(12) Patent Application Publication (10) Pub. No.: US 2003/0153538A1 Kuno Et Al

Total Page:16

File Type:pdf, Size:1020Kb

(12) Patent Application Publication (10) Pub. No.: US 2003/0153538A1 Kuno Et Al US 2003.0153538A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2003/0153538A1 Kuno et al. (43) Pub. Date: Aug. 14, 2003 (54) ANTITUMORAGENT (30) Foreign Application Priority Data (75) Inventors: Noriyasu Kuno, Yokosuka-Shi (JP); Gou Shinohara, Yokosuka-Shi (JP); Jul. 31, 2000 (JP)...................................... 2OOO-23O254 Toshiyuki Inui, Yokosuka-Shi (JP) Nov. 30, 2000 (JP)...................................... 2OOO-366297 Correspondence Address: Publication Classification BURNS, DOANE, SWECKER & MATHIS, L.L.P. P.O. Box 1404 (51) Int. Cl. ................................................. A61K 31/56 Alexandria, VA 22313-1404 (US) (52) U.S. Cl. ............................................ 514/169; 514/557 (73) Assignee: The Nisshin OilliO, Ltd. (21) Appl. No.: 10/355,201 (57) ABSTRACT (22) Filed: Jan. 31, 2003 The present invention relates to an antitumor agent, which Related U.S. Application Data comprises, as an effective component, a compound Selected from the group consisting of maslinic acid, erythrodiol, (63) Continuation of application No. PCT/JP01/06393, uVaol, betulinic acid, betulin and physiologically acceptable filed on Jul. 25, 2001. salts thereof or derivatives thereof. US 2003/O153538A1 Aug. 14, 2003 ANTITUMORAGENT well (Cancer Letters, 1986, 30: 143-151 or Japanese Un Examined Patent Publication (hereunder referred to as “J.P. BACKGROUND OF THE INVENTION KOKAI”) No. Sho 63-57519). With respect to tumor cells, which have already been developed, urSolic acid is known to 0001. The present invention relates to an orally and/or have a cell-metastasis-inhibitory effect although the tumor parenterally administered antitumor agent comprising, as an cell-proliferation-inhibitory effect and tumor cell-killing (or effective component, at least one member Selected from the necrosis) action have not yet been confirmed (J.P. KOKAI group consisting of Specific 5-membered ring-containing No. Hei 9-143076). Up to date, however, it has never been triterpenes and physiologically acceptable Salts thereof or known that specific 5-membered ring-containing triterpenes derivatives thereof. and physiologically acceptable Salts thereof or derivatives 0002 Recently, the mortality rate of cancer or tumor has thereof including those, which have been known to have basically been apt to increase in Japan (in 1997), while it has carcinogenic promoter-inhibitory activity possess, for basically been Switched off to reducing tendency, at long instance, a tumor cell-proliferation-inhibitory effect, a tumor last, in the United States of America (in 1995), but the cancer cell-necrosis effect and a tumor cell-metastasis-inhibitory or tumor has still taken the Second place as the cause of effect. death. DISCLOSURE OF THE INVENTION 0.003 Contrary to this, the mechanism of the cancer development has been elucidated in the molecular level due 0008. It is an object of the present invention to provide an to the recent intensive and extensive investigations and orally and/or parenterally administered anti-V agent com studies. The fruits of these efforts or studies make it clear prising, as an effective component, at least one member that various chemical Substances can control various Steps of Selected from the group consisting of Specific 5-membered the cancer-developing processes and they have been ring-containing triterpenes and physiologically acceptable employed as pharmaceutical agents having antitumor Salts thereof or derivatives thereof and a method for using actions. the Same. More particularly, it is an object of the present 0004. These antitumor agents show their effects in accor invention to provide an antitumor agent having a tumor dance with different mechanisms, respectively and there cell-proliferation-inhibitory effect, a tumor cell-necrosis fore, they permit effective treatments by Successfully com effect and a tumor cell-metastasis-inhibitory effect as well as bining them. Moreover, if a drug has continuously been a method for using the same. used, it has been pointed out that a problem of So-called 0009. The inventors of this invention have conducted tolerance arises. If taking into