No.1:6 Keywords: Analgesics; Venom toxins; Ion channels; Channel inhibitors; Pain; Inflammation Received: February 04, 2018; Accepted: March 12, 2018; Published: March 19, 2018 Introduction such as the back, spine, and pelvis. -
Psalmopoeus Cambridgei (Trinidad Chevron Tarantula)
UWI The Online Guide to the Animals of Trinidad and Tobago Ecology Psalmopoeus cambridgei (Trinidad Chevron Tarantula) Order: Araneae (Spiders) Class: Arachnida (Spiders and Scorpions) Phylum: Arthropoda (Arthropods) Fig. 1. Trinidad chevron tarantula, Psalmopoeus cambridgei. [http://www.exoreptiles.com/my/index.php?main_page=product_info&products_id=1127, downloaded 30 April 2015] TRAITS. A large spider, maximum size 11-14cm across the legs, with chevrons (V-shaped marks) on the abdomen (Fig. 1). Males are either grey or brown in colour, and females vary from green to brown with red or orange markings on the legs (Wikipedia, 2013). The Trinidad chevron tarantula is hairy in appearance, has eight legs, and its body is divided into two parts, the cephalothorax and the abdomen which are connected by a pedicel that looks like a narrow stalk (Fig. 2). The cephalothorax has eight legs plus a pair of smaller leg-like appendages (pedipalps) used to catch prey; in males these have palpal bulbs attached to the ends for holding sperm (Fig. 3). The mouth has chelicerae with fangs at the ends and swollen bases that house the venom glands, and there are eight small eyes (Foelix, 2010). However, even with eight eyes the Trinidad chevron tarantula can hardly see and so depends mostly on touch, smell, and taste to find its way. There are organs on their feet to detect changes in the environment and special type of hair on their legs and pedipalps for taste. The second part, the abdomen attached to a narrow waist, can UWI The Online Guide to the Animals of Trinidad and Tobago Ecology expand and contract to accommodate food and eggs; two pairs of spinnerets are located at the end of the abdomen (Fig. -
A Functional Nav1.7-Navab Chimera with a Reconstituted High-Affinity Protx-II Binding Site S
Supplemental material to this article can be found at: http://molpharm.aspetjournals.org/content/suppl/2017/06/23/mol.117.108712.DC1 1521-0111/92/3/310–317$25.00 https://doi.org/10.1124/mol.117.108712 MOLECULAR PHARMACOLOGY Mol Pharmacol 92:310–317, September 2017 Copyright ª 2017 by The American Society for Pharmacology and Experimental Therapeutics A Functional NaV1.7-NaVAb Chimera with a Reconstituted High-Affinity ProTx-II Binding Site s Ramkumar Rajamani, Sophie Wu, Iyoncy Rodrigo, Mian Gao, Simon Low, Lisa Megson, David Wensel, Rick L. Pieschl, Debra J. Post-Munson, John Watson, David R. Langley, Michael K. Ahlijanian, Linda J. Bristow, and James Herrington Molecular Discovery Technologies, Wallingford, Connecticut, Princeton, New Jersey, and Waltham, Massachusetts (R.R., S.W., I.R., M.G., S.L., L.M., D.W., D.R.L.); Discovery Biology (R.L.P., D.J.P.-M., M.K.A., L.J.B., J.H.) and Lead Discovery and Optimization (J.W.), Bristol-Myers Squibb Company, Wallingford, Connecticut Downloaded from Received March 6, 2017; accepted June 14, 2017 ABSTRACT The NaV1.7 voltage-gated sodium channel is implicated in part of the voltage sensor domain 2 (VSD2) of NaV1.7. Importantly, human pain perception by genetics. Rare gain of function this chimera, DII S1–S4, forms functional sodium channels and is molpharm.aspetjournals.org mutations in NaV1.7 lead to spontaneous pain in humans whereas potently inhibited by the NaV1.7 VSD2 targeted peptide toxin loss of function mutations results in congenital insensitivity to pain. ProTx-II. Further, we show by [125I]ProTx-II binding and surface Hence, agents that specifically modulate the function of NaV1.7 plasmon resonance that the purified DII S1–S4 protein retains high have the potential to yield novel therapeutics to treat pain. -
Pet Health and Happiness Is Our Primary Concern
Pet Health and Happiness Is Our Primary Concern CONCISE CARE SHEETS PINK-TOES find more caresheets at nwzoo.com/care AND TREE SPIDERS INTRO QUICK TIPS PSALMOPOEUS The tropics of the New World or Americas are home to many popular The Trinidad Chevron (Psalmopoeus tree-dwelling tarantulas. These include a wide variety of “Pink-toes” of the » 76-82°F with a drop in tem- cambridgei] and Venezuelan Suntiger (P. genus Avicularia, the closely related Antilles “pink-toe” or tree tarantula perature at night (72-76ºF) irminia) are the best known members of (Caribena versicolor), the lightning-fast and agile Tapinauchenius and » Requires 70-80% humidity, a genus popular with tarantula keepers. a handful of species of Psalmopoeus like the Venezuelan Suntiger and but also good ventilation. Both are fairly large (P. cambridgei can Trinidad Chevron. » Most species will eat a reach a legspan of seven inches) and variety of arthropods and make exceptional display subjects for These tarantulas are found in a variety of subtropical and tropical habitats, small vertebrates yet thrive the spacious vertically-oriented forest but their general care is similar enough to cover them all in a single care on roaches or crickets in terrarium. Psalmopoeus tarantulas are sheet. Optimal captive husbandry is focused on providing warm, humid captivity. very hardy and often more forgiving of air in an enclosure that allows for sufficient ventilation. It is a balancing drier conditions than other New World act of sorts, but the conscientious and cautious keeper soon learns to err arboreal tarantulas. Both the Chevron on the side of good airflow as it is easier to add moisture than to correct and Suntiger appreciate a couple of layers of vertical cork bark slabs to overly damp or stagnant conditions. -
