Plants for a Food Forest

Total Page:16

File Type:pdf, Size:1020Kb

Plants for a Food Forest 9 Plants for a Food Forest Key: P = perennial B = biennial SSA = self-seeding annual F = fruit S = seed N = nut R = root = should be steamed ** = should be cooked Plant Jobs M= Mulch NuAc = Nutrient Accumulators NF = nitrogen fixer NemaR= Nematode Repellant IP=Insectary Plant FP= Fortress Plant SR=Spike Roots Soilbusters WildN=Wildlife Nurturer Z = hardiness zone, example: Z5 = hardy to zone 5 1. Tall Canopy- generally nut Beech Fagus grandifolia Nuts Green tea -- Camellia sinensis (P,Z8) Black Locust -- Robinia pseudoacacia (N,Z3) NF Himalayan Honeysuckle , Chocolate Berry, Leycesteria Black Walnut -- Juglans nigra (N,Z4) nut formosa Chestnut species Castanea ssp. (N,Z4-5) Huckleberry Heartnut -- Juglans ailanthifolia c. (N,Z4) nut Lupine NF Monkey Puzzle -- Araucaria araucana (S,Z8) Mountain Mahogany NF Shagbark Hickory Carya ovata Nuts Maximillian Sunflower FP Sugar Maple Acer saccharum Syrup Nanking Cherry White Oak Quercus alba Nuts Native Rose WildN Walnut -- Juglans regia (N,Z5) nut T Raspberry -- Rubus idaeus (F,Z3) Rose Rosa Rugosa spp. Medicinal, flowers, hips 2. Understory Trees –smaller fruit, nut trees Russian Olive NF Alder NF Serviceberry Amelanchor spp California bayberry NF Siberian pea shrub NF Almond Prunus dulcis (N,Z3) Sunflower IP American Persimmon Diospyros virginiana (F,Z5) Thimbleberry Fruit Persimmon -- Diospyros kaki (F,Z8 4. Herbaceous Layer Apple Malus pumila Fruit, flowers (F,Z5) Comfrey Symphytum uplandicum NuAc, M, FP, SR Apricot Prunus armeniaca (F,Z4) Rhubarb Rheum rhabarbarum M Autumn olive -- Elaeagnus umbellata (F,M, NF,Z3) Chickweed NuAc Black Elderberry -- Sambucus nigra (F,Z5) WN African marigold Tagetes erecta NemaR Cherry Prunus spp. Fruit, flowers French Marigold Tagetes patula “Single Gold” NemaR Chinese Dogwood -- Cornus kuosa (F,Z5) WildN French Marigold “Nema-gone” NEmaR Sochi Green Tea Camellia sinensis Z8 Clover Nu,Ac, NF, M, IP Cornelian Cherry Cornus mas Fruit (F,Z5) Vetch M Crabapple Malus spp. Fruit, flowers Artichoke P M SR Fig -- Ficus carica (F,Z7) Asparagus -- Asparagus officinalis (P,Z4) Persimmon Diospyros kaki Hardy Orange** -- Poncirus trifoliata (F,Z5) Medicinals Chokeberry WildN Alfalfa NuAc, SR Wild cherriy WildN Wormwood Hazelnut,,Filbert Corylus spp. Nuts (N,Z4) Valerian Japanese Quince -- Chaenomeles speciosa (F,Z5) Lavendar IP Jujube -- Ziziphus ziziphus (F,Z5) Yarrow NuAc, IP Kentucky Coffee Tree Gymnocladus dioica N-fixer Yellow Dock NuAc Medlar -- Mespilus germanica (F,Z6) Paw Paw Asimina triloba Fruit, flowers, medicinal Spices (F,Z6) Dill Anethum graveolens IP Peach -- Prunus persica (F,Z6) Coriander IP Pear Pyrus communis Fruit, flowers Fennel Foeniculum vulgare IP Plum Prunus domestica Fruit, flowers Licorice NF Serviceberry -- Amelanchier spp. (F,Z4) Lemon