(12) STANDARD PATENT (11) Application No. AU 2002245022 B8 (19) AUSTRALIAN PATENT OFFICE

Total Page:16

File Type:pdf, Size:1020Kb

(12) STANDARD PATENT (11) Application No. AU 2002245022 B8 (19) AUSTRALIAN PATENT OFFICE (12) STANDARD PATENT (11) Application No. AU 2002245022 B8 (19) AUSTRALIAN PATENT OFFICE (54) Title Inhibition of NF-kappaB by triterpene compositions (51) International Patent Classification(s) A61K 31/00 (2006.01) (21) Application No: 2002245022 (22) Date of Filing: 2001.11.19 (87) WIPO No: W002/055016 Priority Data (31) Number (32) Date (33) Country 60/249,710 2000.11.17 US 60/322,859 2001.09.17 US (43) Publication Date: 2002.07.24 (43) Publication Journal Date: 2003.02.06 (44) Accepted Journal Date: 2006.09.21 (48) Corrigenda Journal Date: 2006.10.12 (71) Applicant(s) Research Development Foundation (72) Inventor(s) Haridas, Valsala;Gutterman, Jordan, U. (74) Agent Attorney Callinan Lawrie, 711 High Street, Kew, VIC, 3101 (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau 11111111111111IIIII I11 UlII I I1111111111IIII H11111111111111111111iiI I iii (43) International Publication Date (10) International Publication Number 18 July 2002 (18.07.2002) PCT WO 02/055016 A2 7 (51) International Patent Classification A61K (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, (21) International Application Number: PCT/US01/43286 CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, (22) International Filing Date: LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, 19 November 2001 (19.11.2001) MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG UZ, VN, YU, Filing Language: English ZA, ZM, ZW. (26) Publication Language: English (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Priority Data: Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), 60/249,710 17 November 2000 (17.11.2000) US European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, 60/322,859 17 September 2001 (17.09.2001) US GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, Cl, CM, GA, GN, GQ, GW, ML, MR, (71) Applicant: RESEARCH DEVELOPMENT FOUNDA- NE, SN, TD, TG). TION [US/US]: 402 North Division Street, Carson City, NV 89703 (US) Published: (72) Inventors: GUTTERMAN, Jordan, 1701 Hermann without international search report and to be republished G, Houston, TX 77004 HARIDAS, Valsala; upon receipt of that report 2120 El Pasco Street #1802, Houston, TX 77054 (US). For two-letter codes and other abbreviations, refer to the "Guid- (74) Agent: WEILER, James, F; Suite 1560, 1 Riverway, ance Notes on Codes andAbbreviations appearingat the begin- Iouston, TX 77056 (US). ning of each regularissue of the PCT Gazette. ID In (54) Title: INHIBITION OF NR-KB BY TRITERPENE COMPOSITIONS (57) Abstract: The invention provides methods for the inhibition of inflammation by providing, to a cell, in need thereof, monoter- pene compositions that inhibit NF-KB. These compositions may also contain a carrier moiety that renders the monoterpene composi- Stion membrane permeable. The carrier may include triterpenoid moieties, sugars, lipids, or even additional monoterpenoid moieties. The composition can also contain additional chemical functionalites. Methods for using these compounds to prevent and treat a wide range of inflammatory conditions, especially, premalignant inflammatory conditions are described. WO 02/055016 PCT/US01/43286 INHIBITION OF NF-KB BY TRITERPENE COMPOSITIONS BACKGROUND OF THE INVENTION This application claims the priority of U.S. Provisional Application Ser. No. 60/249,710, filed November 17, 2000, and U.S. Provisional Application Ser. No. 60/322,859, filed September 17, 2001, both of which disclosures are specifically incorporated herein by reference in their entirety. 1. Field of the Invention The present invention relates generally to the field of medicine. More specifically, the invention relates to methods of inhibiting inflammation using monoterpene compositions that inhibit NF-KB. 2. Description of Related Art Plants and animals especially, marine animals, are valuable sources for the identification of novel biologically active molecules. One diverse class of molecules which has been identified in plants is the class of saponins. Saponins are high molecular weight compounds comprising glycosides with a sugar moiety linked to a triterpene or steroid aglycone. Triterpene saponins particularly have been the subject of much interest because of their biological properties. Pharmacological and biological properties of triterpene