Provided for Non-Commercial Research and Educational Use Only. Not for Reproduction Or Distribution Or Commercial Use

Total Page:16

File Type:pdf, Size:1020Kb

Provided for Non-Commercial Research and Educational Use Only. Not for Reproduction Or Distribution Or Commercial Use Provided for non-commercial research and educational use only. Not for reproduction or distribution or commercial use. This article was originally published by IWA Publishing. IWA Publishing recognizes the retention of the right by the author(s) to photocopy or make single electronic copies of the paper for their own personal use, including for their own classroom use, or the personal use of colleagues, provided the copies are not offered for sale and are not distributed in a systematic way outside of their employing institution. Please note that you are not permitted to post the IWA Publishing PDF version of your paper on your own website or your institution’s website or repository. Please direct any queries regarding use or permissions to [email protected] 240 © IWA Publishing 2013 Journal of Water, Sanitation and Hygiene for Development | 03.2 | 2013 Sanitation coverage in Bangladesh since the millennium: consistency matters Y. Zheng, S. A. I. Hakim, Q. Nahar, A. van Agthoven and S. V. Flanagan ABSTRACT Household surveys in Bangladesh between 1994 and 2009 assessed sanitation access using Y. Zheng (corresponding author) S. A. I. Hakim questions that differed significantly over time, resulting in apparently inconsistent findings. Q. Nahar A. van Agthoven Applying the WHO and UNICEF Joint Monitoring Programme’s 2008 definition for open defecation and S. V. Flanagan Water and Environmental Sanitation Section, improved sanitation facilities excluding shared facilities to the compiled data set, sensible sanitation UNICEF Bangladesh, coverage trends emerge. The percentage of households openly defecating declined at a rate of 1 Minto Road, Dhaka 1000, about 1.8% per year from 30% in 1994 to 6.8% in 2009, primarily due to changes in rural areas. Bangladesh E-mail: [email protected]; Access to individual improved sanitation facilities nearly doubled from about 30% in 2006 to 57% in [email protected] 2009, with both rural and urban areas showing impressive progress. Access to shared improved Y. Zheng School of Earth and Environmental Sciences, latrines also nearly doubled from about 13% in 2006 to 24% in 2009, with the urban slums recording Queens College, the greatest gain from 17% in 2006 to 65% in 2009. Shared improved latrines are only slightly less City University of New York, Flushing, NY 11367 and clean than individual ones. Dependence on shared improved latrines increases with population Lamont-Doherty Earth Observatory of Columbia University, density. In 2007, 20% of the poorest households still openly defecated, although more of them (38%) Palisades, NY 10964, shared a latrine of any type. A poverty reduction program is recommended to address this USA equity issue, although applying consistent definitions is crucial to documenting progress. Key words | Bangladesh, demographic and health survey, multiple indicator cluster survey, population density, sanitation, wealth INTRODUCTION Globally, improving water, sanitation and hygiene (WASH) Goals (MDG) sanitation target, with 2.5 billion people lack- has the potential to prevent at least 9.1% of the disease ing access to improved sanitation, including 1.1 billion who burden in disability-adjusted life years (DALYs), or 6.3% of have no facilities at all as of 2010. all deaths (Prüss-Üstün et al. ). Water and sanitation Slow progress in sanitation in sub-Saharan Africa and interventions are cost effective and have demonstrated econ- South Asia perpetuates a poverty cycle. In Bangladesh, omic benefits ranging from US$ 5 to US$ 46 per US$ 1 inadequate sanitation was shown to cost US$ 4.2 billion invested (Hutton et al. ). The Joint Monitoring (109), equivalent to 6.3 per cent of the gross domestic pro- Programme (JMP) of the World Health Organization and duct (GDP) in 2007, with the largest contributor, diarrhea, the United Nations Children’s Fund (WHO and UNICEF accounting for two-thirds of the health-related economic ) reckons that improving sanitation coverage offers impacts primarily due to premature deaths of young the opportunity to save the lives of 1.5 million children a children (Water and Sanitation Program [WSP] ). More- year who would otherwise succumb to diarrheal diseases. over, 71% of the impacts were borne by the poor. Since Access to sanitation facilities protects women’s dignity and 2000, Bangladesh has emerged as a global leader in innova- is fundamental to gender equity. However, the most recent tive approaches to rural sanitation. Community Led Total JMP update (WHO and UNICEF ) shows that the Sanitation (CLTS), which began in Bangladesh and was world is off track to meet the Millennium Development credited for improving rural sanitation coverage, has now doi: 10.2166/washdev.2013.154 241 Y. Zheng et al. | Progress of sanitation access in Bangladesh Journal of Water, Sanitation and Hygiene for