consideration the foregoing, various Studies to achieve the foregoing objects, have found the existence of a wide variety of antitumor agents is quite that Specific 5-membered ring-containing triterpenes and desirable. physiologically acceptable Salts thereof or derivatives 0005 Furthermore, there have conventionally been used thereof possess excellent tumor cell-proliferation-inhibitory, various kinds of chemical Substances as antitumor agents tumor cell-necrosis (or killing) and tumor cell-metastasis possessing antitumor actions. They have, on the one hand, inhibitory effects and have thus completed the present Strong antitumor actions, but on the other hand, they have invention. Such a Side effect that they have harmful or injurious actions 0010 More specifically, the present invention relates to on not only the tumor cells, but also the normal cells. For this an antitumor agent comprising, as an effective component, reason, it is quite obvious that desirable antitumor agents one or at least two members Selected from the group should have a lower cytotoxicity and high Safety. consisting of maslinic acid, erythrodiol, urSolic acid, uVaol, 0006. On the other hand, the 5-membered ring-containing betulinic acid, betulin and physiologically acceptable Salts triterpenes belong to a kind of triterpenes, they are usually thereof or derivatives thereof, preferably relates to an anti 5-membered ring-containing compounds each consisting of tumor agent having a tumor cell-proliferation-inhibitory Six isoprene units in the molecule and the number of carbon effect, preferably relates to an antitumor agent having a atoms thereof is fundamentally 30, but the number of carbon tumor cell-killing effect and preferably relates to an antitu atoms included in the triterpenes may vary through the mor agent having a tumor cell-metastasis-inhibitory effect. rearrangement, oxidation, elimination or alkylation in the 0011. In addition, the present invention preferably relates processes for the biosynthesis of the Same. Moreover, they to an antitumor agent comprising, as an effective compo are in general classified on the basis of their skeletons and nent, maslinic acid and/or a physiologically acceptable Salt examples thereof include oleanane type triterpenes, urSane thereof, preferably relates to an antitumor agent having a type triterpenes, lupane type triterpenes, hopane type triter tumor cell-proliferation-inhibitory effect, preferably relates penes, Serratane type triterpenes, friedelane type triterpenes, to an antitumor agent having a tumor cell-killing effect and taraxerane type triterpenes, taraxastane type triterpenes, preferably relates to an antitumor agent having a tumor multi-furolane type triterpenes and germanicane type triter cell-metastasis-inhibitory effect. peneS. 0012. In this connection, the maslinic acid, erythrodiol, 0007. They in general have an anti-inflammatory effect urSolic acid, uVaol, betulinic acid and betulin used in the and an anti-carcinogenic promoter activity and therefore, it present invention may be those extracted from naturally has been known that they may be used as prophylactic occurring raw materials or may be any commercially avail medicine (Bulletin of the Society of Oil Chemistry in Japan, able reagents. In addition, the physiologically acceptable 2000, 49: 571) Moreover, in this respect, it has already been Salts and derivatives thereof may likewise be those extracted known that oleanolic acid, erythrodiol, glycyrrhetic acid or from naturally occurring raw materials or may be any the like have a carcinogenic promoter-inhibitory activity, as Synthesized products prepared through Synthetic reactions US 2003/O153538A1 Aug. 14, 2003 using Such extract as raw materials. In particular, it is 0018 Moreover, the present invention preferably relates preferred to use those isolated from naturally occurring raw to an antitumor agent comprising, as an effective compo materials. nent, maslinic acid and/or a physiologically acceptable Salt thereof. 