saponins from different plant species have been studied, including fungicidal, anti-viral, anti-mutagenic, spermicidal or contraceptive, cardiovascular, and anti-inflammatory activities (Hostettmann et al., 1995). Saponins are known to form complexes with cholesterol by binding plasma lipids, thereby altering cholesterol metabolism (Oakenfull et al., 1983). Triterpene glycosides given in feed also have been shown to decrease the amount of cholesterol in the blood and tissues of experimental animals (Cheeke, 1971). Saponins have been found to be constituents of many folk medicine remedies and some of the more recently developed plant drugs. The triterpene glycyrrhetinic acid, and certain derivatives thereof, are known to have anti-ulcer, anti-inflammatory, anti-allergic, anti-hepatitis and antiviral actions. For instance, certain glycyrrhetinic acid derivatives can prevent or heal gastric ulcers (Doll et al., 1962). WO 02/055016 PCT/US01/43286 Among such compounds known in the art are carbenoxolone Patent No. 3,070,623), glycyrrhetinic acid ester derivatives having substituents at the 3' position Patent No. 3,070,624), amino acid salts of glycyrrhetinic acid (Japanese Patent Publication JP-A-44-32798), amide derivatives of glycyrrhetinic acid (Belgian Patent No. 753773), and amide derivatives of 11-deoxoglycyrrhetinic acid (British Patent No. 1346871). Glycyrrhetinic acid has been shown to inhibit enzymes involved in leukotriene biosynthesis, including 5-lipoxygenase activity, and this is thought to be responsible for the reported anti-inflammatory activity (Inoue et al., 1986). Betulinic acid, a pentacyclic triterpene, is reported to be a selective inhibitor of human melanoma tumor growth in nude mouse xenograft models and was shown to cause cytotoxicity by inducing apoptosis (Pisha et al., 1995). A triterpene saponin from a Chinese medicinal plant in the Cucurbitaceae family has demonstrated anti-tumor activity (Kong et al., 1993). Monoglycosides of triterpenes have been shown to exhibit potent and selective cytotoxicity against MOLT-4 human leukemia cells (Kasiwada et al., 1992) and certain triterpene glycosides of the Iridaceae family inhibited the growth of tumors and increased the life span of mice implanted with Ehrlich ascites carcinoma (Nagamoto et al., 1988). A saponin preparation from the plant Dolichosfalcatus,which belongs to the Leguminosae family, has been reported to be effective against sarcoma-37 cells in vitro and in vivo (Huang et al., 1982). Soya saponin, also from the Leguminosae family, has been shown to be effective against a number of tumors (Tomas-Barbaren et al., 1988). Oleanolic acid and gypsogenin glycosides exhibiting haemolytic and molluscicidal activity have been isolated from the ground fruit pods of Swartzia madagascariensis(Leguminosae) (Borel and Hostettmann, 1987). Genistein, a naturally occurring isoflavonoid isolated from soy products, is a tyrosine kinase inhibitor that has been shown to inhibit the proliferation of estrogen-positive and estrogen-negative breast cancer cell lines (Akiyama et al., 1987). Inositol hexaphosphate (phytic acid), which is abundant in the plant kingdom and is a natural dietary ingredient of cereals and legumes, has been shown to cause terminal differentiation of a colon carcinoma cell line. Phytic acid also exhibits anti-tumor activity against experimental colon and mammary carcinogenesis in vivo (Yang et al., 1995). Some triterpene aglycones also have been demonstrated to have cytotoxic or cytostatic properties, stem bark from the plant Crossopteiyx febrifuga WO 02/055016 PCT/US01/43286 (Rubiaceae) was shown to be cytostatic against Co-115 human colon carcinoma cell line in the ng/ml range (Tomas-Barbaren et al., 1988). While the previous reports have identified triterpene compounds which have any of a number of uses, there still is a great need in the art for the identification of novel biologically active triterpene compounds. Many of these compounds are toxic to normal mammalian cells. Still further, the biological activities of previously identified triterpenes vary widely and many posses limited or varying degrees of efficacy in the treatment of any given human or mammalian condition. The great diversity of different triterpenes which have been identified and the great range of differences and unpredictability in the biological activities observed among even closely related triterpene compounds, underscores the difficulties which have been encountered in obtaining triterpenes which are potential therapeutic agents. Achieving the difficult goal of identifying novel triterpenes with beneficial biological activities could provide entirely new avenues of treatment for a diverse set of human ailments in which therapeutic options currently are limited. NF-KB, is a ubiquitous transcription factor and regulates the transcription of a number of genes involved in immune and inflammatory pathways such as various pro-inflammatory cytokines, adhesion molecules, and apoptosis