Report from the 26Th Meeting on Toxinology,“Bioengineering Of
toxins Meeting Report Report from the 26th Meeting on Toxinology, “Bioengineering of Toxins”, Organized by the French Society of Toxinology (SFET) and Held in Paris, France, 4–5 December 2019 Pascale Marchot 1,* , Sylvie Diochot 2, Michel R. Popoff 3 and Evelyne Benoit 4 1 Laboratoire ‘Architecture et Fonction des Macromolécules Biologiques’, CNRS/Aix-Marseille Université, Faculté des Sciences-Campus Luminy, 13288 Marseille CEDEX 09, France 2 Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d’Azur, CNRS, Sophia Antipolis, 06550 Valbonne, France; [email protected] 3 Bacterial Toxins, Institut Pasteur, 75015 Paris, France; michel-robert.popoff@pasteur.fr 4 Service d’Ingénierie Moléculaire des Protéines (SIMOPRO), CEA de Saclay, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; [email protected] * Correspondence: [email protected]; Tel.: +33-4-9182-5579 Received: 18 December 2019; Accepted: 27 December 2019; Published: 3 January 2020 1. Preface This 26th edition of the annual Meeting on Toxinology (RT26) of the SFET (http://sfet.asso.fr/ international) was held at the Institut Pasteur of Paris on 4–5 December 2019. The central theme selected for this meeting, “Bioengineering of Toxins”, gave rise to two thematic sessions: one on animal and plant toxins (one of our “core” themes), and a second one on bacterial toxins in honour of Dr. Michel R. Popoff (Institut Pasteur, Paris, France), both sessions being aimed at emphasizing the latest findings on their respective topics. Nine speakers from eight countries (Belgium, Denmark, France, Germany, Russia, Singapore, the United Kingdom, and the United States of America) were invited as international experts to present their work, and other researchers and students presented theirs through 23 shorter lectures and 27 posters. -
Ligand and Voltage Gated Ion Channels
Print ISSN: 2319-2003 | Online ISSN: 2279-0780 IJBCP International Journal of Basic & Clinical Pharmacology DOI: http://dx.doi.org/10.18203/2319-2003.ijbcp20170314 Review Article Drug targets: ligand and voltage gated ion channels Nilan T. Jacob* Department of Pharmacology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), ABSTRACT Puducherry, India The elucidation of a drug target is one of the earliest and most important steps in the drug discovery process. Ion channels encompassing both the ligand gated Received: 03 December 2016 and voltage gated types are the second most common drug targets after G- Revised: 07 December 2016 Protein Coupled Receptors (GPCR). Ion channels are basically pore forming Accepted: 27 December 2016 membrane proteins specialized for conductance of ions as per the concentration gradient. They are further broadly classified based on the energy (ATP) *Correspondence to: dependence into active ion channels/pumps and passive ion channels. Gating is Dr. Nilan T. Jacob, the regulatory mechanism of these ion channels by which binding of a specific Email: molecule or alteration in membrane potential induces conformational change in [email protected] the channel architecture to result in ion flow or its inhibition. Thus, the study of ligand and voltage gated ion channels becomes an important tool for drug Copyright: © the author(s), discovery especially during the initial stage of target identification. This review publisher and licensee Medip aims to describe the ligand and voltage gated ion channels along with discussion Academy. This is an open- on its subfamilies, channel architecture and key pharmacological modulators. access article distributed under the terms of the Creative Keywords: Drug targets, Ion channels, Ligand gated ion channels, Receptor Commons Attribution Non- Commercial License, which pharmacology, Voltage gated ion channels permits unrestricted non- commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. -
Immune Drug Discovery from Venoms
Accepted Manuscript Immune drug discovery from venoms Rocio Jimenez, Maria P. Ikonomopoulou, J.A. Lopez, John J. Miles PII: S0041-0101(17)30352-5 DOI: 10.1016/j.toxicon.2017.11.006 Reference: TOXCON 5763 To appear in: Toxicon Received Date: 18 July 2017 Revised Date: 14 November 2017 Accepted Date: 18 November 2017 Please cite this article as: Jimenez, R., Ikonomopoulou, M.P., Lopez, J.A., Miles, J.J., Immune drug discovery from venoms, Toxicon (2017), doi: 10.1016/j.toxicon.2017.11.006. This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ACCEPTED MANUSCRIPT Immune drug discovery from venoms Rocio Jimenez 1,2 , Maria P. Ikonomopoulou 2,3 , J.A. Lopez 1,2 and John J. Miles 1,2,3,4,5 1. Griffith University, School of Natural Sciences, Brisbane, Queensland, Australia 2. QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia 3. School of Medicine, The University of Queensland, Brisbane, Australia 4. Centre for Biodiscovery and Molecular DevelopmentMANUSCRIPT of Therapeutics, AITHM, James Cook University, Cairns, Queensland, Australia 5. Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom Corresponding author: A/Prof John J. Miles, Molecular Immunology Laboratory, Centre for Biodiscovery and Molecular Development of Therapeutics, AITHM, James Cook University, Cairns, Queensland,ACCEPTED Australia E-mail: [email protected].