Plant-Derived Triterpenoid Biomarkers and Their Applications In
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Bacterial Cell Membrane
BACTERIAL CELL MEMBRANE Dr. Rakesh Sharda Department of Veterinary Microbiology NDVSU College of Veterinary Sc. & A.H., MHOW CYTOPLASMIC MEMBRANE ➢The cytoplasmic membrane, also called a cell membrane or plasma membrane, is about 7 nanometers (nm; 1/1,000,000,000 m) thick. ➢It lies internal to the cell wall and encloses the cytoplasm of the bacterium. ➢It is the most dynamic structure of a prokaryotic cell. Structure of cell membrane ➢The structure of bacterial plasma membrane is that of unit membrane, i.e., a fluid phospholipid bilayer, composed of phospholipids (40%) and peripheral and integral proteins (60%) molecules. ➢The phospholipids of bacterial cell membranes do not contain sterols as in eukaryotes, but instead consist of saturated or monounsaturated fatty acids (rarely, polyunsaturated fatty acids). ➢Many bacteria contain sterol-like molecules called hopanoids. ➢The hopanoids most likely stabilize the bacterial cytoplasmic membrane. ➢The phospholipids are amphoteric molecules with a polar hydrophilic glycerol "head" attached via an ester bond to two non-polar hydrophobic fatty acid tails. ➢The phospholipid bilayer is arranged such that the polar ends of the molecules form the outermost and innermost surface of the membrane while the non-polar ends form the center of the membrane Fluid mosaic model ➢The plasma membrane contains proteins, sugars, and other lipids in addition to the phospholipids. ➢The model that describes the arrangement of these substances in lipid bilayer is called the fluid mosaic model ➢Dispersed within the bilayer are various structural and enzymatic proteins, which carry out most membrane functions. ➢Some membrane proteins are located and function on one side or another of the membrane (peripheral proteins). -
<I>Anemone Raddeana</I>
REVIEW Pharmacochemistry & Biomacromolecule Research Laboratories1, Qiqihar Medical University, Qiqihar; College of Pharmacy2, Changchun University of Chinese Medicine, Changchun, P. R.China Phytochemicals and bioactivities of Anemone raddeana Regel: a review Yong-Xu Sun 1,∗, Ji-Cheng Liu 1,∗, Da-You Liu 2,∗ Received April 28, 2011, accepted May 27, 2011 Ji-Cheng Liu, Qiqihar Medical University, 333 BuKui Street, JianHua District, Qiqihar, 161006, China [email protected] Da-YouLiu, College of Pharmacy, Changchun University of Chinese Medicine, 1035 BoShuo Road, Jing Yue Economic Development District, Changchun, 130117, China [email protected] Yong-Xu Sun, Pharmacochemistry & Biomacromolecule Research Laboratories, Qiqihar Medical University, 333 BuKui Street, JianHua District, Qiqihar, 161006, China [email protected] ∗These authors contributed equally to this work. Pharmazie 66: 813–821 (2011) doi: 10.1691/ph.2011.1574 Anemone raddeana, usually called as “ToujianLiang” in China, is an Anemone herb belonging to the Ranun- culaceae family. Until now there are in total 67 of chemical components identified including triterpenoids, steroids, lactones, fats and oils, saccharide and alkaloids. A broad spectrum of pharmacological activity of A. raddeana compounds have been reported, such as antitumor, antimicrobial, anti-inflammatory, sedative and analgesic activites, as well as anti-convulsant and anti-histamine effects. In view of this, we initiated this short review to present the phytochemical and pharmacological profile of A. raddeana to support future studies in this discipline. 1. Introduction Anemone raddeana Regel is a traditional Chinese medicinal herb belonging to the Anemone genus (Ranunculaceae), which is widely distributed in Russia (Far east), northeast of China, Japan and Korea (Chen et al. -
Biologically Active Pentacyclic Triterpenes and Their Current Medicine Signification