Recommended publications
  • Anti-HIV Triterpenoid Components
    Available online www.jocpr.com Journal of Chemical and Pharmaceutical Research, 2014, 6(4):438-443 ISSN : 0975-7384 Research Article CODEN(USA) : JCPRC5 Anti-HIV triterpenoid components Benyong Han* and Zhenhua Peng Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, P. R. China _____________________________________________________________________________________________ ABSTRACT AIDS is a pandemic immunosuppresive disease which results in life-threatening opportunistic infections and malignancies. Exploration of effective components with anti-HIV in native products is significant for prevention and therapy of AIDS. This review will focus on the mechanisms of action of anti-HIV triterpenes and the structural features that contribute to their anti-HIV activity and site of action and compare their concrete activity. Keywords: Triterpenes components, Anti-HIV, Activity _____________________________________________________________________________________________ INTRODUCTION HIV is the pathogenic of AIDS. In order to combat the debilitating disease acquired immune deficiency syndrome and the emergence of Anti-HIV, we search, research and develop the drug which can preventing and curing the disease. It is known that three enzyme play an important role in the development of HIV, such as nucleoside analogue HIV reverse transcriptase(RT), HIV integrase and HIV protease. However, the efficacy of these HIV enzyme inhibitors is limited by the development of drug resistance. The most potent HIV-1 protease inhibitor is components of polypeptide, however, the efficacy of components is low and expensive and the emergence of Anti- HIV is also their disadvantage.In the search of the drug of An-HIV, some triterpenoid components from nutural plant revealed good activity. TRITERPENES CHEMICAL CONSTITUTION The triterpenoid components distributing extensively in the nature which are consisted of thirty carbon atom are in the state of dissociation or indican, some combine with sugar are called triterpenoid saponins.
    [Show full text]
  • Antiviral Activities of Oleanolic Acid and Its Analogues
    molecules Review Antiviral Activities of Oleanolic Acid and Its Analogues Vuyolwethu Khwaza, Opeoluwa O. Oyedeji and Blessing A. Aderibigbe * Department of Chemistry, University of Fort Hare, Alice Campus, Alice 5700, Eastern Cape, South Africa; [email protected] (V.K.); [email protected] (O.O.O) * Correspondence: [email protected]; Tel.: +27-406022266; Fax: +08-67301846 Academic Editors: Patrizia Ciminiello, Alfonso Mangoni, Marialuisa Menna and Orazio Taglialatela-Scafati Received: 27 July 2018; Accepted: 5 September 2018; Published: 9 September 2018 Abstract: Viral diseases, such as human immune deficiency virus (HIV), influenza, hepatitis, and herpes, are the leading causes of human death in the world. The shortage of effective vaccines or therapeutics for the prevention and treatment of the numerous viral infections, and the great increase in the number of new drug-resistant viruses, indicate that there is a great need for the development of novel and potent antiviral drugs. Natural products are one of the most valuable sources for drug discovery. Most natural triterpenoids, such as oleanolic acid (OA), possess notable antiviral activity. Therefore, it is important to validate how plant isolates, such as OA and its analogues, can improve and produce potent drugs for the treatment of viral disease. This article reports a review of the analogues of oleanolic acid and their selected pathogenic antiviral activities, which include HIV, the influenza virus, hepatitis B and C viruses, and herpes viruses. Keywords: HIV; influenza virus; HBV/HCV; natural product; triterpenoids; medicinal plant 1. Introduction Viral diseases remain a major problem for humankind. It has been reported in some reviews that there is an increase in the number of viral diseases responsible for death and morbidity around the world [1,2].