Grass FP Witch Hazel Hamamelis virginiana Medicinal, flowers Hawthorn WildN Herbal Teas Peppermint -- Mentha piperita (P,Z3) 3. Shrub Layer - generally small fruits Mint Mentha spp. Edible Autumn olive NF Anise Hyssop -- Agastache foeniculum (P) Blackberry Rubus occidentalis Fruit, flowers Lemon balm Melissa officinalis Tea Blueberry -- Vaccinium corymbosom (F,Z2) WildN Mint IP Buffaloberry NF Korean Mint -- Agastache rugosa (P) Cattails All parts are edible, NuAc Bee Balm -- Monarda didyma (P,Z4) IP Ceanothus NF, WildN Rose hips -- Rosa rogusa (P,Z2) Chilean Teaberries Chamomile Chamaemelum nobile Tea, flowers NuAc Currant Ribes sativum Fruit Chicory SR Elderberry Sambucas nigra Fruit, flowers Stinging Nettle Urtica dioica Edible, mulch False indigo Baptisia australis N-fixer Horsetail NuAc Gooseberry Ribes uva-crispa Fruit Oats NuAc, NF Goumi -- Elaegnus multiflora (F,Z6) NF 10 Salad and Greens Arugula Eruca vesicaria Edible Seasonal Roots Buckwheat Potato -- Solanum tuberosum (P, Z7?) Kale Brassica oleracea (B) Sweet Potatoes Carrots NuAc, IP Yams Dandelion -- Taraxacum officinale (P,Z5) NuAc,SR Lettuce Latuca sativa Edible Lovage Levisticum officinale Edible New Zealand Spinach Tetragonia expansa Edible 6. Ground Covers Parsley Petroselinum crispum Edible Strawberry Fragaria spp. Fruit, flowers Salad burnet Sanguisorba minor Edible Nasturtium Tropaeolum minus Edible lowers Sorrel Rumex scutatus Edible Violet Viola spp. Edible flowers Spinach Spinacea oleracea Edible Cornsalad Valerianella locusta Edible Edible Shoots Musk Mallow -- Malva moschata (P,Z3) Asparagus -- Asparagus officinalis (P,Z4) High Mallow -- Malva sylvestris (P,Z5) Aralia -- Aralia spinosa (P,Z5,*) Perennial Arugula -- Diplotaxis erucoides (P) Aralia -- Aralia chinensis (P,*) Good King Henry -- Chenopodium bonus-henricus Aralia -- Aralia elata (P,Z4,*) (P,Z5,*) Udo -- Aralia cordifolia (P,*) Salad Burnett -- Sanguisorba minor (P,Z5) Chicory -- Cichorium intybus (B,3) Earth Chestnut -- Bunium bulbocastanum (P,Z5) Edible Flowers Miner's Lettuce -- Claytonia perfoliata (SSA) Daylily -- Hemerocallis fulva (P,Z4) Corn Salad -- Valerianella locusta (SSA,Z5) Dianthus spp.(P,Z4) Parsley -- Petroselinum crispum (B) Balloon flower -- Platycodon (P,Z4) Bellflower -- Campanula glomerata (P,Z2) \Fennel -- Foeniculum vulgare (P,Z5) 7. Climbers and Vines Japanese Forest Parsley -- Cryptotaeniajaponica Wisteria NF (P,Z5) Scarlet Runner Beans NF Nasturtium M Cinammon Vine Mustard M NuAc, SR Passion fruits Passiflora spp Lamb’squarter NuAc Scarlet Runner Bean Phaseolus coccineus Borage NuAc Edible, N-fixer, flowers Frye Grass NuAc Seasonal squashes, cucumbers and melon 5. Roots and Bulbs Perennial Vines Grape Vitis vinifera Fruit Perennial Roots Hardy Kiwi -- Actinidia arguta (F,Z4) Edible Canna Canna edulise Akebia -- Akebia quinata (F,Z5) Salsify Hops Humulus lupulus