Diversity of Bulbous Monocots in Turkey with Special Reference
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A HANDBOOK of GARDEN IRISES by W
A HANDBOOK OF GARDEN IRISES By W. R. DYKES, M.A., L.-ès-L. SECRETARY OF THE ROYAL HORTICULTURAL SOCIETY. AUTHOR OF "THE GENUS IRIS," ETC. CONTENTS. PAGE PREFACE 3 1 THE PARTS OF THE IRTS FLOWER AND PLANT 4 2 THE VARIOUS SECTIONS OF THE GENUS AND 5 THEIR DISTRIBUTION 3 THE GEOGRAPHICAL DISTRIBUTION OF THE VARIOUS 10 SECTIONS AND SPECIES AND THEIR RELATIVE AGES 4 THE NEPALENSIS SECTION 13 5 THE GYNANDRIRIS SECTION 15 6 THE RETICULATA SECTION 16 7 THE JUNO SECTION 23 8 THE XIPHIUM SECTION 33 9 THE EVANSIA SECTION 40 10 THE PARDANTHOPSIS SECTION 45 11 THE APOGON SECTION 46 — THE SIBIRICA SUBSECTION 47 — THE SPURIA SUBSECTION 53 — THE CALIFORNIAN SUBSECTION 59 — THE LONGIPETALA SUBSECTION 64 — THE HEXAGONA SUBSECTION 67 — MISCELLANEOUS BEARDLESS IRISES 69 12 THE ONCOCYCLUS SECTION 77 I. Polyhymnia, a Regeliocydus hybrid. 13 THE REGELIA SECTION 83 (I. Korolkowi x I. susianna). 14 THE PSEUDOREGELIA SECTION 88 15 THE POGONIRIS SECTION 90 16 GARDEN BEARDED IRISES 108 17 A NOTE ON CULTIVATION, ON RAISING 114 SEEDLINGS AND ON DISEASES 18 A TABLE OF TIMES OF PLANTING AND FLOWERING 116 19 A LIST OF SYNONYMS SOMETIMES USED IN 121 GARDENS This edition is copyright © The Goup for Beardless Irises 2009 - All Rights Reserved It may be distributed for educational purposes in this format as long as no fee (or other consideration) is involved. www.beardlessiris.org PREFACE TO THIS DIGITAL EDITION William Rickatson Dykes (1877-1925) had the advantage of growing irises for many years before writing about them. This Handbook published in 1924 represents the accumulation of a lifetime’s knowledge. -
Analysis of the Giant Genomes of Fritillaria (Liliaceae) Indicates That a Lack of DNA Removal Characterizes Extreme Expansions in Genome Size
CORE Metadata, citation and similar papers at core.ac.uk Provided by Queen Mary Research Online Analysis of the giant genomes of Fritillaria (Liliaceae) indicates that a lack of DNA removal characterizes extreme expansions in genome size. Kelly, LJ; Renny-Byfield, S; Pellicer, J; Macas, J; Novák, P; Neumann, P; Lysak, MA; Day, PD; Berger, M; Fay, MF; Nichols, RA; Leitch, AR; Leitch, IJ © 2015 The Authors. CC-BY For additional information about this publication click this link. http://qmro.qmul.ac.uk/jspui/handle/123456789/8496 Information about this research object was correct at the time of download; we occasionally make corrections to records, please therefore check the published record when citing. For more information contact [email protected] Research Analysis of the giant genomes of Fritillaria (Liliaceae) indicates that a lack of DNA removal characterizes extreme expansions in genome size Laura J. Kelly1,2, Simon Renny-Byfield1,3, Jaume Pellicer2,Jirı Macas4, Petr Novak4, Pavel Neumann4, Martin A. Lysak5, Peter D. Day1,2, Madeleine Berger2,6,7, Michael F. Fay2, Richard A. Nichols1, Andrew R. Leitch1 and Ilia J. Leitch2 1School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK; 2Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, TW9 3DS, UK; 3 4 Department of Plant Sciences, University of California Davis, Davis, CA 95616, USA; Biology Centre CAS, Institute of Plant Molecular Biology, CZ-37005, Ceske Budejovice, Czech Republic; 5Plant Cytogenomics Research Group, CEITEC – Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic; 6School of Biological and Biomedical Sciences, Durham University, South Road, Durham DH1 3LE, UK; 7Rothamsted Research, West Common, Harpenden, Hertfordshire, AL5 2JQ, UK Summary Authors for correspondence: Plants exhibit an extraordinary range of genome sizes, varying by > 2000-fold between the Laura J. -