    [Show full text]
  • Saponins from Chinese Medicines As Anticancer Agents
    molecules Review Saponins from Chinese Medicines as Anticancer Agents Xiao-Huang Xu 1,†, Ting Li 1,†, Chi Man Vivienne Fong 1, Xiuping Chen 1, Xiao-Jia Chen 1, Yi-Tao Wang 1, Ming-Qing Huang 2,* and Jin-Jian Lu 1,* 1 State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China; [email protected] (X.-H.X.); [email protected] (T.L.); [email protected] (C.M.V.F.); [email protected] (X.C.); [email protected] (X.-J.C.); [email protected] (Y.-T.W.) 2 College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China * Correspondence: [email protected] (M.-Q.H.); [email protected] (J.-J.L.); Tel.: +86-591-2286-1135 (M.-Q.H.); +85-388-224-674 (J.-J.L.) † The authors contribute equally to this work. Academic Editor: Derek J. McPhee Received: 15 August 2016; Accepted: 30 September 2016; Published: 5 October 2016 Abstract: Saponins are glycosides with triterpenoid or spirostane aglycones that demonstrate various pharmacological effects against mammalian diseases. To promote the research and development of anticancer agents from saponins, this review focuses on the anticancer properties of several typical naturally derived triterpenoid saponins (ginsenosides and saikosaponins) and steroid saponins (dioscin, polyphyllin, and timosaponin) isolated from Chinese medicines. These saponins exhibit in vitro and in vivo anticancer effects, such as anti-proliferation, anti-metastasis, anti-angiogenesis, anti-multidrug resistance, and autophagy regulation actions. In addition, related signaling pathways and target proteins involved in the anticancer effects of saponins are also summarized in this work.
    [Show full text]
  • Plant-Derived Triterpenoid Biomarkers and Their Applications In
    Plant-derived triterpeonid biomarkers: chemotaxonomy, geological alteration, and vegetation reconstruction Res. Org. Geochem. 35, 11 − 35 (2019) Reviews-2015 Taguchi Award Plant-derived triterpenoid biomarkers and their applications in paleoenvironmental reconstructions: chemotaxonomy, geological alteration, and vegetation reconstruction Hideto Nakamura* (Received November 22, 2019; Accepted December 27, 2019) Abstract Triterpenoids and their derivatives are ubiquitous in sediment samples. Land plants are major sources of non- hopanoid triterpenoids; these terpenoids comprise a vast number of chemotaxonomically distinct biomolecules. Hence, geologically occurring plant-derived triterpenoids (geoterpenoids) potentially record unique characteristics of paleovegetation and sedimentary environments, and serve as source-specific markers for studying paleoenviron- ments. This review is aimed at explaining the origin of triterpenoids and their use as biomarkers in elucidating paleo- environments. Herein, application of plant-derived triterpenoids is discussed in terms of: (i) their biosynthetic pathways. These compounds are primarily synthesized via oxidosqualene cyclase (OSCs) and serve as precursors for a variety of membrane sterols and steroid hormones. Studies on OSCs and resulting compounds have helped elucidate the diversity and origin of the parent terpenoids. (ii) their chemotaxonomic significance. Geochemically important classes of triterpenoid skeletons are useful in gathering and substantiating information on botanical ori- gin of
    [Show full text]
  • In Chemistry, Glycosides Are Certain Molecules in Which a Sugar Part Is
    GLYCOSIDES Glycosides may be defined as the organic compounds from plants or animal sources, which on enzymatic or acid hydrolysis give one or more sugar moieties along with non- sugar moiety. Glycosides play numerous important roles in living organisms. Many plants store important chemicals in the form of inactive glycosides; if these chemicals are needed, the glycosides are brought in contact with water and an enzyme, and the sugar part is broken off, making the chemical available for use. Many such plant glycosides are used as medications. In animals (including humans), poisons are often bound to sugar molecules in order to remove them from the body. Formally, a glycoside is any molecule in which a sugar group is bonded through its carbon atom to another group via an O-glycosidic bond or an S-glycosidic bond; glycosides involving the latter are also called thioglycosides. The sugar group is then known as the glycone and the non-sugar group as the aglycone or genin part of the glycoside. The glycone can consist of a single sugar group (monosaccharide) or several sugar groups (oligosaccharide). Classification Classification based on linkages Based on the linkage of sugar moiety to aglycone part 1. O-Glycoside:-Here the sugar is combined with alcoholic or phenolic hydroxyl function of aglycone.eg:-digitalis. 2. N-glycosides:-Here nitrogen of amino group is condensed with a sugar ,eg- Nucleoside 3. S-glycoside:-Here sugar is combined with sulphur of aglycone,eg- isothiocyanate glycosides. 4. C-glycosides:-By condensation of a sugar with a cabon atom, eg-Cascaroside, aloin. Glycosides can be classified by the glycone, by the type of glycosidic bond, and by the aglycone.