MedicinalMashua Parsnip -- Pastinaca sativa (B,Z5) Tuberous Mountain Yam -- Dioscorea Horseradish batatas (R,F,Z4) Shallots and Garlic Nasturtium Tropaeolum tuberosum R,Z8) Burdock Schizandra -- Schizandra spp. (F,Z4) Daikonj Radish SR Wisteria Wisteria floribunda N-fixer, flowers Jerusalem Artichoke tuberosus (P,Z4) FP Skirret -- Sium Sisarum (P,Z6) Gobo -- Arctium Lappa (B,Z3) Groundnut -- Apios Americana (P,Z3) Bulbs Chives Allium schoenoprasum Edible Garlic -- Allium sativum (P,Z5) Onion Allium cepa IP Welsh Onion -- Allium fistulosum (P,Z6) Peruvian tubers Ahipa Pachyrhizus ahipa Arracacha Arracacia xanthorrhiza Oca Oxalis tuberosatuberosa Cathe’ Fish, Permaculture Designer and Ulluco Ullucustuberosustuberosus Mauka or Chago Mirabilis expansa Teacher since 1988 Maca Lepidium meyenii Practical Permaculture Yacun Smallanthus sonchifolius www.practicalpermaculture.com 530-478-1852 .
Recommended publications
  • Apiaceae) - Beds, Old Cambs, Hunts, Northants and Peterborough
    CHECKLIST OF UMBELLIFERS (APIACEAE) - BEDS, OLD CAMBS, HUNTS, NORTHANTS AND PETERBOROUGH Scientific name Common Name Beds old Cambs Hunts Northants and P'boro Aegopodium podagraria Ground-elder common common common common Aethusa cynapium Fool's Parsley common common common common Ammi majus Bullwort very rare rare very rare very rare Ammi visnaga Toothpick-plant very rare very rare Anethum graveolens Dill very rare rare very rare Angelica archangelica Garden Angelica very rare very rare Angelica sylvestris Wild Angelica common frequent frequent common Anthriscus caucalis Bur Chervil occasional frequent occasional occasional Anthriscus cerefolium Garden Chervil extinct extinct extinct very rare Anthriscus sylvestris Cow Parsley common common common common Apium graveolens Wild Celery rare occasional very rare native ssp. Apium inundatum Lesser Marshwort very rare or extinct very rare extinct very rare Apium nodiflorum Fool's Water-cress common common common common Astrantia major Astrantia extinct very rare Berula erecta Lesser Water-parsnip occasional frequent occasional occasional x Beruladium procurrens Fool's Water-cress x Lesser very rare Water-parsnip Bunium bulbocastanum Great Pignut occasional very rare Bupleurum rotundifolium Thorow-wax extinct extinct extinct extinct Bupleurum subovatum False Thorow-wax very rare very rare very rare Bupleurum tenuissimum Slender Hare's-ear very rare extinct very rare or extinct Carum carvi Caraway very rare very rare very rare extinct Chaerophyllum temulum Rough Chervil common common common common Cicuta virosa Cowbane extinct extinct Conium maculatum Hemlock common common common common Conopodium majus Pignut frequent occasional occasional frequent Coriandrum sativum Coriander rare occasional very rare very rare Daucus carota Wild Carrot common common common common Eryngium campestre Field Eryngo very rare, prob.
