Development of Compound-Specific Hydrogen Isotope Ratio Analysis Of

Total Page:16

File Type:pdf, Size:1020Kb

Development of Compound-Specific Hydrogen Isotope Ratio Analysis Of Development of Compound-Specific Hydrogen Isotope Ratio Analysis of Biomarkers and their Application as New Proxy for Reconstruction of Palaeoenvironment and Palaeoclimate Entwicklung komponentenspezifischer Wasserstoffisotopen- Analyse von Biomarkern und deren Anwendung als neuartiger Proxy zur Rekonstruktion von Paläoumwelt und Paläoklima Dissertation zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) vorgelegt dem Rat der Chemisch-Geowissenschaftlichen Fakultät der Friedrich-Schiller-Universität Jena von Diplom Geologe Jens Radke geboren am 20.2.1967 in Bremerhaven Gutachter: 1. Prof.Dr.R.Gaupp 2. PD.Dr.G.Gleixner Tag der öffentlichen Verteidigung: 18.1.2006 Printed on 100% recycled paper (after ISO9706, 133 CIE, DIN 6738 LDK 24-85) Content Content ABSTRACT KURZFASSUNG ABBREVIATIONS 1 INTRODUCTION ......................................................................................................... 1 2 FRACTIONATION OF WATER ISOTOPES IN THE ENVIRONMENT ........................................ 2 2.1 Fractionation of water isotopes in the climate system......................................... 2 2.2 Fractionation of hydrogen in the biosynthesis of plant biomass.......................... 3 3 SEDIMENTS AND METHODS........................................................................................ 6 3.1 Sediment samples and stratigraphic framework ................................................. 6 3.2 Sample preparation for bulk and compound specific analysis ............................ 8 3.2.1 Sample preparation .....................................................................................................8 3.2.2 Extraction method........................................................................................................8 3.2.3 Chemical treatment to reduce sample matrix ..............................................................9 3.3 Elemental analysis - organic C, N, S and inorganic C ...................................... 10 3.3.1 Elemental analysis of C, N, S ....................................................................................10 3.3.2 Determination of the inorganic carbon and organic carbon .......................................10 3.4 Elemental analysis of individual compounds (C, N, H, Si) ................................ 11 3.5 Isotope ratio mass spectrometry....................................................................... 11 3.5.1 Referencing strategy for gas isotope ratios ...............................................................13 3.5.1.1 Hydrogen, carbon, nitrogen isotope referencing .................................................... 13 3.5.2 Carbon and hydrogen isotope determination of biomarkers......................................16 3.5.3 External standardization in compound specific isotope analysis ...............................17 4 DEVELOPMENT OF ISOTOPE ANALYSIS OF BIOMARKERS IN SEDIMENTS ........................ 19 4.1 Development of compound specific hydrogen isotope analysis........................ 19 4.1.1 Ion Source stability and linearity for reporting hydrogen isotope ratios .....................19 4.1.2 Formation of hydrogen gas by pyrolysis ....................................................................20 4.1.3 Precision and accuracy of hydrogen isotope analysis ...............................................22 4.1.4 Hydrogen isotope effects in sample preparation........................................................29 4.1.4.1 Lipid extraction........................................................................................................ 29 4.1.4.2 Chemical clean-up procedure................................................................................. 30 5 CORRELATION BETWEEN HYDROGEN ISOTOPE RATIOS OF LIPID BIOMARKERS AND SEDIMENT MATURITY ............................................................................................... 31 5.1 Introduction ....................................................................................................... 31 5.1.1 Geological setting ......................................................................................................32 5.1.2 Samples.....................................................................................................................33 5.2 Methods............................................................................................................ 35 I Content 5.3 Results.............................................................................................................. 36 5.4 Discussion ........................................................................................................ 39 5.4.1 Correlation of hydrogen isotope ratios of hydrocarbons with thermal maturation......39 5.4.2 δD of isoprenoids during maturation and their synthesis ...........................................45 5.4.3 Possible mechanisms for observed hydrogen isotope enrichment in hydrocarbons of matured sediments..........................................................................46 5.4.3.1 Thermal methanogenesis ....................................................................................... 46 5.4.3.2 Hydrogen exchange in equilibrium ......................................................................... 48 5.4.3.3 Influence of clay minerals on the δD value of hydrocarbons.................................. 48 5.4.3.4 Influence of heat transfer on D enrichment in hydrocarbons.................................. 