    [Show full text]
  • Traditional Medicine Research Doi: 10.12032/TMR20210616237
    Traditional Medicine Research doi: 10.12032/TMR20210616237 Annual advances of integrative pharmacology in 2020 Ke-Wu Zeng1*, Ming-Yao Gu2* 1State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; 2Department of Cell Biology and Medical Genetics, School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen 518061, China. *Corresponding to: Ke-Wu Zeng, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China; E-mail: [email protected]. Ming-Yao Gu, Department of Cell Biology and Medical Genetics, School of Basic Medical Sciences, Shenzhen University Health Science Center, No.1066 Xueyuan Avenue, Nanshan District, Shenzhen 518061, China; E-mail: [email protected]. Highlights This review covers the studies in the year 2020 for pharmacological reports on traditional medicine as well as herb-derived active natural products. Moreover, the pharmacological reports on active natural products against cancers, inflammation, and metabolic diseases were major topics. Tradition This annual integrative pharmacology review includes the reports published in 2020 on bioactive herbal extracts and novel compounds in traditional medicine. Pharmacological reports on traditional herbs as well as their active compounds for anticancer, inflammation, and metabolic diseases occupy dominant positions. Submit a manuscript: https://www.tmrjournals.com/tmr 1 doi: 10.12032/TMR20210616237 REVIEW Abstract Major studies on the pharmacology of traditional herbs as well as active compounds have been introduced in this review over the previous 12 months. This annual integrative pharmacology review includes the reports published in 2020 on bioactive herbal extracts and novel compounds in traditional medicine.
    [Show full text]
  • Print This Article
    PEER-REVIEWED ARTICLE bioresources.com GC-MS Characterisation of Sapogenins from Sisal Waste and a Method to Isolate Pure Hecogenin Jener David G. Santos * and Alexsandro Branco ** Five steroidal sapogenins (tigogenin, neotigogenina, hecogenin, gloriogenin, and dehydrohecogenin) were characterised by gas chromatography coupled with mass spectrometry (GC-MS) from a hydrolysed extract of sisal waste. In addition, pure hecogenin, an important raw material for the pharmaceutical industry, was obtained from this waste by selective liquid-liquid extraction of saponins with only hecogenin as aglycone, followed by acid hydrolysis. The yield of pure hecogenin was 460 mg.Kg-1 of sisal waste. Keywords: Agave sisalana; Sisal waste; Extraction; Steroids; Hecogenin Contact information: Laboratory of Phytochemistry, State University of Feira de Santana, 44.036-900 Feira de Santana, Bahia, Brazil; Corresponding authors: *[email protected], **[email protected] INTRODUCTION Steroidal sapogenins are a glycone non-sugar portion of the saponin molecule used for the semi-synthesis of bioactive compounds. Example compounds used in this application include the following: smilagenin, sarsasapogenin, diosgenin, yamogenin, tigogenin, neotigogenin, gloriogenin, gentrogenin, hecogenin, sisalagenin, 9-dehydro- hecogenin, and gitogenin (Agrawal et al. 1985). Among these steroidal sapogenins, diosgenin, sarsasapogenin, and hecogenin are particularly important. The usefulness of hecogenin (Fig. 1) as a synthetic starting material is due to the presence of an oxygen atom in the C-12 position that can be moved to the C-11 position. This makes it possible to introduce the 9-11 double bond required for the syntheses of corticosteroids (Beauvoir 1976). Fig. 1. Chemical structural of hecogenin In the 1940s, steroidal sapogenins achieved great economic importance because of their transformation into pharmaceutically valuable derivatives such as corticosteroids (prednisone, dexamethasone, betamethasone, triamcinolone, and others), sexual hormones, and steroid diuretics (Fernández-Herrera et al.