Journal of Applied Biomedicine 1: 7 – 12, 2003 ISSN 1214-0287 Biologically active pentacyclic triterpenes and their current medicine signification Jiří Patočka Department of Toxicology, Military Medical Academy, Hradec Králové and Department of Radiology, Faculty of Health and Social Care, University of South Bohemia, České Budějovice, Czech Republic Summary Pentacyclic triterpenes are produced by arrangement of squalene epoxide. These compounds are extremely common and are found in most plants. There are at least 4000 known triterpenes. Many triterpenes occur freely but others occur as glycosides (saponins) or in special combined forms. Pentacyclic triterpenes have a wide spectrum of biological activities and some of them may be useful in medicine. The therapeutic potential of three pentacyclic triterpenes – lupeol, betuline and betulinic acid – is discussed in this paper. Betulinic acid especially is a very promising compound. This terpene seems to act by inducing apoptosis in cancer cells. Due to its apparent specificity for melanoma cells, betulinic acid seems to be a more promising anti-cancer substance than drugs like taxol. Keywords: pentacyclic triterpene – lupeol – betuline – betulinic acid – biological activity INTRODUCTION structural analysis of these compounds, as by the fact of their wide spectrum of biological activities;they are Terpenes are a wide-spread group of natural bactericidal, fungicidal, antiviral, cytotoxic, analgetic, compounds with considerable practical significance anticancer, spermicidal, cardiovascular, antiallergic and which are produced by arrangement of squalene so on In recent years, a considerable number of epoxide in a chair-chair-chair-boat arrangement studies conducted in many scientific centres have been followed by condensation. In our everyday life we all devoted to the three compounds of this group, encounter either directly or indirectly various terpenes, especially: lupeol, betulin and betulinic acid. -
Hydrogen Isotope Fractionation in Lipids of the Methane-Oxidizing Bacterium Methylococcus Capsulatus
Geochimica et Cosmochimica Acta, Vol. 66, No. 22, pp. 3955–3969, 2002 Copyright © 2002 Elsevier Science Ltd Pergamon Printed in the USA. All rights reserved 0016-7037/02 $22.00 ϩ .00 PII S0016-7037(02)00981-X Hydrogen isotope fractionation in lipids of the methane-oxidizing bacterium Methylococcus capsulatus 1, 2 3 1 ALEX L. SESSIONS, *LINDA L. JAHNKE, ARNDT SCHIMMELMANN, and JOHN M. HAYES 1Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA 2Exobiology Branch, NASA-Ames Research Center, Moffett Field, CA 94035, USA 3Biogeochemical Laboratories, Department of Geological Sciences, Indiana University, Bloomington, IN 47405, USA (Received December 10, 2001; accepted in revised form June 7, 2002) Abstract—Hydrogen isotopic compositions of individual lipids from Methylococcus capsulatus, an aerobic, methane-oxidizing bacterium, were analyzed by hydrogen isotope-ratio-monitoring gas chromatography–mass spectrometry (GC-MS). The purposes of the study were to measure isotopic fractionation factors between methane, water, and lipids and to examine the biochemical processes that determine the hydrogen isotopic composition of lipids. M. capsulatus was grown in six replicate cultures in which the ␦D values of methane and water were varied independently. Measurement of concomitant changes in ␦D values of lipids allowed estimation of the proportion of hydrogen derived from each source and the isotopic fractionation associated with the utilization of each source. All lipids examined, including fatty acids, sterols, and hopanols, derived 31.4 Ϯ 1.7% of their hydrogen from methane. This was apparently true whether the cultures were harvested during exponential or stationary phase. Examination of the relevant biochemical pathways indicates that no hydrogen is transferred directly (with C-H bonds intact) from methane to lipids. -
A Distinct Pathway for Tetrahymanol Synthesis in Bacteria
A distinct pathway for tetrahymanol synthesis in bacteria Amy B. Banta1, Jeremy H. Wei1, and Paula V. Welander2 Department of Earth System Science, Stanford University, Stanford, CA 94305 Edited by John M. Hayes, Woods Hole Oceanographic Institution, Berkeley, CA, and approved September 25, 2015 (received for review June 11, 2015) Tetrahymanol is a polycyclic triterpenoid lipid first discovered in the physiological role of tetrahymanol in bacteria is unknown. Recent ciliate Tetrahymena pyriformis whose potential diagenetic product, studies have highlighted increased tetrahymanol production in gammacerane, is often used as a biomarker for water column strat- R. palustris TIE-1 under certain physiological conditions (e.g., ification in ancient ecosystems. Bacteria are also a potential source photoautotrophic growth) and also when cellular hopanoid lipid of tetrahymanol, but neither the distribution of this lipid in extant profiles are altered in gene deletion mutants (22, 23), but the bacteria nor the significance of bacterial tetrahymanol synthesis for physiological significance of these changes is not known. Further, interpreting gammacerane biosignatures is known. Here we couple the biochemical mechanism of tetrahymanol synthesis in bacteria comparative genomics with genetic and lipid analyses to link a pro- is unclear. In ciliates, squalene-tetrahymanol cyclase (Stc) cata- tein of unknown function to tetrahymanol synthesis in bacteria. This tetrahymanol synthase (Ths) is found in a variety of bacterial lyzes the cyclization of squalene directly to tetrahymanol (24), but genomes, including aerobic methanotrophs, nitrite-oxidizers, and neither of the two known bacterial tetrahymanol producers harbor sulfate-reducers, and in a subset of aquatic and terrestrial metage- a copy of Stc (10, 24). -