    [Show full text]
  • Well-Known Plants in Each Angiosperm Order
    Well-known plants in each angiosperm order This list is generally from least evolved (most ancient) to most evolved (most modern). (I’m not sure if this applies for Eudicots; I’m listing them in the same order as APG II.) The first few plants are mostly primitive pond and aquarium plants. Next is Illicium (anise tree) from Austrobaileyales, then the magnoliids (Canellales thru Piperales), then monocots (Acorales through Zingiberales), and finally eudicots (Buxales through Dipsacales). The plants before the eudicots in this list are considered basal angiosperms. This list focuses only on angiosperms and does not look at earlier plants such as mosses, ferns, and conifers. Basal angiosperms – mostly aquatic plants Unplaced in order, placed in Amborellaceae family • Amborella trichopoda – one of the most ancient flowering plants Unplaced in order, placed in Nymphaeaceae family • Water lily • Cabomba (fanwort) • Brasenia (watershield) Ceratophyllales • Hornwort Austrobaileyales • Illicium (anise tree, star anise) Basal angiosperms - magnoliids Canellales • Drimys (winter's bark) • Tasmanian pepper Laurales • Bay laurel • Cinnamon • Avocado • Sassafras • Camphor tree • Calycanthus (sweetshrub, spicebush) • Lindera (spicebush, Benjamin bush) Magnoliales • Custard-apple • Pawpaw • guanábana (soursop) • Sugar-apple or sweetsop • Cherimoya • Magnolia • Tuliptree • Michelia • Nutmeg • Clove Piperales • Black pepper • Kava • Lizard’s tail • Aristolochia (birthwort, pipevine, Dutchman's pipe) • Asarum (wild ginger) Basal angiosperms - monocots Acorales
    [Show full text]
  • Pyganic Gardening Specimen Label
    Specimen Label • Provides rapid knockdown and kill of listed plant pests • Non-persistent in the environment • Kills more than 100 listed insects, including aphids, beetles, caterpillars, fruit flies, mites and thrips • Flushes insects and mites from hiding • One pint makes up to 16 gallons For Organic Gardening KEEP OUT OF REACH OF CHILDREN CAUTION • PRECAUCIÓN ACTIVE INGREDIENT: Pyrethrins a botanical insecticide ..................................................1.40% Si usted no entiende la etiqueta, busque a alguien para que se la explique a usted en detalle. OTHER INGREDIENTS .................................................................98.60% (If you do not understand the label, find someone to explain it to you in detail.) 100.00% See inside for first aid and precautionary statements. DIRECTIONS FOR USE It is a violation of Federal law to use this product in a manner inconsistent with its labeling. USE RESTRICTIONS: Dilute 1 to 1.4 fl. oz. of PyGanic® Gardening per gallon of water per • Do not apply this product in a way that will contact workers or other 1,000 sq. ft. persons, either directly or through drift. • Do not make applications during the rain. For larger gardens apply 16 to 59 fl. oz. of PyGanic® Gardening per acre [by • Do not wet plants to the point of runoff. ground in sufficient water for thorough coverage. Do not exceed the maximum • Not for use in outdoor residential misting systems (indoor or outdoor). application rates of 1.4 fl. oz. PyGanic® Gardening per 1,000 sq. ft. or • Do not allow adults, children, or pets to enter the treated area 59 fl. oz. PyGanic® Gardening per acre.