0013 Moreover, the present invention relates to a method 0019 Maslinic acid is a compound present in, for of using, as an antitumor agent, at least one member Selected instance, olives, hops, peppermints, pomegranates, clove, from the group consisting of maslinic acid, erythrodiol, Sage and jujubes and the physiologically acceptable Salts urSolic acid, uVaol, betulinic acid, betulin and physiologi thereof are those derived from the group: -COOH in the cally acceptable salts thereof or derivatives thereof. In chemical formula (I) and the kinds of Salts are not restricted particular, the present invention likewise relates to a method to specific ones and may be those commonly used in foods of using at least one member Selected from the group and beverages or medical compositions. consisting of maslinic acid, erythrodiol, urSolic acid, uvaol, betulinic acid, betulin and physiologically acceptable Salts 0020. The term “comprising, as an effective component” thereof or derivatives thereof, for achieving at least one of used herein means that an antitumor agent contains an the following effects: a tumor cell-proliferation-inhibitory effective component in Such an amount Sufficient for achiev effect, a tumor cell-killing effect and a tumor cell-metastasis ing the desired tumor cell-proliferation-inhibitory, tumor inhibitory effect, as well as a method of using at least
Recommended publications
  • Antiviral Activities of Oleanolic Acid and Its Analogues
    molecules Review Antiviral Activities of Oleanolic Acid and Its Analogues Vuyolwethu Khwaza, Opeoluwa O. Oyedeji and Blessing A. Aderibigbe * Department of Chemistry, University of Fort Hare, Alice Campus, Alice 5700, Eastern Cape, South Africa; [email protected] (V.K.); [email protected] (O.O.O) * Correspondence: [email protected]; Tel.: +27-406022266; Fax: +08-67301846 Academic Editors: Patrizia Ciminiello, Alfonso Mangoni, Marialuisa Menna and Orazio Taglialatela-Scafati Received: 27 July 2018; Accepted: 5 September 2018; Published: 9 September 2018 Abstract: Viral diseases, such as human immune deficiency virus (HIV), influenza, hepatitis, and herpes, are the leading causes of human death in the world. The shortage of effective vaccines or therapeutics for the prevention and treatment of the numerous viral infections, and the great increase in the number of new drug-resistant viruses, indicate that there is a great need for the development of novel and potent antiviral drugs. Natural products are one of the most valuable sources for drug discovery. Most natural triterpenoids, such as oleanolic acid (OA), possess notable antiviral activity. Therefore, it is important to validate how plant isolates, such as OA and its analogues, can improve and produce potent drugs for the treatment of viral disease. This article reports a review of the analogues of oleanolic acid and their selected pathogenic antiviral activities, which include HIV, the influenza virus, hepatitis B and C viruses, and herpes viruses. Keywords: HIV; influenza virus; HBV/HCV; natural product; triterpenoids; medicinal plant 1. Introduction Viral diseases remain a major problem for humankind. It has been reported in some reviews that there is an increase in the number of viral diseases responsible for death and morbidity around the world [1,2].
    [Show full text]
  • Plant-Derived Triterpenoid Biomarkers and Their Applications In
    Plant-derived triterpeonid biomarkers: chemotaxonomy, geological alteration, and vegetation reconstruction Res. Org. Geochem. 35, 11 − 35 (2019) Reviews-2015 Taguchi Award Plant-derived triterpenoid biomarkers and their applications in paleoenvironmental reconstructions: chemotaxonomy, geological alteration, and vegetation reconstruction Hideto Nakamura* (Received November 22, 2019; Accepted December 27, 2019) Abstract Triterpenoids and their derivatives are ubiquitous in sediment samples. Land plants are major sources of non- hopanoid triterpenoids; these terpenoids comprise a vast number of chemotaxonomically distinct biomolecules. Hence, geologically occurring plant-derived triterpenoids (geoterpenoids) potentially record unique characteristics of paleovegetation and sedimentary environments, and serve as source-specific markers for studying paleoenviron- ments. This review is aimed at explaining the origin of triterpenoids and their use as biomarkers in elucidating paleo- environments. Herein, application of plant-derived triterpenoids is discussed in terms of: (i) their biosynthetic pathways. These compounds are primarily synthesized via oxidosqualene cyclase (OSCs) and serve as precursors for a variety of membrane sterols and steroid hormones. Studies on OSCs and resulting compounds have helped elucidate the diversity and origin of the parent terpenoids. (ii) their chemotaxonomic significance. Geochemically important classes of triterpenoid skeletons are useful in gathering and substantiating information on botanical ori- gin of