Development | 03.2 | 2013 been adopted in many developing countries. However, with design (UNICEF ). In addition, a MICS tends to have the percentage of the population using improved sanitation more PSUs in more strata than a DHS does. For example, at 55% as of 2009 (Bangladesh Bureau of Statistics [BBS] DHS07 had two strata with 227 and 134 PSUs in rural and UNICEF ), Bangladesh is off track to meet the and urban areas, respectively (National Institute of Popu- MDG target of 70% in 2015. Note that improved facilities lation Research and Training [NIPORT] ). On average, shared by more than one household are not counted 30 households were selected to represent each PSU. In com- towards the MDG target in the ‘improved’ category in this parison, MICS06 had five strata with 1,280, 384, 156, 52 and 2009 figure. Here, we examine the progress in sanitation 78 PSUs for rural, municipal, city corporation, slum and first by looking at open defecation because it is the easiest tribal areas, respectively (BBS and UNICEF ). A to measure and reduction in open defecation is a meaningful sample of 35 households was drawn for each of these first step on the sanitation ladder. We then compare several PSUs (clusters). The sampling errors for DHS and MICS data sets by applying a consistent definition for ‘improved are comparable but are smaller for surveys with a higher sanitation facilities’ according to JMP 2008 (WHO and number of total households and smaller clusters such as UNICEF ) in order to properly document progress MICS2009 (Table 1). of sanitation coverage in Bangladesh. The implications are The JMP00, or the Global Water Supply and Sanitation discussed in terms of equitable access to sanitation. Assessment 2000 used a water supply and sanitation sector questionnaire submitted to WHO that presumably used some of the aforementioned surveys (Table 1), and was the METHODS: SANITATION SURVEYS first systematic global effort to report on improved sani- tation. JMP00 defines the improved facilities as connection Sanitation coverage in Bangladesh (Table 1) has been to a public sewer, connection to septic system, pour-flush measured through household surveys (Table 2) such as the latrine, simple pit latrine and ventilated improved pit (VIP) Demographic and Health Survey (DHS) in 1994, 1997, latrine (WHO and UNICEF ). However, it stated that 2000, 2004 and 2007 by Mitra Associates and Macro Inter- the excreta disposal system was considered adequate if it national funded by USAid, the Multiple Indicator Cluster was private or shared (but not public) and if it hygienically Survey (MICS) in 1994, 1995, 1996, 1997, 1998, 1999, separated human excreta from human contact. This left a 2000, 2003, 2006 and 2009 by the Bangladesh Bureau of possibility that some shared facilities would count as Statistics and UNICEF, and additionally the Maternal improved, leading to inaccurate documentation. The not Health Services and Maternal Mortality Survey in 2001 improved category includes service or bucket latrines (MHS01) by Mitra Associates, Associates for Community where excreta are manually removed, public latrines and and Population Research (ACPR), Johns Hopkins, Inter- open latrines. JMP06 made clarifications on the technical national Centre for Diarrhoeal Disease Research definition of improved facilities as flush or pour-flush Bangladesh (ICDDRB) and Macro International funded by toilet/latrine to piped sewer system, septic tank and pit USAid, and the National Sanitation Survey in 2003 latrine, VIP latrine, pit latrine with slab, and composting (NSS03) by the Government of Bangladesh. toilet (WHO and UNICEF ). It also puts pit latrines The sampling designs of DHS and MICS surveys are without a slab or platform, hanging latrines and bucket mostly similar with a two-stage stratification, although latrines into the ‘unimproved’ category. JMP08 further clari- there are also differences. Both DHS and MICS use primary fied and added shared facilities as one step of the four-step sampling units (PSUs) that were the enumeration areas of sanitation ladders (open defecation, unimproved, shared, the Bangladesh Census, comprising around 100 households improved), defined as otherwise improved sanitation facili- for census 2000 for example. The number of households in a ties but are either public or shared between two or more PSU (cluster) is kept the same within each MICS but can be households, and are consequently not considered as different from survey to survey (Table 1). However, this improved (WHO and UNICEF ). JMP08 definitions value can vary in a DHS that uses a standard segment have not been revised and are still in use today. 242 Y. Zheng et al . | Progress of sanitation access in Bangladesh Table 1 | Sanitation coverage and surveys in Bangladesh %HH %HH No. Rural HHs/ Survey Year OD %HH improved shared No. HHs HHs Cluster Survey Period Remarks DHS94 1994 30.0 41.6a N.D. 9174 7798 1993/11–1994/03 DHS97 1997 25.4 45.2a N.D. 8683 7327 1996/11–1997/03 DHS00 2000 19.9 54.1a N.R. 10268 7271 1999/11/10–2000/03/15 First DHS with ‘shared’ question DHS04 2004 13.7 58.6a N.D.