    [Show full text]
  • Proceedings Of' the Birmingham
    Proceedings of' the Birmingham .' Natural, History Society ( . Special Number FLORA OF WARWICKSHIRE' . : . -' QF~ICERSAND . COUNCIL 1965·66 P-r'~sident -Ld: Eva~s. _ -Vice':Preside'nts . Prti J. ,G~;' H~wk,~~; M.A,---sC-.D, 'F.L'.S- 'l~'- ,13ili~n~ -M.SC; F._~:S" F .R.E;S~_ rid~p\fsT:.i3Ioi:. .. W.--SaJmori:; F:R:~;S Trus.tees;, A._,H._,Sayer,'].p Hoil,., Secretary V;:-A. Noble,; F.R-:t.S ',. -Hon. Tre\lsure~, ~:,,: M. -C:.-C1a~k~'_F:r;A-' ~Hoii:.Progr~riline-8eCfeta:_iy' W.:_Peartie"Ch6p,e, M:A Hon."Lihratian- '.-, H.:-i"-E: B~bb Hon.- -As-sistant -Libraiiah-. Co, ' :,i:I~~o~-'9~~t.~r6tA'ppai:aius P... ~ini:t~, '~:s~ -. -Hoh/Editor of Proceedings M.: C'- ,Clatk,- F.I.,\" Wa.~den, of N~_tti:re-R~serv~s '~F.' ~'~'·;N,o~ie;:'F·.l(.E;S' S!lcrl~NA.LOFFI(;EIlS.' ..•...... ; ...... SECTioN p~~~~~{,-,:< '. ~'&1;~rii~~l": '~:-'-.C.> Cl~~k.\;;-liA;." ~~~ril;ldg~ca~i : _' . ~~I} f~EY~~~- de616g~~~i -&J;~Q'giapl}.i~~i~: ~;iI'~::,6~~:~~~p*::1~~bi'Ai:~' .. :A~~~id~i'~,ai -,.-," . ELECTIVE l\1EMBEk~} For -ti;t'ee ,y~d,t~ ·,:j)~.;i,-:~ie~it}: :'Dr';S~--vt, G.~~en~, -Pt6f/F;-'W';'~Shbttori'r-' , . -. For_ tyv-o years.' b~fw.:-Bow'~,t~r~':6 .. -$-, -Ti~h~," '-R;- c':-' ;B,eadett " - :':J~r·,~,~,~~e~;,]t. A~._-,,-B. St~nf~n! ' . -:',:rvrrs Q,,,-w. T~~mpsqri;'.B.s,G -"-f CONTENTS VOI,UME xx No. 4 EDI'fORIAL , 1 CHECK LISTS OF THE VASCULAR PLANTS AND BRYOPHYTES OF WARWICKSHIRE (v.c.
    [Show full text]
  • Original Research Article
    1 Original Research Article 2 3 THE MALOIDEAE (ROSACEAE) STRUCTURAL AND FUNCTIONAL FEATURES 4 DETERMINING PASSIVE IMMUNITY TO MYCOSIS 5 6 7 With the help of microscopic methods the leaves and fruits surface tissues of plants of four 8 genera of the Maloideae subfamily were screened: Malus Mill., Pyrus L., Cydonia Mill., 9 Mespilus L., as model objects, and attempts were made to explain the dependence of mycosis 10 damage on microstructural features. The species composition of fungi that cause damage to the 11 Maloideae leaves and fruits in the Russia southern regions is analyzed. It is established that 12 among pathogens with different types of parasitism there are common excitants, as well as 13 highly specialized, more represented on Mespilus germanica. Higher resistance to the complex 14 of fungal diseases, in comparison with apple and pear, was found in quince and medlar. This 15 stability at the initial stage of the pathological process is associated with structural features such 16 as micromorphology of the fruits and stomata cuticle in the abaxial leaves epidermis. The leaves 17 stomatal cracks of the medlar are narrow with raised outgrowths, on the surface of the fruit – the 18 layered structure of the cuticular layer. Quince has a powerful continuous cuticular cover. 19 Compared with Malus and Pyrus, Cydonia and Mespilus also have a large (30 % or more) 20 polyphenol content in the pericarp outer layer cells. In addition to the gender-specific differences 21 in the microstructure of the integumentary tissues and the content of polyphenols affecting the 22 resistance to pathogens at the stage of their penetration, general patterns of leaf surface 23 formation, such as hypostomacy, anomocytic stomata, folded microrelief of the cuticular surface, 24 and the presence of single and multicellular trichomes are noted.