Hopanoids Play a Role in Membrane Integrity and Ph Homeostasis in Rhodopseudomonas Palustris TIE-1ᰔ† Paula V
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Caltech Authors JOURNAL OF BACTERIOLOGY, Oct. 2009, p. 6145–6156 Vol. 191, No. 19 0021-9193/09/$08.00ϩ0 doi:10.1128/JB.00460-09 Copyright © 2009, American Society for Microbiology. All Rights Reserved. Hopanoids Play a Role in Membrane Integrity and pH Homeostasis in Rhodopseudomonas palustris TIE-1ᰔ† Paula V. Welander,1 Ryan C. Hunter,1 Lichun Zhang,2 Alex L. Sessions,2 Roger E. Summons,3 and Dianne K. Newman1,3,4* Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 68-380, Cambridge, Massachusetts 021391; Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, MC100-23, 1200 E. California Boulevard, Pasadena, California 911252; Department of Earth, Atmospheric and Planetary Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, E25-633, Cambridge, Massachusetts 021393; and Howard Hughes Medical Institute, 4 77 Massachusetts Avenue, 68-171, Cambridge, Massachusetts 02139 Downloaded from Received 3 April 2009/Accepted 6 July 2009 Sedimentary hopanes are pentacyclic triterpenoids that serve as biomarker proxies for bacteria and certain bacterial metabolisms, such as oxygenic photosynthesis and aerobic methanotrophy. Their parent molecules, the bacteriohopanepolyols (BHPs), have been hypothesized to be the bacterial equivalent of sterols. However, the actual function of BHPs in bacterial cells is poorly understood. Here, we report the physiological study of jb.asm.org a mutant in Rhodopseudomonas palustris TIE-1 that is unable to produce any hopanoids. The deletion of the gene encoding the squalene-hopene cyclase protein (Shc), which cyclizes squalene to the basic hopene struc- ture, resulted in a strain that no longer produced any polycyclic triterpenoids. -
Antiviral Activities of Oleanolic Acid and Its Analogues
molecules Review Antiviral Activities of Oleanolic Acid and Its Analogues Vuyolwethu Khwaza, Opeoluwa O. Oyedeji and Blessing A. Aderibigbe * Department of Chemistry, University of Fort Hare, Alice Campus, Alice 5700, Eastern Cape, South Africa; [email protected] (V.K.); [email protected] (O.O.O) * Correspondence: [email protected]; Tel.: +27-406022266; Fax: +08-67301846 Academic Editors: Patrizia Ciminiello, Alfonso Mangoni, Marialuisa Menna and Orazio Taglialatela-Scafati Received: 27 July 2018; Accepted: 5 September 2018; Published: 9 September 2018 Abstract: Viral diseases, such as human immune deficiency virus (HIV), influenza, hepatitis, and herpes, are the leading causes of human death in the world. The shortage of effective vaccines or therapeutics for the prevention and treatment of the numerous viral infections, and the great increase in the number of new drug-resistant viruses, indicate that there is a great need for the development of novel and potent antiviral drugs. Natural products are one of the most valuable sources for drug discovery. Most natural triterpenoids, such as oleanolic acid (OA), possess notable antiviral activity. Therefore, it is important to validate how plant isolates, such as OA and its analogues, can improve and produce potent drugs for the treatment of viral disease. This article reports a review of the analogues of oleanolic acid and their selected pathogenic antiviral activities, which include HIV, the influenza virus, hepatitis B and C viruses, and herpes viruses. Keywords: HIV; influenza virus; HBV/HCV; natural product; triterpenoids; medicinal plant 1. Introduction Viral diseases remain a major problem for humankind. It has been reported in some reviews that there is an increase in the number of viral diseases responsible for death and morbidity around the world [1,2]. -
Status and Protection of Globally Threatened Species in the Caucasus