    [Show full text]
  • Naturally Occurring Saponins: Chemistry and Biology
    Journal of Poisonous and Medicinal Plant Research Vol. 1(1), pp. 001-006, May, 2013 Available online at http://www.apexjournal.org ISSN 2315-8834© 2013 Apex Journal International Review Naturally occurring saponins: Chemistry and biology J. S. Negi 1*, P. S. Negi 2, G. J. Pant 2, M. S. M. Rawat 2, S. K. Negi 3 1Herbal Research and Development Institute, Mandal, Gopeshwar (Chamoli) - 246 401, Uttarakhand, India. 2Department of Chemistry, HNB Garhwal University, Srinagar (Garhwal)- 246 174, Uttarakhand, India. 3Department of Botany, HNB Garhwal University, Srinagar (Garhwal) - 246 174, Uttarakhand, India. Accepted 2 April, 2013 Naturally occurring saponins are glycosides of steroids, alkaloids and triterpenoids. They are widely distributed in nature and reported to be present in 500 genera of plants. A wide variety of plants belonging to family Liliaceae, Dioscoreaceae, Solanaceae, Sapindaceae and Agavaceae are the major source of saponins. They are amorphous substances having high molecular weight and are soluble in water and alcohol to produce foam but organic solvents inhibit their foaming property. Plants saponins are generally extracted into butanol through liquid-liquid partition and separated through column chromatography using silica gel as adsorbent and chloroform: methanol as mobile phase. HPLC, GC, Sephadex LH-20 Chromatography, DCCC, preparative paper chromatography and TLC were also used for the separation and isolation of saponins. The structures of saponins were determined by several spectroscopic techniques, viz., UV, IR, 1H NMR, 13 C NMR and Mass spectroscopy. Saponins possess several biological activities such as antioxidant, immunostimulant, antihepatotoxic, antibacterial, anticarcinogenic, antidiarrheal, antiulcerogenic, antioxytoxic, antihypoglycemic, anticytotoxic and antimolluscicidal. Saponins are biologically synthesized by C5 isoprene units through cytosolic mevalonate pathway.
    [Show full text]
  • Biocatalysis in the Chemistry of Lupane Triterpenoids
    molecules Review Biocatalysis in the Chemistry of Lupane Triterpenoids Jan Bachoˇrík 1 and Milan Urban 2,* 1 Department of Organic Chemistry, Faculty of Science, Palacký University in Olomouc, 17. listopadu 12, 771 46 Olomouc, Czech Republic; [email protected] 2 Medicinal Chemistry, Faculty of Medicine and Dentistry, Institute of Molecular and Translational Medicine, Palacký University in Olomouc, Hnˇevotínská 5, 779 00 Olomouc, Czech Republic * Correspondence: [email protected] Abstract: Pentacyclic triterpenes are important representatives of natural products that exhibit a wide variety of biological activities. These activities suggest that these compounds may represent potential medicines for the treatment of cancer and viral, bacterial, or protozoal infections. Naturally occurring triterpenes usually have several drawbacks, such as limited activity and insufficient solubility and bioavailability; therefore, they need to be modified to obtain compounds suitable for drug development. Modifications can be achieved either by methods of standard organic synthesis or with the use of biocatalysts, such as enzymes or enzyme systems within living organisms. In most cases, these modifications result in the preparation of esters, amides, saponins, or sugar conjugates. Notably, while standard organic synthesis has been heavily used and developed, the use of the latter methodology has been rather limited, but it appears that biocatalysis has recently sparked considerably wider interest within the scientific community. Among triterpenes, derivatives of lupane play important roles. This review therefore summarizes the natural occurrence and sources of lupane triterpenoids, their biosynthesis, and semisynthetic methods that may be used for the production of betulinic acid from abundant and inexpensive betulin. Most importantly, this article compares chemical transformations of lupane triterpenoids with analogous reactions performed by Citation: Bachoˇrík,J.; Urban, M.