    [Show full text]
  • Chile: a Journey to the End of the World in Search of Temperate Rainforest Giants
    Eliot Barden Kew Diploma Course 53 July 2017 Chile: A Journey to the end of the world in search of Temperate Rainforest Giants Valdivian Rainforest at Alerce Andino Author May 2017 1 Eliot Barden Kew Diploma Course 53 July 2017 Table of Contents 1. Title Page 2. Contents 3. Table of Figures/Introduction 4. Introduction Continued 5. Introduction Continued 6. Aims 7. Aims Continued / Itinerary 8. Itinerary Continued / Objective / the Santiago Metropolitan Park 9. The Santiago Metropolitan Park Continued 10. The Santiago Metropolitan Park Continued 11. Jardín Botánico Chagual / Jardin Botanico Nacional, Viña del Mar 12. Jardin Botanico Nacional Viña del Mar Continued 13. Jardin Botanico Nacional Viña del Mar Continued 14. Jardin Botanico Nacional Viña del Mar Continued / La Campana National Park 15. La Campana National Park Continued / Huilo Huilo Biological Reserve Valdivian Temperate Rainforest 16. Huilo Huilo Biological Reserve Valdivian Temperate Rainforest Continued 17. Huilo Huilo Biological Reserve Valdivian Temperate Rainforest Continued 18. Huilo Huilo Biological Reserve Valdivian Temperate Rainforest Continued / Volcano Osorno 19. Volcano Osorno Continued / Vicente Perez Rosales National Park 20. Vicente Perez Rosales National Park Continued / Alerce Andino National Park 21. Alerce Andino National Park Continued 22. Francisco Coloane Marine Park 23. Francisco Coloane Marine Park Continued 24. Francisco Coloane Marine Park Continued / Outcomes 25. Expenditure / Thank you 2 Eliot Barden Kew Diploma Course 53 July 2017 Table of Figures Figure 1.) Valdivian Temperate Rainforest Alerce Andino [Photograph; Author] May (2017) Figure 2. Map of National parks of Chile Figure 3. Map of Chile Figure 4. Santiago Metropolitan Park [Photograph; Author] May (2017) Figure 5.
    [Show full text]
  • What to Eat on the Autoimmune Protocol
    WHAT TO EAT ON THE AUTOIMMUNE PROTOCOL All the foods listed here are great to include in your It’s time to create an epidemic of - health. And it starts with learning ents that will help regulate your immune system and how to eat more nutrient-dense food. your hormones and provide the building blocks that your body needs to heal. You don’t need to eat all of these foods (it’s okay if snails, frog legs, and crickets aren’t your thing, and it’s okay if you just can’t get kangaroo meat or mizuna), but the idea is both to give Poultry innovative ways to increase variety and nutrient density • chicken • grouse • pigeon by exploring new foods. • dove • guinea hen • quail • duck • ostrich • turkey • emu • partridge (essentially, Red Meat • goose • pheasant any bird) • antelope • deer • mutton • bear • elk • pork • beaver • goat • rabbit • beef • hare • sea lion • • horse • seal • boar • kangaroo • whale • camel • lamb (essentially, • caribou • moose any mammal) Amphibians and Reptiles • crocodile • frog • snake • turtle 1 22 Fish* Shellfish • anchovy • gar • • abalone • limpet • scallop • Arctic char • haddock • salmon • clam • lobster • shrimp • Atlantic • hake • sardine • cockle • mussel • snail croaker • halibut • shad • conch • octopus • squid • barcheek • herring • shark • crab • oyster • whelk goby • John Dory • sheepshead • • periwinkle • bass • king • silverside • • prawn • bonito mackerel • smelt • bream • lamprey • snakehead • brill • ling • snapper • brisling • loach • sole • carp • mackerel • • • mahi mahi • tarpon • cod • marlin • tilapia • common dab • • • conger • minnow • trout • crappie • • tub gurnard • croaker • mullet • tuna • drum • pandora • turbot Other Seafood • eel • perch • walleye • anemone • sea squirt • fera • plaice • whiting • caviar/roe • sea urchin • • pollock • • *See page 387 for Selenium Health Benet Values.