Recommended publications
  • A Sewer Catastrophe Companion
    A SEWER CATASTROPHE COMPANION Dry Toilets for Wet Disasters EMERGENCY The year is 20__. The Juan de Fuca tectonic plate has shifted, causing an earthquake with a magnitude of 9.0, devastating the Pacific Northwest. Underground infrastructure has shaken. Sewers are broken and leaking into waterways. You have food and water, your house is still habitable, and your friends and fam- ily are all accounted for. Finally, you can slow down and take stock. You need to poop. Where will you go? RESPONSE This guide presents a toilet system that you can do yourself without relying on a co- ordinated and timely response by someone else. This system served after earthquakes destroyed sanitation systems in Haiti and New Zealand. This guide is for planning ahead and preparing kits, whether for yourself, your household, your apartment building, or your block. This flexible system is built around ubiquitous and freely available 5-gallon buckets. A solution for today that’s Urine itself is sterile, it can be applied to not a problem for tomor- land, dramatically reducing the amount of row. 1. Pee in Bucket material handling. After the earthquake in New Zealand, 2. Poop in Bucket people used separate toilets for poop and pee to reduces material handling, disease risks, and work. Washing hands is fundamental. We de- 3. Wash Hands signed a simple, efficient, and ergonomic portable sink using buckets. A solution for managing Store materials until they can be properly excreta that’s not excreting 1. Cap and processed and treated. This allows time for problems later. an official response and pickup, or to build Store your own compost processing area.
    [Show full text]
  • Sustainable Environmental Protection Using Modified Pit-Latrines
    Sustainable Environmental Protection Using Modified Pit-Latrines Esnati James Chaggu Promotor: Prof. dr.ir. G. Lettinga Hoogleraar in de anaërobe zuiveringstechnologie en hergebruik van afvalstoffen Co-promotoren: Dr. W. T. M. Sanders Post-doc onderzoeker bij de sectie Milieutechnologie, Wageningen Universiteit, Nederland Prof. A. Mashauri Dar-es-Salaam Universiteit, Tanzania Samenstelling promotiecommissie: Prof. G. Spaargaren Wageningen Universiteit Prof. dr. H. J. Gijzen UNESCO-IHE, Delft, Nederland Dr. G. J. Medema KIWA Water Research, Nieuwegein, Nederland Prof. Dr. H. Folmer Wageningen Universiteit Dit onderzoek is uitgevoerd binnen de onderzoekschool Wimek Sustainable Environmental Protection Using Modified Pit-Latrines Esnati James Chaggu Proefschrift ter verkrijging van de graad van doctor op gezag van de rector magnificus van Wageningen Universiteit, Prof. Dr. Ir. L. Speelman, in het openbaar te verdedigen op dinsdag 23 maart 2003 des namiddags te half twee in de aula CIP-DATA KONINKLIJKE BIBLIOTHEEK, DEN HAAG. Chaggu, E. J. Sustainable Environmental Protection Using Modified Pit-Latrines ISBN: 90-5808-989-4 Subject headings: excreta disposal/blackwater/nightsoil/anaerobic digestion/improved pit latrines Abstract - Chaggu, E. J. (2004). Sustainable Environmental Protection Using Modified Pit-Latrines. Ph.D Thesis, Wageningen University, The Netherlands. Pit-latrines are on-site excreta disposal facilities widely used as anaerobic accumulation system for stabilizing human wastes like excreta, both in rural and urban settlements of developing countries. Flooding of pit-latrines is often a common phenomenon, especially in situations of high water table (HWT) conditions and during the rainy season, causing a health jeopardy to residents. The pits are not water-tight, the (ground)water can freely flow in and out of the pit, especially in HWT areas.