    [Show full text]
  • Oil–Source Correlation Studies in the Shallow Berea Sandstone
    Oil–source correlation studies in AUTHORS the shallow Berea Sandstone Paul C. Hackley ~ US Geological Survey (USGS), Reston, Virginia; phackley@ petroleum system, eastern usgs.gov Paul C. Hackley is a research geologist at USGS in Reston, Virginia, where he oversees the Kentucky Organic Petrology Laboratory. He holds degrees from Shippensburg University (B.A.), Paul C. Hackley, Thomas M. (Marty) Parris, George Washington University (M.Sc.), and Cortland F. Eble, Stephen F. Greb, and David C. Harris George Mason University (Ph.D.). His primary research interests are in organic petrology and its application to fossil fuel assessment. Thomas M. (Marty) Parris ~ ABSTRACT Kentucky Geological Survey (KGS), University of Shallow production of sweet high-gravity oil from the Up- Kentucky, Lexington, Kentucky; mparris@ per Devonian Berea Sandstone in northeastern Kentucky has uky.edu caused the region to become the leading oil producer in the state. Thomas M. (Marty) Parris is a research Potential nearby source rocks, namely, the overlying Mississip- geologist at KGS, University of Kentucky, where pian Sunbury Shale and underlying Ohio Shale, are immature he uses gas and aqueous fluid geochemistry to for commercial oil generation according to vitrinite reflectance conduct research on petroleum systems, basin fl fl andprogrammedpyrolysisanalyses.Weusedorganicgeo- uid ow, diagenesis, and the environmental chemical measurements from Berea oils and solvent extracts impacts of energy development. He received his Ph.D. from the University of California, from potential Upper Devonian–Mississippian source rocks to – – Santa Barbara, and B.S. degree from better understand organic matter sources, oil oil and oil source Tennessee Tech University. rock correlations, and thermal maturity in the shallow Berea oil play.
    [Show full text]
  • Geochemical Characterization of the Eocene Coal-Bearing Source
    minerals Article Geochemical Characterization of the Eocene Coal-Bearing Source Rocks, Xihu Sag, East China Sea Shelf Basin, China: Implications for Origin and Depositional Environment of Organic Matter and Hydrocarbon Potential Xiong Cheng 1,2,* , Dujie Hou 1,2,*, Xinhuai Zhou 3, Jinshui Liu 4, Hui Diao 4 and Lin Wei 1,2 1 School of Energy Resources, China University of Geosciences, Beijing 100083, China; [email protected] 2 Key Laboratory of Marine Reservoir Evolution and Hydrocarbon Accumulation Mechanism, Ministry of Education, Beijing 100083, China 3 Hainan Branch of China National Offshore Oil Corporation, Haikou 570100, China; [email protected] 4 Shanghai Branch of China National Offshore Oil Corporation, Shanghai 200050, China; [email protected] (J.L.); [email protected] (H.D.) * Correspondence: [email protected] (X.C.); [email protected] (D.H.) Abstract: Eocene coal-bearing source rocks of the Pinghu Formation from the W-3 well in the western margin of the Xihu Sag, East China Sea Shelf Basin were analyzed using Rock-Eval pyrolysis and gas Citation: Cheng, X.; Hou, D.; Zhou, chromatography–mass spectrometry to investigate the samples’ source of organic matter, depositional X.; Liu, J.; Diao, H.; Wei, L. environment, thermal maturity, and hydrocarbon generative potential. The distribution patterns of Geochemical Characterization of the n-alkanes, isoprenoids and steranes, high Pr/Ph ratios, abundant diterpanes, and the presence of non- Eocene Coal-Bearing Source Rocks, hopanoid triterpanes indicate predominant source input from higher land plants. The contribution of Xihu Sag, East China Sea Shelf Basin, aquatic organic matter was occasionally slightly elevated probably due to a raised water table.