Review of Species Selected from the Analysis of 2004 EC Annual Report
Review of species selected from the Analysis of 2005 EC Annual Report to CITES (Version edited for public release) Prepared for the European Commission Directorate General E - Environment ENV.E.2. – Development and Environment by the United Nations Environment Programme World Conservation Monitoring Centre May, 2008 Prepared and produced by: UNEP World Conservation Monitoring Centre, Cambridge, UK ABOUT UNEP WORLD CONSERVATION MONITORING CENTRE www.unep-wcmc.org The UNEP World Conservation Monitoring Centre is the biodiversity assessment and policy implementation arm of the United Nations Environment Programme (UNEP), the world‘s foremost intergovernmental environmental organisation. UNEP-WCMC aims to help decision- makers recognize the value of biodiversity to people everywhere, and to apply this knowledge to all that they do. The Centre‘s challenge is to transform complex data into policy-relevant information, to build tools and systems for analysis and integration, and to support the needs of nations and the international community as they engage in joint programmes of action. UNEP-WCMC provides objective, scientifically rigorous products and services that include ecosystem assessments, support for implementation of environmental agreements, regional and global biodiversity information, research on threats and impacts, and development of future scenarios for the living world. The contents of this report do not necessarily reflect the views or policies of UNEP or contributory organisations. The designations employed and the presentations do not imply the expressions of any opinion whatsoever on the part of UNEP, the European Commission or contributory organisations concerning the legal status of any country, territory, city or area or its authority, or concerning the delimitation of its frontiers or boundaries. -
New Ten Varieties and Five Subspecies of Crocus Baalbekensis K. Addam & M
MOJ Ecology & Environmental Sciences Research Article Open Access New ten varieties and five subspecies of Crocus baalbekensis K. Addam & M. Bou-Hamdan (Iridaceae) endemic to Lebanon added to the Lebanese flora Abstract Volume 4 Issue 6 - 2019 Fifteen new world record Crocus baalbekensis var. decorus, fluctus, flavo-album, 1 2 makniensis, youninensis, rasbaalbekensis, rihaensis, shaathensis, shlifensis, tnaiyetensis, Khodr Addam, Mounir Bou-Hamdan, Jihad subsp. ahlansis, anthopotamus, fakihansis, harbatansis, and rassomensis, joined the Takkoush,3 Kamal Hout4 Lebanese flora and particularly the Iridaceae family. They were found in Baalbek-Hermel 1Head, Integrative and Environmental Research Center, AUL from North Baalbek to Hermel. All of them display C. Baalbekensis but vary in many Beirut, Lebanon 2 taxonomic details. The validation for the existence of these new Varieties and Subspecies Integrative Research and Environmental Center, AUL Beirut, were verified by illustrated morphologic descriptions and observations were based on fresh Lebanon 3 materials. More than twenty years of fieldwork and three years of observation, phenology, Business Research Center, AUL Beirut, Lebanon 4Department of PG Studies & Scientific Research, Global and exploration of a host of locations, numerous quantities were found varying mostly from University Beirut, Lebanon ten to more of the new species. Voucher specimens of the plants (Holotypes) were deposited in K. Addam’s Herbarium at Arts, Sciences and Technology University in Lebanon. Correspondence: Dr. Khodr H Addam, Head, Integrative and The goal of this study was to display a comparative account on the anatomical and ecological Environmental Research Center, AUL, Beirut, Lebanon, Tel 03- characters of the 10 varieties and 5 subspecies of Crocus baalbekensis taxa as well as 204930, Email highlight the taxonomical importance of their corm, corm tunic, leaves, measurements, and Received: November 19, 2019 | Published: December 05, comparisons of other structural anatomical differences and similarities. -