    [Show full text]
  • HEALTH ASPECTS of DRY SANITATION with WASTE REUSE Anne Peasey
    HEALTH ASPECTS OF DRY SANITATION WITH WASTE REUSE Anne Peasey Task No. 324 WELL STUDIES IN WATER AND ENVIRONMENTAL HEALTH Health Aspects of Dry Sanitation with Waste Reuse Anne Peasey WELL Water and Environmental Health at London and Loughborough Health Aspects of Dry Sanitation with Waste Reuse ii London School of Hygiene and Tropical Medicine Keppel Street London WC1E 7HT © LSHTM/WEDC Peasey, A. (2000) Health Aspects of Dry Sanitation with Waste Reuse WELL Designed and Produced at LSHTM Health Aspects of Dry Sanitation with Waste Reuse EXECUTIVE SUMMARY BACKGROUND Dry sanitation is defined in this report as the on-site disposal of human urine and faeces without the use of water as a carrier. This definition includes many of the most popular options for low- cost sanitation including pit latrines, Ventilated Improved Pits, SanPlats, etc. There has always been an interest in the reuse of human waste as a fertiliser, and there has been much recent work on the development of composting and other processes to permit human waste reuse. This report examines the practice of dry sanitation with reuse in Mexico, with a particular focus on health issues and the lessons to be learned from case studies and experience. DRY SANITATION WITH REUSE There are two distinct technical approaches to dry sanitation with reuse; · Dehydration. Urine and faeces are managed separately. The deposited faecal matter may be dried by the addition of lime, ash, or earth, and the contents are simply isolated from human contact for a specified period of time to reduce the presence of pathogens. · Decomposition (composting) In this process, bacteria, worms, or other organisms are used to break organic matter down to produce compost.
    [Show full text]
  • UD & Composting Toilets (Ecosan)
    UD Toilets and Composting Toilets in Emergency Settings This Technical Brief looks at the criteria for selecting Urine Diversion (UD) and Composting Toilets options in an emergency setting, including the construction, operation and maintenance of such units which is used to store and dry the faeces over a specified Ecological Sanitation or period. Normally, it is recommended to store faeces for a Sustainable Sanitation? minimum of 12-months in one vault before emptying. Adding a desiccating material such as ash or sawdust will The approach of Ecological Sanitation (Ecosan) in accelerate the faeces drying process. Typically, in a well- emergency settings breaks with conventional excreta managed ecosan unit, storage times of greater than 3- disposal options such as pit latrines or pour-flush toilets. months will reduce many pathogens to safe levels, in Traditionally, Ecosan systems re-use both faeces and particular those responsible for Ameobiasis, Giardiasis, urine, turning them into either a soil conditioner or a Hepatitis A, Hookworm, Whipworm, Threadworm, fertilizer. This not only benefits peoples’ health through Rotavirus, Cholera, Escherichia coli, and Typhoid safe excreta disposal and by reducing environmental amongst others. Ascaris is more persistent though, and contamination, but also implies re-using the by-products may require retention times of 12-months or more. for some form of agricultural activity. In an emergency setting, the choice of ecosan options is very often driven by factors other than the re-use of all or part of the by-products. Ecosan toilets are very often better suited to rocky ground or areas with high water tables, making them more resistant to cyclic flooding for instance.