    [Show full text]
  • Ethnomedicinal Plants Used Against Jaundice in Bangladesh and Its Economical Prospects
    Bulletin of Pharmaceutical Research 2012;2(2):91-105 An Official Publication of Association of Pharmacy Professionals ISSN: 2249-6041 (Print); ISSN: 2249-9245 (Online) REVIEW ARTICLE ETHNOMEDICINAL PLANTS USED AGAINST JAUNDICE IN BANGLADESH AND ITS ECONOMICAL PROSPECTS Zahed Bin Rahim*, Muhammad Mahabubur Rahman, Dibyajyoti Saha, S.M. Zahid Hosen, Swati Paul and Shafiul Kader Department of Pharmacy, BGC Trust University, Chittagong, Bangladesh *E-mails: [email protected], [email protected] Tel.: +88-01755588624, +88-01752560434, +88-01715847075. Received: January 06, 2012 / Revised: July 28, 2012 / Accepted: July 29, 2012 In Bangladesh, traditional plant-based medicines have always been used to treat hepatitis and jaundice. In the present work, we focused on medicinal plants used to treat jaundice and hepatitis. About 95 plant species belonging to about 75 family were found to be used against jaundice or hepatitis by the traditional healers. The most important plant species are Alocasia indica, Aloe barbadensis, Asparagus racemosus, Averrhoa carambola, Bixa orellana, Boerhaavia diffusa, Cucumis sativus, Cajanus Cajan, Cassia fistula, Eclipta alba, Hemidesmus indicus, Lagenaria siceraria, Mentha arvensis, Momordica charantea, Oroxylum indicum, Saccharum officinarum, Tamarindus indica etc. The ethnomedicinal inventory is presented by plant name, local name, family, chemical constituents, parts used and distribution in Bangladesh. Key words: Ethnomedicinal plants, Jaundice, Hepatitis, Economical prospects. INTRODUCTION the skin, sclera and mucous membrane, it turns Ethnomedicine is a subfield of ethno botany or yellow. This yellowness is known as jaundice medical anthropology that deals with the study (icterus) and usually detectable when plasma of traditional medicines; not only those that have bilirubin is greater than 2 mg/dl (34 µmol/l).
    [Show full text]
  • NIH Public Access Author Manuscript Nat Prod Rep
    NIH Public Access Author Manuscript Nat Prod Rep. Author manuscript; available in PMC 2013 September 16. NIH-PA Author ManuscriptPublished NIH-PA Author Manuscript in final edited NIH-PA Author Manuscript form as: Nat Prod Rep. 2009 October ; 26(10): 1321–1344. doi:10.1039/b810774m. Plant-derived triterpenoids and analogues as antitumor and anti- HIV agents† Reen-Yen Kuo, Keduo Qian, Susan L. Morris-Natschke, and Kuo-Hsiung Lee* Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7568, USA. Abstract This article reviews the antitumor and anti-HIV activities of naturally occurring triterpenoids, including the lupane, ursane, oleanane, lanostane, dammarane, and miscellaneous scaffolds. Structure–activity relationships of selected natural compounds and their synthetic derivatives are also discussed. 1 Introduction Natural products are an excellent reservoir of biologically active compounds. For centuries, extracts from natural products have been a main source of folk medicines, and even today, many cultures still employ them directly for medicinal purposes. Among the classes of identified natural products, triterpenoids, one of the largest families, have been studied intensively for their diverse structures and variety of biological activities. As a continued study of naturally occurring drug candidates, this review describes the research progress over the last three years (2006–2008) on triterpenoids possessing cytotoxic or anti-HIV activity, with focus on the occurrence, biological activities, and structure–activity relationships of selected compounds and their synthetic derivatives. 2 Potential antitumor effects of triterpenoids 2.1 The lupane group Betulinic acid (1) is a naturally occurring pentacyclic triterpene belonging to the lupane family.