These De Doctorat De L'universite Paris-Saclay
NNT : 2016SACLS250 THESE DE DOCTORAT DE L’UNIVERSITE PARIS-SACLAY, préparée à l’Université Paris-Sud ÉCOLE DOCTORALE N° 567 Sciences du Végétal : du Gène à l’Ecosystème Spécialité de doctorat (Biologie) Par Mlle Nour Abdel Samad Titre de la thèse (CARACTERISATION GENETIQUE DU GENRE IRIS EVOLUANT DANS LA MEDITERRANEE ORIENTALE) Thèse présentée et soutenue à « Beyrouth », le « 21/09/2016 » : Composition du Jury : M., Tohmé, Georges CNRS (Liban) Président Mme, Garnatje, Teresa Institut Botànic de Barcelona (Espagne) Rapporteur M., Bacchetta, Gianluigi Università degli Studi di Cagliari (Italie) Rapporteur Mme, Nadot, Sophie Université Paris-Sud (France) Examinateur Mlle, El Chamy, Laure Université Saint-Joseph (Liban) Examinateur Mme, Siljak-Yakovlev, Sonja Université Paris-Sud (France) Directeur de thèse Mme, Bou Dagher-Kharrat, Magda Université Saint-Joseph (Liban) Co-directeur de thèse UNIVERSITE SAINT-JOSEPH FACULTE DES SCIENCES THESE DE DOCTORAT DISCIPLINE : Sciences de la vie SPÉCIALITÉ : Biologie de la conservation Sujet de la thèse : Caractérisation génétique du genre Iris évoluant dans la Méditerranée Orientale. Présentée par : Nour ABDEL SAMAD Pour obtenir le grade de DOCTEUR ÈS SCIENCES Soutenue le 21/09/2016 Devant le jury composé de : Dr. Georges TOHME Président Dr. Teresa GARNATJE Rapporteur Dr. Gianluigi BACCHETTA Rapporteur Dr. Sophie NADOT Examinateur Dr. Laure EL CHAMY Examinateur Dr. Sonja SILJAK-YAKOVLEV Directeur de thèse Dr. Magda BOU DAGHER KHARRAT Directeur de thèse Titre : Caractérisation Génétique du Genre Iris évoluant dans la Méditerranée Orientale. Mots clés : Iris, Oncocyclus, région Est-Méditerranéenne, relations phylogénétiques, status taxonomique. Résumé : Le genre Iris appartient à la famille des L’approche scientifique est basée sur de nombreux Iridacées, il comprend plus de 280 espèces distribuées outils moléculaires et génétiques tels que : l’analyse de à travers l’hémisphère Nord. -
Embryological and Cytological Features of Gagea Bohemica (Liliaceae)
Turk J Bot 36 (2012) 462-472 © TÜBİTAK Research Article doi:10.3906/bot-1107-11 Embryological and cytological features of Gagea bohemica (Liliaceae) Filiz VARDAR*, Işıl İSMAİLOĞLU, Meral ÜNAL Department of Biology, Science and Arts Faculty, Marmara University, 34722 Göztepe, İstanbul - TURKEY Received: 19.07.2011 ● Accepted: 29.02.2012 Abstract: Th e present study describes the developmental features of the embryo sac and ovular structures, particularly the obturator, during development in Gagea bohemica (Zauschn.) Schult. & Schult. f. Th e nucellar epidermis is poorly developed and composed of 1-2 layers of cuboidal cells. Th e tissue at the chalazal end of the nucellus diff erentiates into a hypostase. Th e micropyle is formed by the inner integument and composed of 4-5 cell layers that include starch grains. Th e functional megaspore results in an 8-nucleated embryo sac and conforms to a tetrasporic, Fritillaria L. type. Cytoplasmic nucleoloids consisting of protein and RNA are obvious during megasporogenesis. Th e obturator attracts attention during embryo sac development. Cytochemical tests indicated that the cells of the obturator present a strong reaction in terms of insoluble polysaccharide, lipid, and protein. Obturator cells are coated by a smooth and thick surface layer that starts to accumulate partially and then merges. Ultrastructural studies reveal that obturator cells are rich in rough endoplasmic reticulum, polysomes, plastids with osmiophilic inclusions, dictyosomes with large vesicles, mitochondria, and osmiophilic secretory granules. Aft er fertilisation, the vacuolisation in obturator cells increases by fusing small vacuoles to form larger ones. Some of the small vacuoles contain electron dense deposits. -