49 5.4.4 Reconstruction of δD values of initial source water ...................................................50 5.5 Conclusions ...................................................................................................... 51 6 HYDROGEN ISOTOPE RECONSTRUCTION OF THE WATER CYCLE OF EQUATORIAL, CONTINENTAL DEPOSITS OF THE UPPER CARBONIFEROUS TO THE LOWER PERMIAN AND IN MARINE DEPOSITS OF THE UPPER PERMIAN AND MIDDLE MESOZOIC (CENTRAL EUROPE)................................................................................................ 53 6.1 Introduction ....................................................................................................... 53 6.1.1 Palaeogeography and palaeoclimate during icehouse-greenhouse conditions in the Upper Palaeozoic ................................................................................................54 6.1.2 Palaeogeography and palaeoclimate ........................................................................57 6.1.2.1 Continental climate reconstruction from Permo-Carboniferous deposits ............... 57 6.1.2.2 Palaeozoic-Mesozoic marine deposits ................................................................... 57 6.2 Geological setting of the marine and continental deposits................................ 58 6.2.1 Intermontane basins of Central Europe from the Late Carboniferous to the Early Permian ............................................................................................................58 6.2.1.1 Saar-Nahe Basin .................................................................................................... 60 6.2.1.2 Döhlen Basin .......................................................................................................... 60 6.2.1.3 Lodève Basin .......................................................................................................... 61 6.2.2 Late Palaeozoic and Middle Mesozoic marine deposits ............................................61 6.2.2.1 The Kupferschiefer ................................................................................................. 61 6.2.2.2 The Posidonienschiefer .......................................................................................... 61 6.3 Methods............................................................................................................ 63 6.3.1 Sample preparation ...................................................................................................63 6.3.2 Quantification of elements .........................................................................................63 6.3.3 Isotope ratio determination of δD and δ13C values.....................................................64 6.3.4 Maturity correction and hydrogen isotope ratio modelling of source water................65 6.4 Results.............................................................................................................. 65 6.4.1 δD values of n-alkanes in Late Palaeozoic and Early Jurassic sediments in relation to environmental parameters ........................................................................65 II Content 6.4.1.1 Lateral and intra-coal seam variations of δD values from hydrocarbons in the Saar-Nahe Basin and Döhlen Basin............................................................................ 66 6.4.1.2 δD values of n-alkanes in marine sediments.......................................................... 68 6.5 Discussion ........................................................................................................ 69 6.5.1 General distribution of δD values of n-alkanes in Late Palaeozoic and Early Mesozoic sediments ..................................................................................................69 6.5.1.1 Reconstructed δD values of source water n-alkanes in coals of the Saar- Nahe Basin and Döhlen Basin..................................................................................... 70 6.5.2 Reconstruction of the δDc value of source water in individual sedimentary
Recommended publications
  • Characterization of N-Alkanes, Pristane and Phytane in the Cretaceous/ Tertiary Boundary Sediments at Kawaruppu, Hokkaido, Japan
    Geochemical Journal, Vol. 33, pp. 285 to 294, 1999 Characterization of n-alkanes, pristane and phytane in the Cretaceous/ Tertiary boundary sediments at Kawaruppu, Hokkaido, Japan HAJIME MITA and AKIRA SHIMOYAMA Department of Chemistry, University of Tsukuba, Tsukuba 305-8571, Japan (Received December 24, 1998; Accepted April 22 , 1999) Normal alkanes from C12 to C36, pristane and phytane were identified in the Cretaceous/Tertiary (K/T) boundary sediments at Kawaruppu, Hokkaido, Japan. These compounds were found at the levels of sub to a few nmol g-1. Total concentrations of the n-alkanes within the boundary claystone were generally one third to one half of those in the sediments above and below the claystone. The smaller concentrations within the claystone were mainly due to smaller concentrations of longer chain n-alkanes (C25 to C31) than in the sediments above and below it. The longer chain n-alkanes were likely from terrestrial plants and reflected their small population at the end of Cretaceous. The concentration of longer chain n-alkanes decreased rapidly at the base of the boundary claystone, indicating the sudden cease of terrestrial n-alkane input, continued low to the horizon at the upper two thirds of the claystone and then, started increasing toward the top of the claystone. The n-alkane concentration change indicates the period of the small input of terrestrial n-alkanes to be ca. 7,000 years at most and the recovery period to be ca. 2,000 years. The depth distribution pattern of pristane plus phytane concentrations in the K/T sediments roughly resembles that of the n-alkanes.