    [Show full text]
  • Open Natural Products Research: Curation and Dissemination of Biological Occurrences of Chemical Structures Through Wikidata
    bioRxiv preprint doi: https://doi.org/10.1101/2021.02.28.433265; this version posted March 1, 2021. The copyright holder has placed this preprint (which was not certified by peer review) in the Public Domain. It is no longer restricted by copyright. Anyone can legally share, reuse, remix, or adapt this material for any purpose without crediting the original authors. Open Natural Products Research: Curation and Dissemination of Biological Occurrences of Chemical Structures through Wikidata Adriano Rutz1,2, Maria Sorokina3, Jakub Galgonek4, Daniel Mietchen5, Egon Willighagen6, James Graham7, Ralf Stephan8, Roderic Page9, Jiˇr´ıVondr´aˇsek4, Christoph Steinbeck3, Guido F. Pauli7, Jean-Luc Wolfender1,2, Jonathan Bisson7, and Pierre-Marie Allard1,2 1School of Pharmaceutical Sciences, University of Geneva, CMU - Rue Michel-Servet 1, CH-1211 Geneva 4, Switzerland 2Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU - Rue Michel-Servet 1, CH-1211 Geneva 4, Switzerland 3Institute for Inorganic and Analytical Chemistry, Friedrich-Schiller-University Jena, Lessingstr. 8, 07732 Jena, Germany 4Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo n´amˇest´ı2, 166 10, Prague 6, Czech Republic 5School of Data Science, University of Virginia, Dell 1 Building, Charlottesville, Virginia 22904, United States 6Dept of Bioinformatics-BiGCaT, NUTRIM, Maastricht University, Universiteitssingel 50, NL-6229 ER, Maastricht, The Netherlands 7Center for Natural Product Technologies, Program for Collaborative Research
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2016/0186168 A1 Konieczka Et Al
    US 2016O1861 68A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2016/0186168 A1 Konieczka et al. (43) Pub. Date: Jun. 30, 2016 (54) PROCESSES AND HOST CELLS FOR Related U.S. Application Data GENOME, PATHWAY. AND BIOMOLECULAR (60) Provisional application No. 61/938,933, filed on Feb. ENGINEERING 12, 2014, provisional application No. 61/935,265, - - - filed on Feb. 3, 2014, provisional application No. (71) Applicant: ENEVOLV, INC., Cambridge, MA (US) 61/883,131, filed on Sep. 26, 2013, provisional appli (72) Inventors: Jay H. Konieczka, Cambridge, MA cation No. 61/861,805, filed on Aug. 2, 2013. (US); James E. Spoonamore, Publication Classification Cambridge, MA (US); Ilan N. Wapinski, Cambridge, MA (US); (51) Int. Cl. Farren J. Isaacs, Cambridge, MA (US); CI2N 5/10 (2006.01) Gregory B. Foley, Cambridge, MA (US) CI2N 15/70 (2006.01) CI2N 5/8 (2006.01) (21) Appl. No.: 14/909, 184 (52) U.S. Cl. 1-1. CPC ............ CI2N 15/1082 (2013.01); C12N 15/81 (22) PCT Filed: Aug. 4, 2014 (2013.01); C12N 15/70 (2013.01) (86). PCT No.: PCT/US1.4/49649 (57) ABSTRACT S371 (c)(1), The present disclosure provides compositions and methods (2) Date: Feb. 1, 2016 for genomic engineering. Patent Application Publication Jun. 30, 2016 Sheet 1 of 4 US 2016/O186168 A1 Patent Application Publication Jun. 30, 2016 Sheet 2 of 4 US 2016/O186168 A1 &&&&3&&3&&**??*,º**)..,.: ××××××××××××××××××××-************************** Patent Application Publication Jun. 30, 2016 Sheet 3 of 4 US 2016/O186168 A1 No.vaegwzºkgwaewaeg Patent Application Publication Jun. 30, 2016 Sheet 4 of 4 US 2016/O186168 A1 US 2016/01 86168 A1 Jun.