    [Show full text]
  • Technology Review of Urine-Diverting Dry Toilets (Uddts) Overview of Design, Operation, Management and Costs
    Technology Review of Urine-diverting dry toilets (UDDTs) Overview of design, operation, management and costs As a federally owned enterprise, we support the German Government in achieving its objectives in the field of international cooperation for sustainable development. Published by: Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH Registered offices Bonn and Eschborn, Germany T +49 228 44 60-0 (Bonn) T +49 61 96 79-0 (Eschborn) Friedrich-Ebert-Allee 40 53113 Bonn, Germany T +49 228 44 60-0 F +49 228 44 60-17 66 Dag-Hammarskjöld-Weg 1-5 65760 Eschborn, Germany T +49 61 96 79-0 F +49 61 96 79-11 15 E [email protected] I www.giz.de Name of sector project: SV Nachhaltige Sanitärversorgung / Sustainable Sanitation Program Authors: Christian Rieck (GIZ), Dr. Elisabeth von Münch (Ostella), Dr. Heike Hoffmann (AKUT Peru) Editor: Christian Rieck (GIZ) Acknowledgements: We thank all reviewers who have provided substantial inputs namely Chris Buckley, Paul Calvert, Chris Canaday, Linus Dagerskog, Madeleine Fogde, Robert Gensch, Florian Klingel, Elke Müllegger, Charles Niwagaba, Lukas Ulrich, Claudia Wendland and Martina Winker, Trevor Surridge and Anthony Guadagni. We also received useful feedback from David Crosweller, Antoine Delepière, Abdoulaye Fall, Teddy Gounden, Richard Holden, Kamara Innocent, Peter Morgan, Andrea Pain, James Raude, Elmer Sayre, Dorothee Spuhler, Kim Andersson and Moses Wakala. The SuSanA discussion forum was also a source of inspiration: http://forum.susana.org/forum/categories/34-urine-diversion-systems-
    [Show full text]
  • Sanitation Options
    MIT OpenCourseWare http://ocw.mit.edu 11.479J / 1.851J Water and Sanitation Infrastructure in Developing Countries Spring 2007 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. On-site Sanitation Brian Robinson and Susan Murcott Week 12 - MIT 11.479J / 1.851J Water and Sanitation Infrastructure in Developing Countries Mass. Institute of Technology May 8, 2007 On-site Sanitation • Sanitation ladder: options in sanitation • Ecological Sanitation • Case Study: Ecosan in Kenya Improved sanitation • connection to a public sewer • connection to septic system • pour-flush latrine • simple pit latrine • ventilated improved pit latrine The excreta disposal system is considered “adequate” if it is private or shared (but not public) and if it hygienically separates human excreta from human contact. "Not improved“ = service or bucket latrines (where excreta are manually removed), public latrines, latrines with an open pit. Sanitation “Ladder” Technology Hygiene 1. Open defecation, “flying toilet” 2. “Cathole” burial 3. Pit latrine 4. VIP 5. EcoSan 6. Pour-flush 7. Water-sealed toilets + neighborhood wastewater collection 8. Water-sealed toilets + neighborhood wastewater collection + treatment 1. No Poop sanitation *S. Murcott (T.P.) 2. “Cathole” burial Sanitation “Ladder” Technology Hygiene 1. Open defecation, “flying toilet” 2. “Cathole” burial 3. Pit latrine 4. VIP On-site sanitation 5. EcoSan 6. Pour-flush 7. Water-sealed toilets + neighborhood wastewater collection 8. Water-sealed toilets + neighborhood wastewater collection + treatment 3. Pit latrine – with pit Drainage? 3. Pit Latrine, No Pit 4. Ventilated Fly screen improved Air (ventilation) pit latrine (VIP) Vent pipe Seat cover A dry latrine system, with a screened vent pipe Pedestal to trap flies and often Pit collar Cover slab (May be extended to with double pits to base of pit in poor allow use on a ground conditions) permanent rotating basis.
    [Show full text]
  • 1.5 Design of Composting Toilet for Practical Application in Burkina Faso
    Design of composting toilet for practical application in Burkina Faso Kenta Yabui*, Ken Ushijima, Ryusei Ito, Naoyuki Funamizu Department of Environmental Engineering, Graduate school of Engineering, Hokkaido University, Kita-13, Nishi-8, Kita-ku, Sapporo 060-8628, Japan [email protected] 011-706-6272 Abstract Resource recycling sanitation system, which utilize composting toilet, is one of the promising concept to improve the sanitary conditions in developing countries. In this sanitation system, toilet has to have two functions; sanitary equipment and fertilizer generator. As sanitary equipment, toilet has to provide clean, safe, comfortable environment for daily defecation. As fertilizer generator, toilet has to convert urine and feces into safe and good quality of fertilizer. The composting toile should be designed in order to perform both two functions in high quality, with low cost. In this research, design requirements for toilet as sanitary equipment and fertilizer generator are abstracted basing on field survey to 6 families from 3 villages in rural area of Burkina Faso. According to abstracted requirements, one design of composting toilet was proposed for rural area of Burkina Faso. The feces degradation performance was same level as commercial composting toilet and required torque for mixing was smaller than commercial screw type composting toilet. Key words: user oriented design, resource recycling sanitation system, composting toilet 1. Introduction Currently, in Burkina Faso, people living in rural area can access to improved toilet are 6%. In Millennium developing Goals (MDGs), the target is the number of people do not have improved sanitary facilities reduces by half by 2015. In that area, the progress of installation of sanitary facilities to achieve MDGs is too low, while more than half of the people still have open defecation culture or unimproved toilets, especially poor people.