    [Show full text]
  • Seedling Establishment, Bud Movement, and Subterranean Diversity of Geophilous Systems in Apiaceae
    Flora (2002) 197, 385–393 http://www.urbanfischer.de/journals/flora Seedling establishment, bud movement, and subterranean diversity of geophilous systems in Apiaceae Norbert Pütz1* & Ina Sukkau2 1 Institute of Nature Conservation and Environmental Education, University of Vechta, Driverstr. 22, D-49377 Vechta, Germany 2 Institute of Botany, RWTH Aachen, Germany * author for correspondence: e-mail: [email protected] Received: Nov 29, 2001 · Accepted: Jun 10, 2002 Summary Geophilous systems of plants are not only regarded as organs of underground storage. Such systems also undergo a large range of modifications in order to fulfill other ‚cryptical‘ functions, e.g. positioning of innovation buds, vegetative cloning, and vege- tative dispersal. Seedlings should always be the point of departure for any investigation into the structure of geophilous systems. This is because in the ability to survive of geophilous plants it is of primary importance that innovation buds can reach a safe position in the soil by the time the first period hostile to vegetation commences. Our analysis of such systems thus focused on examining the development of 34 species of the Apiaceae, beginning with their germination. Independent of life-form and life-span, all species exhibit noticeable terminal bud movement with the aid of contractile organs. Movement was found to be at least 5 mm, reaching a maximum of 45 mm. All species exhibit a noticeable contraction of the primary root. In most cases the contraction phenomenon also occurs in the hypocotyl, and some species show contraction of their lateral and / or adventitious roots. Analysis of movement shows the functional importance of pulling the inno- vation buds down into the soil.
    [Show full text]
  • Andean Tuber and Root Crops: Origin and Variability
    1-118 ANDEAN TUBER AND ROOT CROPS: ORIGIN AND VARIABILITY -by- Jorge Leon IAIAS - Andean Zone The human occupancy of the Andean highlands is more than 10,000 years old. If the common theory is accepted that man came to America through the Bering strait and dispersed southwards, then the Andean highlands offered to early man a series of habitats that were somewhat similar to the northern part of Asia. The cool, barren punas were excellent hunting grounds. The auchenids: guanaco, nama, vicuna and alpaca, supplied him with abundant meat and furs. The open country covered with grass, in the belt between the 3000-4000 m., with clear streams and many caves, was probably the first area in which man settled permanently in the Andes. The remains of EI Inga in Ecuador and the caves of Lauricocha in Peru, show that hunting was the predominant activity of the Andean man 8000-6000 years ago. In the high Andes the frost-free period determine the growing season. Only few plants, grasses like Stipa, could grow continuously. The majority of the species have developed extensive subterranean organs, storage roots or tubers, which are permanent; during the frost-free season they put up few leaves and flowers, the latter comparatively large. AlI the aerial parts are eventualIy destroyed by frost, which marks the end of the growing period. In the tuber plants, the underground organs continue to grow for some period after the aerial parts have died; they are ready to sprout again as soon as the frost disappears in the next growing season.
    [Show full text]
  • Amelanchier Alnifolia. Araucaria Araucana
    Woodland Garden Plants The present-day cultivation of large areas of single annual crops such as wheat might seem, on the surface, to be a very productive and efficient use of land (average wheat yields this century have increased more than three-fold to over 3 tons per acre). When other factors are taken into account, however, it can be argued that this is a very unproductive and unsustainable use of the land. A woodland, on the other hand, might seem to be a very unproductive area for human food (unless you happen to like eating acorns). By choosing the right species, however, a woodland garden can produce a larger crop of food than the same area of wheat, will require far less work to manage it and will be able to be sustainably harvested without harm to the soil or the environment in general. I do not intend to go into any more details of the pros and cons of annuals versus perennials here. If you would like more information on this subject then please see our leaflet Why Perennials. One of the main reasons why a woodland garden can be so productive is that such a wide range of plants can be grown together, making much more efficient use of the land. The greater the diversity of plants being grown together then the greater the overall growth of plant matter there is. Thus you can have tall growing trees with smaller trees and shrubs that can tolerate some shade growing under them. Climbing plants can make their own ways up the trees and shrubs towards the light, whilst shade- tolerant herbaceous plants and bulbs can grow on the woodland floor.