    [Show full text]
  • Nomenclature of Organic Chemistry. IUPAC Recommendations and Preferred Names 2013
    International Union of Pure and Applied Chemistry Division VIII Chemical Nomenclature and Structure Representation Division Nomenclature of Organic Chemistry. IUPAC Recommendations and Preferred Names 2013. Prepared for publication by Henri A. Favre and Warren H. Powell, Royal Society of Chemistry, ISBN 978-0-85404-182-4 Appendix 3. STRUCTURES FOR ALKALOIDS, STEROIDS, TERPENOIDS, AND SIMILAR COMPOUNDS 1. Alkaloids H 13 12 16 17 H 14 1 H 2 10 9 11 15 HN20 8 3 5 4 H 7 H 6 19 H aconitane 16 17 H 5 9 6 21 19 18 8 N CH2-CH3 10 7 H 4 2 20 1 3 11 H 13 N H 14 15 12 CH3 22 ajmalan 17 CH3 16 6 5 H 21 9 4 H 8 N 10 7 2 20 19 1 3 CH 11 3 13 N H 14 15 18 12 akuammilan (named systematically by CAS) 24 17 H O 5 21 16 6 4 15 20 9 N 7 H3C 10 8 23 H CH2-CH3 14 19 18 1 2 3 11 13 N 12 CH3 22 alstophyllan (named systematically by CAS) 3 4 2 5 6 1 N 11b 6a CH3 H 12 11a 11 7 10 8 9 aporphine (named systematically by CAS) 8 7 9 N H 6 10 19 5 14 11 21 4 15 20 13 12 3 1 2 16 18 N 17 H aspidofractinine (named systematically by CAS) 8 7 9 6 N 10 19 CH2-CH3 5 20 21 14 11 H 4 15 13 12 2 3 1 16 18 N H 17 H aspidospermidine 17 12 CH 16 3 11 20 14 H 13 1 9 15 2 10 8 HN21 H 5 3 4 7 6 19 H CH3 18 atidane (named systematically by CAS) 17 24 12 16 CH2 23 O 11 20 14 13 22 1 9 H 2 15 10 8 OH N21 H 5 3 4 7 H 6 19 CH3 18 atisine (named systematically by CAS) 4 5 5’ 4’ 3 6 6’ 3’ 2 2 7’ ’ HN 1 7 1’ NH H 8 O 8’ H 10 14 15 ’ 11 13’ 15’ 9 9 O ’ 14 12 12’ 10’ 13 11’ berbaman (named systematically by CAS) 4 5 4a 3 6 7 2 13a N 13b 8 1 H 8a 13 9 12a 12 10 11 berbine (named systematically
    [Show full text]
  • Saponins As Cytotoxic Agents: a Review
    Phytochem Rev (2010) 9:425–474 DOI 10.1007/s11101-010-9183-z Saponins as cytotoxic agents: a review Irma Podolak • Agnieszka Galanty • Danuta Sobolewska Received: 13 January 2010 / Accepted: 29 April 2010 / Published online: 25 June 2010 Ó The Author(s) 2010. This article is published with open access at Springerlink.com Abstract Saponins are natural glycosides which Con A Concanavalin A possess a wide range of pharmacological properties ER Endoplasmic reticulum including cytotoxic activity. In this review, the recent ERK Extracellular signal-regulated studies (2005–2009) concerning the cytotoxic activity kinase of saponins have been summarized. The correlations GADD Growth arrest and DNA damage- between the structure and the cytotoxicity of both inducible gene steroid and triterpenoid saponins have been described GRP Glucose regulated protein as well as the most common mechanisms of action. hTERT Telomerase reverse transcriptase JAK Janus kinase Keywords Cytotoxic mechanisms Á MEK = MAPK Mitogen-activated protein kinase Glycosides Á Sar Á Steroid Á Triterpenoid MMP Matrix metalloproteinase mTOR Mammalian target of rapamycin Abbreviations NFjB Nuclear factor kappa-light-chain- AMPK AMP activated protein kinase enhancer of activated B cells BiP Binding protein NO Nitric oxide BrDU Bromodeoxyuridine PARP Poly ADP ribose polymerase CCAAT Cytidine-cytidine-adenosine- PCNA Proliferating cell nuclear antigen adenosine-thymidine PI3K Phosphoinositide-3-kinase CD Cluster of differentiation molecule PP Protein phosphatase CDK Cyclin-dependent kinase PPAR-c Peroxisome proliferator-activated CEBP CCAAT-enhancer-binding protein receptor c CHOP CEPB homology protein Raf Serine/threonine specific kinase STAT Signal transducer and activator of transcription TIMP Tissue inhibitor of metallo- proteinase TSC Tuberous sclerosis complex VEGF Vascular endothelial growth factor & I.
    [Show full text]