    [Show full text]
  • Carbon Geochemistry of Serpentinites in the Lost City Hydrothermal System (30°N, MAR)
    Available online at www.sciencedirect.com Geochimica et Cosmochimica Acta 72 (2008) 3681–3702 www.elsevier.com/locate/gca Carbon geochemistry of serpentinites in the Lost City Hydrothermal System (30°N, MAR) Ade´lie Delacour a,*, Gretchen L. Fru¨h-Green a, Stefano M. Bernasconi b, Philippe Schaeffer c, Deborah S. Kelley d a Institute for Mineralogy and Petrology, ETH Zurich, CH-8092 Zurich, Switzerland b Geological Institute, ETH Zurich, CH-8092 Zurich, Switzerland c Laboratoire de Ge´ochimie Bioorganique, UMR 7177 du CNRS, Universite´ Louis Pasteur, Strasbourg, France d School of Oceanography, University of Washington, Seattle, WA 98195, USA Received 18 June 2007; accepted in revised form 30 April 2008; available online 24 May 2008 Abstract The carbon geochemistry of serpentinized peridotites and gabbroic rocks recovered at the Lost City Hydrothermal Field (LCHF) and drilled at IODP Hole 1309D at the central dome of the Atlantis Massif (Mid-Atlantic Ridge, 30°N) was exam- ined to characterize carbon sources and speciation in oceanic basement rocks affected by long-lived hydrothermal alteration. Our study presents new data on the geochemistry of organic carbon in the oceanic lithosphere and provides constraints on the fate of dissolved organic carbon in seawater during serpentinization. The basement rocks of the Atlantis Massif are charac- 13 terized by total carbon (TC) contents of 59 ppm to 1.6 wt% and d CTC values ranging from À28.7& to +2.3&. In contrast, 13 total organic carbon (TOC) concentrations and isotopic compositions are relatively constant (d CTOC: À28.9& to À21.5&) 13 and variations in d CTC reflect mixing of organic carbon with carbonates of marine origin.
    [Show full text]
  • Bacterial Cell Membrane
    BACTERIAL CELL MEMBRANE Dr. Rakesh Sharda Department of Veterinary Microbiology NDVSU College of Veterinary Sc. & A.H., MHOW CYTOPLASMIC MEMBRANE ➢The cytoplasmic membrane, also called a cell membrane or plasma membrane, is about 7 nanometers (nm; 1/1,000,000,000 m) thick. ➢It lies internal to the cell wall and encloses the cytoplasm of the bacterium. ➢It is the most dynamic structure of a prokaryotic cell. Structure of cell membrane ➢The structure of bacterial plasma membrane is that of unit membrane, i.e., a fluid phospholipid bilayer, composed of phospholipids (40%) and peripheral and integral proteins (60%) molecules. ➢The phospholipids of bacterial cell membranes do not contain sterols as in eukaryotes, but instead consist of saturated or monounsaturated fatty acids (rarely, polyunsaturated fatty acids). ➢Many bacteria contain sterol-like molecules called hopanoids. ➢The hopanoids most likely stabilize the bacterial cytoplasmic membrane. ➢The phospholipids are amphoteric molecules with a polar hydrophilic glycerol "head" attached via an ester bond to two non-polar hydrophobic fatty acid tails. ➢The phospholipid bilayer is arranged such that the polar ends of the molecules form the outermost and innermost surface of the membrane while the non-polar ends form the center of the membrane Fluid mosaic model ➢The plasma membrane contains proteins, sugars, and other lipids in addition to the phospholipids. ➢The model that describes the arrangement of these substances in lipid bilayer is called the fluid mosaic model ➢Dispersed within the bilayer are various structural and enzymatic proteins, which carry out most membrane functions. ➢Some membrane proteins are located and function on one side or another of the membrane (peripheral proteins).