    [Show full text]
  • Naturally Occurring Saponins: Chemistry and Biology
    Journal of Poisonous and Medicinal Plant Research Vol. 1(1), pp. 001-006, May, 2013 Available online at http://www.apexjournal.org ISSN 2315-8834© 2013 Apex Journal International Review Naturally occurring saponins: Chemistry and biology J. S. Negi 1*, P. S. Negi 2, G. J. Pant 2, M. S. M. Rawat 2, S. K. Negi 3 1Herbal Research and Development Institute, Mandal, Gopeshwar (Chamoli) - 246 401, Uttarakhand, India. 2Department of Chemistry, HNB Garhwal University, Srinagar (Garhwal)- 246 174, Uttarakhand, India. 3Department of Botany, HNB Garhwal University, Srinagar (Garhwal) - 246 174, Uttarakhand, India. Accepted 2 April, 2013 Naturally occurring saponins are glycosides of steroids, alkaloids and triterpenoids. They are widely distributed in nature and reported to be present in 500 genera of plants. A wide variety of plants belonging to family Liliaceae, Dioscoreaceae, Solanaceae, Sapindaceae and Agavaceae are the major source of saponins. They are amorphous substances having high molecular weight and are soluble in water and alcohol to produce foam but organic solvents inhibit their foaming property. Plants saponins are generally extracted into butanol through liquid-liquid partition and separated through column chromatography using silica gel as adsorbent and chloroform: methanol as mobile phase. HPLC, GC, Sephadex LH-20 Chromatography, DCCC, preparative paper chromatography and TLC were also used for the separation and isolation of saponins. The structures of saponins were determined by several spectroscopic techniques, viz., UV, IR, 1H NMR, 13 C NMR and Mass spectroscopy. Saponins possess several biological activities such as antioxidant, immunostimulant, antihepatotoxic, antibacterial, anticarcinogenic, antidiarrheal, antiulcerogenic, antioxytoxic, antihypoglycemic, anticytotoxic and antimolluscicidal. Saponins are biologically synthesized by C5 isoprene units through cytosolic mevalonate pathway.
    [Show full text]
  • Biocatalysis in the Chemistry of Lupane Triterpenoids
    molecules Review Biocatalysis in the Chemistry of Lupane Triterpenoids Jan Bachoˇrík 1 and Milan Urban 2,* 1 Department of Organic Chemistry, Faculty of Science, Palacký University in Olomouc, 17. listopadu 12, 771 46 Olomouc, Czech Republic; [email protected] 2 Medicinal Chemistry, Faculty of Medicine and Dentistry, Institute of Molecular and Translational Medicine, Palacký University in Olomouc, Hnˇevotínská 5, 779 00 Olomouc, Czech Republic * Correspondence: [email protected] Abstract: Pentacyclic triterpenes are important representatives of natural products that exhibit a wide variety of biological activities. These activities suggest that these compounds may represent potential medicines for the treatment of cancer and viral, bacterial, or protozoal infections. Naturally occurring triterpenes usually have several drawbacks, such as limited activity and insufficient solubility and bioavailability; therefore, they need to be modified to obtain compounds suitable for drug development. Modifications can be achieved either by methods of standard organic synthesis or with the use of biocatalysts, such as enzymes or enzyme systems within living organisms. In most cases, these modifications result in the preparation of esters, amides, saponins, or sugar conjugates. Notably, while standard organic synthesis has been heavily used and developed, the use of the latter methodology has been rather limited, but it appears that biocatalysis has recently sparked considerably wider interest within the scientific community. Among triterpenes, derivatives of lupane play important roles. This review therefore summarizes the natural occurrence and sources of lupane triterpenoids, their biosynthesis, and semisynthetic methods that may be used for the production of betulinic acid from abundant and inexpensive betulin. Most importantly, this article compares chemical transformations of lupane triterpenoids with analogous reactions performed by Citation: Bachoˇrík,J.; Urban, M.
    [Show full text]
  • Oil–Source Correlation Studies in the Shallow Berea Sandstone
    Oil–source correlation studies in AUTHORS the shallow Berea Sandstone Paul C. Hackley ~ US Geological Survey (USGS), Reston, Virginia; phackley@ petroleum system, eastern usgs.gov Paul C. Hackley is a research geologist at USGS in Reston, Virginia, where he oversees the Kentucky Organic Petrology Laboratory. He holds degrees from Shippensburg University (B.A.), Paul C. Hackley, Thomas M. (Marty) Parris, George Washington University (M.Sc.), and Cortland F. Eble, Stephen F. Greb, and David C. Harris George Mason University (Ph.D.). His primary research interests are in organic petrology and its application to fossil fuel assessment. Thomas M. (Marty) Parris ~ ABSTRACT Kentucky Geological Survey (KGS), University of Shallow production of sweet high-gravity oil from the Up- Kentucky, Lexington, Kentucky; mparris@ per Devonian Berea Sandstone in northeastern Kentucky has uky.edu caused the region to become the leading oil producer in the state. Thomas M. (Marty) Parris is a research Potential nearby source rocks, namely, the overlying Mississip- geologist at KGS, University of Kentucky, where pian Sunbury Shale and underlying Ohio Shale, are immature he uses gas and aqueous fluid geochemistry to for commercial oil generation according to vitrinite reflectance conduct research on petroleum systems, basin fl fl andprogrammedpyrolysisanalyses.Weusedorganicgeo- uid ow, diagenesis, and the environmental chemical measurements from Berea oils and solvent extracts impacts of energy development. He received his Ph.D. from the University of California, from potential Upper Devonian–Mississippian source rocks to – – Santa Barbara, and B.S. degree from better understand organic matter sources, oil oil and oil source Tennessee Tech University. rock correlations, and thermal maturity in the shallow Berea oil play.