Biological Specifics and Chemical Composition of Medicinal Plant Eminium Regelii Vved
Global Journal of Pharmacology 8 (3): 432-436, 2014 ISSN 1992-0075 © IDOSI Publications, 2014 DOI: 10.5829/idosi.gjp.2014.8.3.83325 Biological Specifics and Chemical Composition of Medicinal Plant Eminium regelii Vved Batiyash Mukanovna Silybayeva, Kulyash Askarovna Tazabayeva and Klara Sauykovna Zharykbasova Kazakh Humanitarian Juridical Innovative University, Abai Street, 94, Semey City, East Kazakhstan Region, 071400 Republic of Kazakhstan Abstract: The aim of the present work was to study areal of Eminium regelii Vved in Kazakhstan territory, its biological specifics and chemical composition. Eminium regelii Vved was discovered on the territory of Kazakhstan national reserve Aksu-Zhabagly. Distinctive biological characteristic of Eminium regelii is a wedge-shaped base of a leaf that smoothly turns into petiole. Leaf base of Eminium lehmannii is heart-shaped or obtuse-angled. Specific weight of aluminium is the greatest of all 21 elements contained in over-ground and underground parts of plant. Leaves contain 24% of aluminium and tubers contain 66% of aluminuim of all amount if mineral elements. Two flavonoids are discovered in Eminium regelii: luteolin and quercetin. Key words: Eminium regelii Aksu-Zhabagly Mineral Elements Luteolin Quercetin INTRODUCTION Literature about Eminium regelii Vved that is the second specie of Eminium genus growing in Kazakhstan Perennial herbaceous plant Eminium regelii Vved territory are scanty. According to Pavlov N.V., Gegelii belongs to genus Eminium family Aracea. grows in foothills and bottom flange of mountain regions Genus Eminium consists of about 9 species of plants [2]. growing on the territory from South Africa to Central The aim of the present work is to inspect areal of Asia: E. -
Iris Sibirica and Others Iris Albicans Known As Cemetery
Iris Sibirica and others Iris Albicans Known as Cemetery Iris as is planted on Muslim cemeteries. Two different species use this name; the commoner is just a white form of Iris germanica, widespread in the Mediterranean. This is widely available in the horticultural trade under the name of albicans, but it is not true to name. True Iris albicans which we are offering here occurs only in Arabia and Yemen. It is some 60cm tall, with greyish leaves and one to three, strongly and sweetly scented, 9cm flowers. The petals are pure, bone- white. The bracts are pale green. (The commoner interloper is found across the Mediterranean basin and is not entitled to the name, which continues in use however. The wrongly named albicans, has brown, papery bracts, and off-white flowers). Our stock was first found near Sana’a, Yemen and is thriving here, outside, in a sunny, raised bed. Iris Sibirica and others Iris chrysographes Black Form Clumps of narrow, iris-like foliage. Tall sprays of darkest violet to almost black velvety flowers, Jun-Sept. Ht 40cm. Moist, well drained soil. Part shade. Deepest Purple which is virtually indistinguishable from black. Moist soil. Ht. 50cm Iris chrysographes Dykes (William Rickatson Dykes, 1911, China); Section Limniris, Series Sibericae; 14-18" (35-45 cm), B7D; Flowers dark reddish violet with gold streaks in the signal area giving it its name (golden writing); Collected by E. H. Wilson in 1908, in China; The Gardeners' Chronicle 49: 362. 1911. The Curtis's Botanical Magazine. tab. 8433 in 1912, gives the following information along with the color illustration. -