    [Show full text]
  • Lipid Analysis of CO2-Rich Subsurface Aquifers Suggests an Autotrophy-Based Deep Biosphere with Lysolipids Enriched in CPR Bacteria
    The ISME Journal (2020) 14:1547–1560 https://doi.org/10.1038/s41396-020-0624-4 ARTICLE Lipid analysis of CO2-rich subsurface aquifers suggests an autotrophy-based deep biosphere with lysolipids enriched in CPR bacteria 1,2 3,4 1,3 3 3 Alexander J. Probst ● Felix J. Elling ● Cindy J. Castelle ● Qingzeng Zhu ● Marcus Elvert ● 5,6 6 1 7,9 7 Giovanni Birarda ● Hoi-Ying N. Holman ● Katherine R. Lane ● Bethany Ladd ● M. Cathryn Ryan ● 8 3 1 Tanja Woyke ● Kai-Uwe Hinrichs ● Jillian F. Banfield Received: 20 November 2018 / Revised: 5 February 2020 / Accepted: 25 February 2020 / Published online: 13 March 2020 © The Author(s) 2020. This article is published with open access Abstract Sediment-hosted CO2-rich aquifers deep below the Colorado Plateau (USA) contain a remarkable diversity of uncultivated microorganisms, including Candidate Phyla Radiation (CPR) bacteria that are putative symbionts unable to synthesize membrane lipids. The origin of organic carbon in these ecosystems is unknown and the source of CPR membrane lipids remains elusive. We collected cells from deep groundwater brought to the surface by eruptions of Crystal Geyser, sequenced 1234567890();,: 1234567890();,: the community, and analyzed the whole community lipidome over time. Characteristic stable carbon isotopic compositions of microbial lipids suggest that bacterial and archaeal CO2 fixation ongoing in the deep subsurface provides organic carbon for the complex communities that reside there. Coupled lipidomic-metagenomic analysis indicates that CPR bacteria lack complete lipid biosynthesis pathways but still possess regular lipid membranes. These lipids may therefore originate from other community members, which also adapt to high in situ pressure by increasing fatty acid unsaturation.
    [Show full text]
  • Hydrogen Isotope Fractionation in Lipids of the Methane-Oxidizing Bacterium Methylococcus Capsulatus
    Geochimica et Cosmochimica Acta, Vol. 66, No. 22, pp. 3955–3969, 2002 Copyright © 2002 Elsevier Science Ltd Pergamon Printed in the USA. All rights reserved 0016-7037/02 $22.00 ϩ .00 PII S0016-7037(02)00981-X Hydrogen isotope fractionation in lipids of the methane-oxidizing bacterium Methylococcus capsulatus 1, 2 3 1 ALEX L. SESSIONS, *LINDA L. JAHNKE, ARNDT SCHIMMELMANN, and JOHN M. HAYES 1Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA 2Exobiology Branch, NASA-Ames Research Center, Moffett Field, CA 94035, USA 3Biogeochemical Laboratories, Department of Geological Sciences, Indiana University, Bloomington, IN 47405, USA (Received December 10, 2001; accepted in revised form June 7, 2002) Abstract—Hydrogen isotopic compositions of individual lipids from Methylococcus capsulatus, an aerobic, methane-oxidizing bacterium, were analyzed by hydrogen isotope-ratio-monitoring gas chromatography–mass spectrometry (GC-MS). The purposes of the study were to measure isotopic fractionation factors between methane, water, and lipids and to examine the biochemical processes that determine the hydrogen isotopic composition of lipids. M. capsulatus was grown in six replicate cultures in which the ␦D values of methane and water were varied independently. Measurement of concomitant changes in ␦D values of lipids allowed estimation of the proportion of hydrogen derived from each source and the isotopic fractionation associated with the utilization of each source. All lipids examined, including fatty acids, sterols, and hopanols, derived 31.4 Ϯ 1.7% of their hydrogen from methane. This was apparently true whether the cultures were harvested during exponential or stationary phase. Examination of the relevant biochemical pathways indicates that no hydrogen is transferred directly (with C-H bonds intact) from methane to lipids.