    [Show full text]
  • United States Patent Office W
    w 2,870,143 United States Patent Office Patented Jan. 20, 1959 2 2,870,143 the structure of the parent sapogenin and that heating beyond the point of complete conversion gives lower PROCESS FOR CONVERSION OF STEROIDAL yields of the pseudosapogenins. In particular, differ SAPOGENINS TOPSEUDOSAPOGENNS ences in the spiroketal side chain configuration of Sapog Monroe E. Wall, Oreland, and Samuel Serota, Phila eninsis one factor which leads to significant differences delphia, Pa., assignors to the United States of America in the rate of conversion of the sapogenin to pseudo as represented by the Secretary of Agriculture sapogenin. In the accompanying table (Table I) each No Drawing. Application January 22, 1958 pair of sapogenins is identical except for isomerism in the spiroketal side chain. The site of isomerism, now Serial No. 710,588 10 considered to be at C25 (cf. M. E. Wall, Experientia 11, i8. Claims. (Cl. 260-239.55) 340 (1955), for a review of pertinent literature), is im material to the present invention. The significance of (Granted under Title 35, U.S. Code (1952), sec. 266) the data in Table I is that in each pair of normal and A non-exclusive, irrevocable, royalty-free license in the iso sapogenins, the normal isomer is converted to its re invention herein described, throughout the world for all 5 spective pseudosapogenin much more rapidly than is the purposes of the United States Government, with the power iso analogue. to grant sublicenses for such purposes, is hereby granted TABLE. I.-CONVERSION OF NATURAL SAPOGENINS TO to the Government of the United States of America.
    [Show full text]
  • Geochemical Characterization of the Eocene Coal-Bearing Source
    minerals Article Geochemical Characterization of the Eocene Coal-Bearing Source Rocks, Xihu Sag, East China Sea Shelf Basin, China: Implications for Origin and Depositional Environment of Organic Matter and Hydrocarbon Potential Xiong Cheng 1,2,* , Dujie Hou 1,2,*, Xinhuai Zhou 3, Jinshui Liu 4, Hui Diao 4 and Lin Wei 1,2 1 School of Energy Resources, China University of Geosciences, Beijing 100083, China; [email protected] 2 Key Laboratory of Marine Reservoir Evolution and Hydrocarbon Accumulation Mechanism, Ministry of Education, Beijing 100083, China 3 Hainan Branch of China National Offshore Oil Corporation, Haikou 570100, China; [email protected] 4 Shanghai Branch of China National Offshore Oil Corporation, Shanghai 200050, China; [email protected] (J.L.); [email protected] (H.D.) * Correspondence: [email protected] (X.C.); [email protected] (D.H.) Abstract: Eocene coal-bearing source rocks of the Pinghu Formation from the W-3 well in the western margin of the Xihu Sag, East China Sea Shelf Basin were analyzed using Rock-Eval pyrolysis and gas Citation: Cheng, X.; Hou, D.; Zhou, chromatography–mass spectrometry to investigate the samples’ source of organic matter, depositional X.; Liu, J.; Diao, H.; Wei, L. environment, thermal maturity, and hydrocarbon generative potential. The distribution patterns of Geochemical Characterization of the n-alkanes, isoprenoids and steranes, high Pr/Ph ratios, abundant diterpanes, and the presence of non- Eocene Coal-Bearing Source Rocks, hopanoid triterpanes indicate predominant source input from higher land plants. The contribution of Xihu Sag, East China Sea Shelf Basin, aquatic organic matter was occasionally slightly elevated probably due to a raised water table.
    [Show full text]