ALKALOID-BEARING PLANTS and THEIR CONTAINED ALKALOIDS by J
ALKALOID-BEARING PLANTS and Their Contained Alkaloids TT'TBUCK \ \ '■'. Technical Bulletin No. 1234 AGRICULTURAL RESEARCH SERVICE U.S. DEPARTMENT OF AGRICULTURE ACKNOWLEDGMENTS The authors are indebted to J. W. Schermerhorn and M. W. Quimby, Massachusetts College of Pharmacy, for access to the original files of the Lynn Index; to K. F. Rauiïauf, Smith, Kline & French Labora- tories, and to J. H. Hoch, Medical College of South Carolina, for extensive lists of alkaloid plants; to V. S. Sokolov, V. L. Komarova Academy of Science, Leningrad, for a copy of his book; to J. M. Fogg, Jr., and H. T. Li, Morris Arboretum, for botanical help and identification of Chinese drug names ; to Michael Dymicky, formerly of the Eastern Utilization Research and Development Division, for ex- tensive translations; and to colleagues in many countries for answering questions raised during the compilation of these lists. CONTENTS Page Codes used in table 1 2 Table 1.—Plants and their contained alkaloids 7 Table 2.—Alkaloids and the plants in which they occur 240 Washington, D.C. Issued August 1961 For sale by the Superintendent of Documents, Qovemment Printing OflSce. Washington 25, D.C. Price $1 ALKALOID-BEARING PLANTS AND THEIR CONTAINED ALKALOIDS By J. J. WiLLAMAN, chemist, Eastern Utilization Research and Development Division, and BERNICE G. SCHUBERT, taxonomist. Crops Research Division, Agricultural Research Service This compilation assembles in one place all the scattered information on the occurrence of alkaloids in the plant world. It consists of two lists: (1) The names of the plants and of their contained alkaloids; and (2) the names and empirical formulas of the alkaloids. -
Vol.5 No.1.Indd
IRANIAN JOURNAL of GENETICS and PLANT BREEDING, Vol. 5, No. 1, Apr 2016 Molecular phylogeny of the family Araceae as inferred from the nuclear ribosomal ITS data Leila Joudi Ghezeljeh Meidan1, Iraj Mehregan1*, Mostafa Assadi2, Davoud Farajzadeh3 1Department of Biology, Science and Research Branch, Islamic Azad University, P. O. Box: 14778-93855, Tehran, Iran. 2Research Institute of Forest and Ranglands, National Botanical Garden of Iran, Tehran, Iran. 3Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Azarbaijan Shahid Madani Univer- sity, Tabriz, Iran. *Corresponding author, Email: [email protected]. Tel: +98-2144865326. Fax: +98-2144265001. Received: 10 Oct 2016; Accepted: 5 Apr 2017. Abstract Key words: Cluster, Internal transcribed spacer, The internal transcribed spacer regions of nuclear Iran, Monophyly, Phylogenetic relationship. ribosomal DNA are widely used to infer phyloge- netic relationships in plants. In this study, it was INTRODUCTION obtained the ITS sequences from 24 samples of Araceae in Iran, representing 3 genera: Arum The family Araceae includes 3790 species in 117 gen- L., Biarum Schott. and Eminium (Blume) Schott. era (Boyce and Croat, 2011). According to Chouteau Phylogenetic analyses were conducted by Bayes- et al. (2008), Araceae is one of the most important ian inference and maximum Parsimony methods. families of monocotyledons, and is found in a wide Cladistic analysis of ITS dataset indicated that all range of environments, from Arctic–Alpine (e.g., Cal- species constituted a monophyletic clade, with la palustris L.) to xerophytes (e.g., Anthurium nizan- no major subclades with robust support. Eminium dense Matuda). They are most diverse in the tropics, lehmani Bge., Eminium intortum Banks and Sol. -
Towards a Molecular Understanding of the Biosynthesis of Amaryllidaceae Alkaloids in Support of Their Expanding Medical Use