    [Show full text]
  • A Distinct Pathway for Tetrahymanol Synthesis in Bacteria
    A distinct pathway for tetrahymanol synthesis in bacteria Amy B. Banta1, Jeremy H. Wei1, and Paula V. Welander2 Department of Earth System Science, Stanford University, Stanford, CA 94305 Edited by John M. Hayes, Woods Hole Oceanographic Institution, Berkeley, CA, and approved September 25, 2015 (received for review June 11, 2015) Tetrahymanol is a polycyclic triterpenoid lipid first discovered in the physiological role of tetrahymanol in bacteria is unknown. Recent ciliate Tetrahymena pyriformis whose potential diagenetic product, studies have highlighted increased tetrahymanol production in gammacerane, is often used as a biomarker for water column strat- R. palustris TIE-1 under certain physiological conditions (e.g., ification in ancient ecosystems. Bacteria are also a potential source photoautotrophic growth) and also when cellular hopanoid lipid of tetrahymanol, but neither the distribution of this lipid in extant profiles are altered in gene deletion mutants (22, 23), but the bacteria nor the significance of bacterial tetrahymanol synthesis for physiological significance of these changes is not known. Further, interpreting gammacerane biosignatures is known. Here we couple the biochemical mechanism of tetrahymanol synthesis in bacteria comparative genomics with genetic and lipid analyses to link a pro- is unclear. In ciliates, squalene-tetrahymanol cyclase (Stc) cata- tein of unknown function to tetrahymanol synthesis in bacteria. This tetrahymanol synthase (Ths) is found in a variety of bacterial lyzes the cyclization of squalene directly to tetrahymanol (24), but genomes, including aerobic methanotrophs, nitrite-oxidizers, and neither of the two known bacterial tetrahymanol producers harbor sulfate-reducers, and in a subset of aquatic and terrestrial metage- a copy of Stc (10, 24).
    [Show full text]
  • Stable Carbon and Hydrogen Isotopic Fractionation of Individual N-Alkanes Accompanying Biodegradation: Evidence from a Group of Progressively Biodegraded Oils
    中国科技论文在线 http://www.paper.edu.cn Organic Geochemistry 36 (2005) 225–238 Stable carbon and hydrogen isotopic fractionation of individual n-alkanes accompanying biodegradation: evidence from a group of progressively biodegraded oils Yongge Sun a,*, Zhenyan Chen b, Shiping Xu a, Pingxia Cai a a SKLOG, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Wushan, Guangzhou 510640, PR China b Exploration and Development Research Institute of Liaohe Oil Field Branch Company, PetroChina, Panjing, Liaoning 124010, PR China Received 10 March 2004; accepted 16 August 2004 (returned to author for revision 16 April 2004) Available online 11 November 2004 Abstract Seven crude oils of known source and maturity, representing a natural sequence of increasing degree of biodegrada- tion, were collected from reservoirs in the Liaohe Basin, NE China, in an effort to determine the magnitude and direction of isotopic shift of carbon and hydrogen in individual n-alkanes during microbial degradation. The results show that bio- degradation has little effect on the carbon isotopic composition of the whole oil. However, a sequential loss of n-alkanes leads to 13C depletion of the bulk residual saturate fraction. The stable carbon isotopic compositions of aromatics and macromolecular organic matter (resins and asphaltenes) follow a pattern, with an overall trend towards 13C enrichment of 0.8–1.7& in the residues. The stable carbon and hydrogen isotope values of individual n-alkanes demonstrate that they follow different trends during biodegradation. No significant carbon isotopic fractionation occurs for n-alkanes during slight to moderate biodegradation. However, there is a general increase of up to 4& in the d13C values of low molecular weight n-alkanes (C15–C18) during heavy biodegradation.