    [Show full text]
  • Investigation Into Methods of Pit Latrine Emptying April 2009
    WRC PROJECT 1745 Management of sludge accumulation in VIP latrines Investigation into Methods of Pit Latrine Emptying April 2009 by Mark O’Riordan Mark O’Riordan Investigation of Methods of Pit Latrine Emptying Page - i Executive Summary Improving sanitation is now increasingly being recognized as a key factor in ending poverty; providing basic sanitation has been included in the Millennium Development Goals (MDGs) under target 10 of halving the proportion of people without access to adequate basic sanitation by 2015. In an attempt to reach this MDG target many developing countries have embarked on the construction of pit latrines and improved sanitation in people’s homes. An emerging challenge that is resulting from this work is what to do when the latrines are full. If they are to be emptied how should the waste be extracted, where should the waste go and what should be done to it and with it? The approaches to meeting this question are the focus of this report. The report aims to summarise all information currently available to PID resulting from; • General research • Durban’s pit latrine emptying programme • Work with the Vacutug on loan from UN Habitat • A visit to UN Habitat in Nairobi • Site visit to Vacutug facilitating charity Maji na Ufanisi working in Kibera, Nairobi • Design and development work on the ‘Gobbler’ The main part this report is a fairly high level introduction to the issue of faecal sludge management. Where details and information have been readily available the report goes into further depth. A large section of this report focuses on assessment of the United Nations Vacutug project in an attempt to build guidance for the development of a successful latrine exhausting system.
    [Show full text]
  • 1. Urine Diversion
    1. Urine diversion – hygienic risks and microbial guidelines for reuse © Caroline Schönning Department of Parasitology, Mycology and Environmental Microbiology Swedish Institute for Infectious Disease Control (SMI) SE-171 82 Solna Sweden [email protected] This chapter is based on the doctoral thesis published by the author in February 2001: Höglund, C. (2001). Evaluation of microbial health risks associated with the reuse of source separated human urine. PhD thesis, Department of Biotechnology, Royal Institute of Technology, Stockholm, Sweden. ISBN 91-7283-039-5. The full thesis (87 pages, without published papers) can be downloaded from: http://www.lib.kth.se/Sammanfattningar/hoglund010223.pdf Dr Håkan Jönsson, Swedish University for Agricultural Sciences is acknowledged for compiling Section 3, and Dr Jan-Olof Drangert, Linköping University is acknowledged for compiling Section 9. TABLE OF CONTENTS TABLE OF CONTENTS 1 1. INTRODUCTION 2 1.1 History 2 1.2 Nutrient content and volume of domestic wastewater 3 2. URINE DIVERSION 3 2.1 Urine diversion in Sweden 4 2.2 Source-separation of urine in other parts of the world 6 2.3 Ecological Sanitation 6 3. URINE AS A FERTILISER IN AGRICULTURE 7 3.1 Characteristics of diverted human urine 7 3.2 Collection and storage of the urine – developing countries 7 3.3 Urine as a fertiliser 8 3.4 Crops to fertilise 9 3.5 Dosage 9 3.6 Fertilising experiments 10 3.7 Acceptance 11 4. PATHOGENIC MICROORGANISMS IN URINE 11 5. FAECAL CONTAMINATION 13 5.1 Analysis of indicator bacteria to determine faecal contamination 14 5.2 Analysis of faecal sterols to determine faecal contamination 15 5.3 Discussion 16 6.