Int. J. Mol. Sci. 2013, 14, 11713-11741; doi:10.3390/ijms140611713 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Review Towards a Molecular Understanding of the Biosynthesis of Amaryllidaceae Alkaloids in Support of Their Expanding Medical Use Adam M. Takos and Fred Rook * Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +45-3533-3343; Fax: +45-3533-3300. Received: 28 April 2013; in revised form: 26 May 2013 / Accepted: 27 May 2013 / Published: 31 May 2013 Abstract: The alkaloids characteristically produced by the subfamily Amaryllidoideae of the Amaryllidaceae, bulbous plant species that include well know genera such as Narcissus (daffodils) and Galanthus (snowdrops), are a source of new pharmaceutical compounds. Presently, only the Amaryllidaceae alkaloid galanthamine, an acetylcholinesterase inhibitor used to treat symptoms of Alzheimer’s disease, is produced commercially as a drug from cultivated plants. However, several Amaryllidaceae alkaloids have shown great promise as anti-cancer drugs, but their further clinical development is restricted by their limited commercial availability. Amaryllidaceae species have a long history of cultivation and breeding as ornamental bulbs, and phytochemical research has focussed on the diversity in alkaloid content and composition. In contrast to the available pharmacological and phytochemical data, ecological, physiological and molecular aspects of the Amaryllidaceae and their alkaloids are much less explored and the identity of the alkaloid biosynthetic genes is presently unknown. An improved molecular understanding of Amaryllidaceae alkaloid biosynthesis would greatly benefit the rational design of breeding programs to produce cultivars optimised for the production of pharmaceutical compounds and enable biotechnology based approaches. -
Ornamental Plants in Different Approaches
Ornamental Plants in Different Approaches Assoc. Prof. Dr. Arzu ÇIĞ cultivation sustainibility ecology propagation ORNAMENTAL PLANTS IN DIFFERENT APPROACHES EDITOR Assoc. Prof. Dr. Arzu ÇIĞ AUTHORS Atilla DURSUN Feran AŞUR Husrev MENNAN Görkem ÖRÜK Kazım MAVİ İbrahim ÇELİK Murat Ertuğrul YAZGAN Muhemet Zeki KARİPÇİN Mustafa Ercan ÖZZAMBAK Funda ANKAYA Ramazan MAMMADOV Emrah ZEYBEKOĞLU Şevket ALP Halit KARAGÖZ Arzu ÇIĞ Jovana OSTOJIĆ Bihter Çolak ESETLILI Meltem Yağmur WALLACE Elif BOZDOGAN SERT Murat TURAN Elif AKPINAR KÜLEKÇİ Samim KAYIKÇI Firat PALA Zehra Tugba GUZEL Mirjana LJUBOJEVIĆ Fulya UZUNOĞLU Nazire MİKAİL Selin TEMİZEL Slavica VUKOVIĆ Meral DOĞAN Ali SALMAN İbrahim Halil HATİPOĞLU Dragana ŠUNJKA İsmail Hakkı ÜRÜN Fazilet PARLAKOVA KARAGÖZ Atakan PİRLİ Nihan BAŞ ZEYBEKOĞLU M. Anıl ÖRÜK Copyright © 2020 by iksad publishing house All rights reserved. No part of this publication may be reproduced, distributed or transmitted in any form or by any means, including photocopying, recording or other electronic or mechanical methods, without the prior written permission of the publisher, except in the case of brief quotations embodied in critical reviews and certain other noncommercial uses permitted by copyright law. Institution of Economic Development and Social Researches Publications® (The Licence Number of Publicator: 2014/31220) TURKEY TR: +90 342 606 06 75 USA: +1 631 685 0 853 E mail: [email protected] www.iksadyayinevi.com It is responsibility of the author to abide by the publishing ethics rules. Iksad Publications – 2020© ISBN: 978-625-7687-07-2 Cover Design: İbrahim KAYA December / 2020 Ankara / Turkey Size = 16 x 24 cm CONTENTS PREFACE Assoc. Prof. Dr. Arzu ÇIĞ……………………………………………1 CHAPTER 1 DOUBLE FLOWER TRAIT IN ORNAMENTAL PLANTS: FROM HISTORICAL PERSPECTIVE TO MOLECULAR MECHANISMS Prof.