    [Show full text]
  • Hopanoids Play a Role in Membrane Integrity and Ph Homeostasis in Rhodopseudomonas Palustris TIE-1ᰔ† Paula V
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Caltech Authors JOURNAL OF BACTERIOLOGY, Oct. 2009, p. 6145–6156 Vol. 191, No. 19 0021-9193/09/$08.00ϩ0 doi:10.1128/JB.00460-09 Copyright © 2009, American Society for Microbiology. All Rights Reserved. Hopanoids Play a Role in Membrane Integrity and pH Homeostasis in Rhodopseudomonas palustris TIE-1ᰔ† Paula V. Welander,1 Ryan C. Hunter,1 Lichun Zhang,2 Alex L. Sessions,2 Roger E. Summons,3 and Dianne K. Newman1,3,4* Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 68-380, Cambridge, Massachusetts 021391; Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, MC100-23, 1200 E. California Boulevard, Pasadena, California 911252; Department of Earth, Atmospheric and Planetary Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, E25-633, Cambridge, Massachusetts 021393; and Howard Hughes Medical Institute, 4 77 Massachusetts Avenue, 68-171, Cambridge, Massachusetts 02139 Downloaded from Received 3 April 2009/Accepted 6 July 2009 Sedimentary hopanes are pentacyclic triterpenoids that serve as biomarker proxies for bacteria and certain bacterial metabolisms, such as oxygenic photosynthesis and aerobic methanotrophy. Their parent molecules, the bacteriohopanepolyols (BHPs), have been hypothesized to be the bacterial equivalent of sterols. However, the actual function of BHPs in bacterial cells is poorly understood. Here, we report the physiological study of jb.asm.org a mutant in Rhodopseudomonas palustris TIE-1 that is unable to produce any hopanoids. The deletion of the gene encoding the squalene-hopene cyclase protein (Shc), which cyclizes squalene to the basic hopene struc- ture, resulted in a strain that no longer produced any polycyclic triterpenoids.
    [Show full text]
  • Plant-Derived Triterpenoid Biomarkers and Their Applications In
    Plant-derived triterpeonid biomarkers: chemotaxonomy, geological alteration, and vegetation reconstruction Res. Org. Geochem. 35, 11 − 35 (2019) Reviews-2015 Taguchi Award Plant-derived triterpenoid biomarkers and their applications in paleoenvironmental reconstructions: chemotaxonomy, geological alteration, and vegetation reconstruction Hideto Nakamura* (Received November 22, 2019; Accepted December 27, 2019) Abstract Triterpenoids and their derivatives are ubiquitous in sediment samples. Land plants are major sources of non- hopanoid triterpenoids; these terpenoids comprise a vast number of chemotaxonomically distinct biomolecules. Hence, geologically occurring plant-derived triterpenoids (geoterpenoids) potentially record unique characteristics of paleovegetation and sedimentary environments, and serve as source-specific markers for studying paleoenviron- ments. This review is aimed at explaining the origin of triterpenoids and their use as biomarkers in elucidating paleo- environments. Herein, application of plant-derived triterpenoids is discussed in terms of: (i) their biosynthetic pathways. These compounds are primarily synthesized via oxidosqualene cyclase (OSCs) and serve as precursors for a variety of membrane sterols and steroid hormones. Studies on OSCs and resulting compounds have helped elucidate the diversity and origin of the parent terpenoids. (ii) their chemotaxonomic significance. Geochemically important classes of triterpenoid skeletons are useful in gathering and substantiating information on botanical ori- gin of
    [Show full text]
  • Determination of Petroleum Hydrocarbons in Sediments
    UNITED NATIONS ENVIRONMENT PROGRAMME NOVEMBER 1992 Determination of petroleum hydrocarbons in sediments Reference Methods For Marine Pollution Studies No. 20 Prepared in co-operation with IOC IAEA UNEP 1992 ~ i - PREFACE The Regional Seas Programme was initiated by UNEP in 1974. Since then the Governing Conncil ofUNEP has repeatedly endorsed a regional approach to the control of marine pollution and the management of marine and coastal resources and has requested the development of regional action plans. The Regional Seas Progranune at present includes ten regions and has over 120 coastal States participating in it (1),(2). One of the basic components of the action plans sponsored by UNEP in the framework of the Regional Seas Programme is the assessment of the state of the marine em~ronment and of its resources, and of the sources and trends of the pollution, and the impact of pollution on human health, marine ecosystems and amenities. In order to assist those participating in this activity and to ensure that the data obtained through this assessment can be compared. on a world-wide basis and thns contribute to the Global Environment Monitoring System (GEMS) of UNEP, a set of Reference Methods and Guidelines for marine pollution studies is being developed as part of a programme of c9mprehensive technical support which includes the provision of expert advice, reference methods and materials, training and data quality assurance (3). The Methods are recommended to be adopted by Governments participating in tbe Regional Seas Programme. The methods and guidelines are prepared in co-operation with the relevant specialized bodies of the United Nations system as well as other organizations and are tested by a number of experts competent in the field relevant to the methods described.