    [Show full text]
  • Assessing the Costs of On-Site Sanitation Facilities Study Report
    Eawag Überlandstrasse 133 P.O. Box 611 8600 Dübendorf Switzerland Phone +41 (0)44 823 55 11 Fax +41 (0)44 823 50 28 www.eawag.ch Assessing the Costs of on-Site Sanitation Facilities Study Report Lukas Ulrich, Prit Salian, Caroline Saul, Stefan Jüstrich & Christoph Lüthi March 2016 Eawag: Swiss Federal Institute of Aquatic Science and Technology Assessing the Costs of on-Site Sanitation Facilities Contents 1. Summary .......................................................................................................................................... 4 2. Introduction ....................................................................................................................................... 5 3. Methods ............................................................................................................................................ 6 3.1. Comparing the cost of on-site sanitation facilities across countries ............................................ 6 3.1.1. Ensuring comparability ............................................................................................................. 6 3.1.2. Selection of technologies ......................................................................................................... 6 3.2. Cost items included in the country comparison ........................................................................... 7 3.3. Data collection and analysis ......................................................................................................... 8 3.3.1. Development
    [Show full text]
  • Doctor of Philosophy
    KWAME NKRUMAH UNIVERSITY OF SCIENCE AND TECHNOLOGY KUMASI, GHANA Optimizing Vermitechnology for the Treatment of Blackwater: A Case of the Biofil Toilet Technology By OWUSU, Peter Antwi (BSc. Civil Eng., MSc. Water supply and Environmental Sanitation) A Thesis Submitted to the Department of Civil Engineering, College of Engineering in Partial Fulfilment of the Requirements for the Degree of Doctor of Philosophy October, 2017 DECLARATION I hereby declare that this submission is my own work towards the PhD and that, to the best of my knowledge, it contains no material previously published by another person nor material which has been accepted for the award of any other degree of any university, except where due acknowledgement has been made in the text. OWUSU Peter Antwi ………………….. ……………. (PG 8372212) Signature Date Certified by: Dr. Richard Buamah …………………. .................... (Supervisor) Signature Date Dr. Helen M. K. Essandoh (Mrs) …………………. .................... (Supervisor) Signature Date Prof. Esi Awuah (Mrs) …………………. .................... (Supervisor) Signature Date Prof. Samuel Odai …………………. .................... (Head of Department) Signature Date i ABSTRACT Human excreta management in urban settings is becoming a serious public health burden. This thesis used a vermi-based treatment system; “Biofil Toilet Technology (BTT)” for the treatment of faecal matter. The BTT has an average household size of 0.65 cum; a granite porous filter composite for solid-liquid separation; coconut fibre as a bulking material and worms “Eudrilus eugeniae”
    [Show full text]
  • A Bucket Toilet, Also Called a Honey Bucket Or Bucket Latrine, Is a Very Simple, Basic Form of a Dry Toilet Which Is Portable
    Bucket toilet - Wikipedia https://en.wikipedia.org/wiki/Bucket_toilet From Wikipedia, the free encyclopedia A bucket toilet, also called a honey bucket or bucket latrine, is a very simple, basic form of a dry toilet which is portable. The bucket (pail) may be situated inside a dwelling, or in a nearby small structure (an outhouse), or on a camping site or other place that lack waste disposal plumbing. These toilets used to be common in cold climates, where installing running water can be difficult, expensive, and subject to freezing-related pipe breakage.[1] The bucket toilet may carry significant health risks compared to an improved sanitation system.[2] In regions where people do not have access to improved sanitation – particularly in low-income urban areas of developing countries – a bucket toilet might sometimes be an improvement compared to pit latrines or open defecation.[3] They are often used as a temporary measure in emergencies.[4] More sophisticated versions consist of a bucket under a wooden frame supporting a toilet seat and lid, possibly lined with a plastic bag, but A plastic bucket fitted with a toilet many are simply a large bucket without a bag. Newspaper, cardboard, seat for comfort and a lid and plastic straw, sawdust or other absorbent materials are often layered into the bag for waste containment bucket toilet. 1 Applications 1.1 Developing countries 1.2 Cold climates 1.3 Emergencies 2 Usage and maintenance 2.1 Disposal or treatment and reuse of collected excreta 3 Health aspects 4 Upgrading options 4.1 Two bucket system 4.2 Composting toilets 5History 6 Examples 6.1 Ghana 6.2 Kenya 6.3 Namibia 6.4 United States 6.5 Canada 6.6 South Africa 6.7 India 1 of 7 1/3/2017 2:53 PM Bucket toilet - Wikipedia https://en.wikipedia.org/wiki/Bucket_toilet 7 See also 8 References Developing countries Bucket toilets are used in households[3] and even in health care facilities[5] in some developing countries where people do not have access to improved sanitation.
    [Show full text]