STATUS AND PROTECTION OF GLOBALLY THREATENED SPECIES IN THE CAUCASUS CEPF Biodiversity Investments in the Caucasus Hotspot 2004-2009 Edited by Nugzar Zazanashvili and David Mallon Tbilisi 2009 The contents of this book do not necessarily reflect the views or policies of CEPF, WWF, or their sponsoring organizations. Neither the CEPF, WWF nor any other entities thereof, assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, product or process disclosed in this book. Citation: Zazanashvili, N. and Mallon, D. (Editors) 2009. Status and Protection of Globally Threatened Species in the Caucasus. Tbilisi: CEPF, WWF. Contour Ltd., 232 pp. ISBN 978-9941-0-2203-6 Design and printing Contour Ltd. 8, Kargareteli st., 0164 Tbilisi, Georgia December 2009 The Critical Ecosystem Partnership Fund (CEPF) is a joint initiative of l’Agence Française de Développement, Conservation International, the Global Environment Facility, the Government of Japan, the MacArthur Foundation and the World Bank. This book shows the effort of the Caucasus NGOs, experts, scientific institutions and governmental agencies for conserving globally threatened species in the Caucasus: CEPF investments in the region made it possible for the first time to carry out simultaneous assessments of species’ populations at national and regional scales, setting up strategies and developing action plans for their survival, as well as implementation of some urgent conservation measures. Contents Foreword 7 Acknowledgments 8 Introduction CEPF Investment in the Caucasus Hotspot A. W. Tordoff, N. Zazanashvili, M. Bitsadze, K. Manvelyan, E. Askerov, V. Krever, S. Kalem, B. Avcioglu, S. Galstyan and R. Mnatsekanov 9 The Caucasus Hotspot N. -
Karyology of the Scorzonera L. (Asteraceae) Taxa from Turkey
E. MARTİN, Ö. ÇETİN, S. MAKBUL, A. DURAN, M. ÖZTÜRK, D. BODUROĞLU, B. EŞMEKAYA Turk J Biol 36 (2012) 187-199 © TÜBİTAK doi:10.3906/biy-1008-46 Karyology of the Scorzonera L. (Asteraceae) taxa from Turkey Esra MARTİN1, Özlem ÇETİN1, Serdar MAKBUL2, Ahmet DURAN1, Meryem ÖZTÜRK1, Derya BODUROĞLU1, Bahriye EŞMEKAYA3 1Department of Biology Education, Selçuk University, Ahmet Keleşoğlu Education Faculty, Konya - TURKEY 2Department of Biology, Rize University, Science and Arts Faculty, Rize - TURKEY 3Department of Biology, Niğde University, Science and Arts Faculty, Niğde - TURKEY Received: 09.08.2010 Abstract: In this study, the karyotypes of 13 taxa of the tribe Lactuceae growing naturally in Turkey were examined. Of the species of the genus Scorzonera L. (Asteraceae), S. laciniata L. subsp. laciniata, S. cana (C.A.Mey.) Hoff m. var. jacquiniana (W.Koch) Chamb., S. suberosa C.Koch subsp. suberosa, S. mollis M.Bieb. subsp. mollis, S. papposa DC., S. lacera Boiss. & Bal., S. elata Boiss., and S. parvifl ora Jacq. have a diploid chromosome number of 2n = 14. For S. phaeopappa (Boiss.) Boiss., this number is 2n = 28, and for S. eriophora DC., S. pseudolanata Grossh., S. tomentosa L., and S. kotschyi Boiss., it is 2n = 12. Th e average chromosome length of the taxa examined was between 1.20 and 7.63 μm. All of the taxa have median and submedian chromosome pairs in their chromosome morphologies. With the exception of S. parvifl ora, the chromosome morphologies of the taxa examined are presented here for the first time. Key words: Scorzonera, Compositae, karyotype, Turkey Türkiye’den Scorzonera L. -
Development of Compound-Specific Hydrogen Isotope Ratio Analysis Of
Development of Compound-Specific Hydrogen Isotope Ratio Analysis of Biomarkers and their Application as New Proxy for Reconstruction of Palaeoenvironment and Palaeoclimate Entwicklung komponentenspezifischer Wasserstoffisotopen- Analyse von Biomarkern und deren Anwendung als neuartiger Proxy zur Rekonstruktion von Paläoumwelt und Paläoklima Dissertation zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) vorgelegt dem Rat der Chemisch-Geowissenschaftlichen Fakultät der Friedrich-Schiller-Universität Jena von Diplom Geologe Jens Radke geboren am 20.2.1967 in Bremerhaven Gutachter: 1. Prof.Dr.R.Gaupp 2. PD.Dr.G.Gleixner Tag der öffentlichen Verteidigung: 18.1.2006 Printed on 100% recycled paper (after ISO9706, 133 CIE, DIN 6738 LDK 24-85) Content Content ABSTRACT KURZFASSUNG ABBREVIATIONS 1 INTRODUCTION ......................................................................................................... 1 2 FRACTIONATION OF WATER ISOTOPES IN THE ENVIRONMENT ........................................ 2 2.1 Fractionation of water isotopes in the climate system......................................... 2 2.2 Fractionation of hydrogen in the biosynthesis of plant biomass.......................... 3 3 SEDIMENTS AND METHODS........................................................................................ 6 3.1 Sediment samples and stratigraphic framework ................................................. 6 3.2 Sample preparation for bulk and compound specific analysis ............................ 8 3.2.1 Sample -