    [Show full text]
  • Upper Jurassic–Lower Cretaceous Source Rocks in the North Of
    geosciences Article Upper Jurassic–Lower Cretaceous Source Rocks in the North of Western Siberia: Comprehensive Geochemical Characterization and Reconstruction of Paleo-Sedimentation Conditions Evgeniya Leushina 1,* , Timur Bulatov 1 , Elena Kozlova 1, Ivan Panchenko 2 , Andrey Voropaev 3, Tagir Karamov 1, Yakov Yermakov 1, Natalia Bogdanovich 1 and Mikhail Spasennykh 1 1 Skolkovo Institute of Science and Technology, Territory of Innovation Center “Skolkovo”, Bolshoy Boulevard 30, Bld. 1, 121205 Moscow, Russia; [email protected] (T.B.); [email protected] (E.K.); [email protected] (T.K.); [email protected] (Y.Y.); [email protected] (N.B.); [email protected] (M.S.) 2 MIMGO, Entuziastov Highway 21, 111123 Moscow, Russia; [email protected] 3 HYDROISOTOP GmbH, Woelkestr. 9, 85301 Schweitenkirchen, Germany; [email protected] * Correspondence: [email protected] Abstract: The present work is devoted to geochemical studies of the Bazhenov Formation in the north of the West Siberian Petroleum Basin. The object is the Upper Jurassic–Lower Cretaceous section, characterized by significant variations in total organic carbon content and petroleum gener- Citation: Leushina, E.; Bulatov, T.; ation potential of organic matter at the beginning of the oil window. The manuscript presents the Kozlova, E.; Panchenko, I.; Voropaev, integration of isotopic and geochemical analyses aimed at the evaluation of the genesis of the rocks in A.; Karamov, T.; Yermakov, Y.; the peripheral part of the Bazhenov Sea and reconstruction of paleoenvironments that controlled the Bogdanovich, N.; Spasennykh, M. accumulation of organic matter in sediments, its composition and diagenetic alterations. According Upper Jurassic–Lower Cretaceous to the obtained data, the sediments were accumulated under marine conditions with a generally Source Rocks in the North of Western moderate and periodically increasing terrigenous influx.
    [Show full text]
  • N-Alkanes and Polynuclear Aromatic Hydrocarbons (Pahs) in Water of Shatt Al-Arab River – Part 1 Makia M
    G.J.B.A.H.S.,Vol.4(1):88-94 (January-March, 2015) ISSN: 2319 – 5584 Total Petroleum Hydrocarbons (TPHs) , n-alkanes and Polynuclear Aromatic Hydrocarbons (PAHs) in water of Shatt Al-Arab River – part 1 Makia M. Al-Hejuje * ; N. A. Hussain* ; & H. T. Al-saad ** *Department of Ecology , College of Sciences ,University of Basrah, Iraq . **Department of Marine Chemistry , Marine Science Center , University of Basrah, Iraq . Abstract Water samples were collected monthly from five stations along the middle part of Shatt Al Arab river during the low tide period from December , 2012 to November , 2013 to determine the concentrations , distribution and sources of hydrocarbons compounds in water samples. TPH is range from 5.18 µg/l to 37.59 µg/l . The carbon chain length of aliphatic ( n-alkanes) in water were recorded from C7 to C31 dominated by C22-C25 , and the total n-alkanes was ranged from 8.81 µg/l to 35.58 µg/l . The range of PAHs compounds was ( 5.81 – 47.96) ng/l ,dominated by carbazol and anthracene ( as light PAHs) and chrysene and floranthene (as heavy PAHs) . The LMW/HMW , CPI and Pristine/Phytane ratios indicated that the source of n-alkanes hydrocarbons was mainly biogenic and pyrogenic and at least petrogenic .Whereas the LMW/HMW , Phenanthrene /Anthracene , and Flouranthene / Pyrene ratios indicated that the source of PAHs compounds was mainly pyrogenic and petrogenic . Key words : Shatt Al-Arab water, TPHs , n-alkanes , PAHs , hydrocarbon indices. Introduction Tigris and the Euphrates rivers meet at Qurna town north of Basrah city and form the Shatt Al-Arab river with length of about 195 km , and width varies at different point from 0.35 km at Basrah city to 1.5 km at its mouth in Fao town .
    [Show full text]