    [Show full text]
  • Cambridgeshire and Peterborough County Wildlife Sites
    Cambridgeshire and Peterborough County Wildlife Sites Selection Guidelines VERSION 6.2 April 2014 CAMBRIDGESHIRE & PETERBOROUGH COUNTY WILDLIFE SITES PANEL CAMBRIDGESHIRE & PETERBOROUGH COUNTY WILDLIFE SITES PANEL operates under the umbrella of the Cambridgeshire and Peterborough Biodiversity Partnership. The panel includes suitably qualified and experienced representatives from The Wildlife Trust for Bedfordshire, Cambridgeshire, Northamptonshire; Natural England; The Environment Agency; Cambridgeshire County Council; Peterborough City Council; South Cambridgeshire District Council; Huntingdonshire District Council; East Cambridgeshire District Council; Fenland District Council; Cambridgeshire and Peterborough Environmental Records Centre and many amateur recorders and recording groups. Its aim is to agree the basis for site selection, reviewing and amending them as necessary based on the best available biological information concerning the county. © THE WILDLIFE TRUST FOR BEDFORDSHIRE, CAMBRIDGESHIRE AND NORTHAMPTONSHIRE 2014 © Appendices remain the copyright of their respective originators. All rights reserved. Without limiting the rights under copyright reserved above, no part of this publication may be reproduced, stored in any type of retrieval system or transmitted in any form or by any means (electronic, photocopying, mechanical, recording or otherwise) without the permission of the copyright owner. INTRODUCTION The Selection Criteria are substantially based on Guidelines for selection of biological SSSIs published by the Nature Conservancy Council (succeeded by English Nature) in 1989. Appropriate modifications have been made to accommodate the aim of selecting a lower tier of sites, i.e. those sites of county and regional rather than national importance. The initial draft has been altered to reflect the views of the numerous authorities consulted during the preparation of the Criteria and to incorporate the increased knowledge of the County's habitat resource gained by the Phase 1 Habitat Survey (1992-97) and other survey work in the past decade.
    [Show full text]
  • In-Vitro Study of Anti-Diabetic and Anti-Obesity Using Α-Amylase Inhibitory of Herbal Extracts Fenugreek, Green Coffee Beans, Cumin Seed and Ajwain
    www.ijcrt.org © 2020 IJCRT | Volume 8, Issue 12 December 2020 | ISSN: 2320-2882 In-vitro study of anti-diabetic and anti-obesity using α-amylase inhibitory of herbal extracts fenugreek, green coffee beans, cumin seed and Ajwain. 1*Sonali R. Pawar, Yash Johari, Himanshi Tiwari, 2Supriya Darandale, 3 Rakesh Tiwle 1JSPM’s Charak College of Pharmacy and Research, Wagholi 412207. 2L.S.D.P College of Pharmacy Mandavgan Pharata, Pune. 3Shri Rawatpura Sarkar Institute of Pharmacy Kumhari, Durg, C.G.490042 Abstract: The aspect of medicines supplied to patients. clinch that the medicines prescribed to patients are suitable. For the purpose of Safety and Efficacy of medicines it should be benefit for a patient and drug ability to produce the optimum results. Secretion of insulin which result hyperglycemia comes under the group of Diabetes mellitus, insulin action, or both and obesity is a chronic metabolic disorder caused by an imbalance between energy intake and expenditure. The present work is about anti-diabetic as well as anti- obesity drug, which is formulated using extract of fenugreek, green coffee beans, cumin seed and trachyspermum ammi (ajwain) by using in-vitro α-amylase inhibitory activities of plant extracts. The purpose of this study is to evaluate the α-amylase inhibitory activity of different plant extracts of against porcine pancreatic amylase in vitro. Overweight and obesity are defined as abnormal or excessive fat accumulation that presents a risk to health. The regulation of fatty acid and triglyceride availability in biological responses depends on the activity of lipolytic enzymes present in fatty acid metabolism in adipose tissue.
    [Show full text]