New Ten Varieties and Five Subspecies of Crocus Baalbekensis K. Addam & M
MOJ Ecology & Environmental Sciences Research Article Open Access New ten varieties and five subspecies of Crocus baalbekensis K. Addam & M. Bou-Hamdan (Iridaceae) endemic to Lebanon added to the Lebanese flora Abstract Volume 4 Issue 6 - 2019 Fifteen new world record Crocus baalbekensis var. decorus, fluctus, flavo-album, 1 2 makniensis, youninensis, rasbaalbekensis, rihaensis, shaathensis, shlifensis, tnaiyetensis, Khodr Addam, Mounir Bou-Hamdan, Jihad subsp. ahlansis, anthopotamus, fakihansis, harbatansis, and rassomensis, joined the Takkoush,3 Kamal Hout4 Lebanese flora and particularly the Iridaceae family. They were found in Baalbek-Hermel 1Head, Integrative and Environmental Research Center, AUL from North Baalbek to Hermel. All of them display C. Baalbekensis but vary in many Beirut, Lebanon 2 taxonomic details. The validation for the existence of these new Varieties and Subspecies Integrative Research and Environmental Center, AUL Beirut, were verified by illustrated morphologic descriptions and observations were based on fresh Lebanon 3 materials. More than twenty years of fieldwork and three years of observation, phenology, Business Research Center, AUL Beirut, Lebanon 4Department of PG Studies & Scientific Research, Global and exploration of a host of locations, numerous quantities were found varying mostly from University Beirut, Lebanon ten to more of the new species. Voucher specimens of the plants (Holotypes) were deposited in K. Addam’s Herbarium at Arts, Sciences and Technology University in Lebanon. Correspondence: Dr. Khodr H Addam, Head, Integrative and The goal of this study was to display a comparative account on the anatomical and ecological Environmental Research Center, AUL, Beirut, Lebanon, Tel 03- characters of the 10 varieties and 5 subspecies of Crocus baalbekensis taxa as well as 204930, Email highlight the taxonomical importance of their corm, corm tunic, leaves, measurements, and Received: November 19, 2019 | Published: December 05, comparisons of other structural anatomical differences and similarities. -
Camellia Japonica Leaf and Probable Biosynthesis Pathways of the Metabolome Soumya Majumder, Arindam Ghosh and Malay Bhattacharya*
Majumder et al. Bulletin of the National Research Centre (2020) 44:141 Bulletin of the National https://doi.org/10.1186/s42269-020-00397-7 Research Centre RESEARCH Open Access Natural anti-inflammatory terpenoids in Camellia japonica leaf and probable biosynthesis pathways of the metabolome Soumya Majumder, Arindam Ghosh and Malay Bhattacharya* Abstract Background: Metabolomics of Camellia japonica leaf has been studied to identify the terpenoids present in it and their interrelations regarding biosynthesis as most of their pathways are closely situated. Camellia japonica is famous for its anti-inflammatory activity in the field of medicines and ethno-botany. In this research, we intended to study the metabolomics of Camellia japonica leaf by using gas chromatography-mass spectroscopy technique. Results: A total of twenty-nine anti-inflammatory compounds, occupying 83.96% of total area, came out in the result. Most of the metabolites are terpenoids leading with triterpenoids like squalene, lupeol, and vitamin E. In this study, the candidate molecules responsible for anti-inflammatory activity were spotted out in the leaf extract and biosynthetic relation or interactions between those components were also established. Conclusion: Finding novel anticancer and anti-inflammatory medicinal compounds like lupeol in a large amount in Camellia japonica leaf is the most remarkable outcome of this gas chromatography-mass spectroscopy analysis. Developing probable pathway for biosynthesis of methyl commate B is also noteworthy. Keywords: Camellia japonica, Metabolomics, GC-MS, Anti-inflammatory compounds, Lupeol Background genus Camellia originated in China (Shandong, east Inflammation in the body is a result of a natural response Zhejiang), Taiwan, southern Korea, and southern Japan to injury which induces pain, fever, and swelling.