Auxin Transport – Shaping the Plant

Total Page:16

File Type:pdf, Size:1020Kb

Auxin Transport – Shaping the Plant 7 Auxin transport Ð shaping the plant JirÏõÂ Friml Plant growth is marked by its adaptability to continuous changes answer to their sessile fate and which became their major in environment. A regulated, differential distribution of auxin adaptation strategy. Special meristem tissues have underlies many adaptation processes including organogenesis, evolved, which maintain the ability of plant cells to divide meristem patterning and tropisms. In executing its multiple roles, and differentiate throughout the life of the plant, and a auxin displays some characteristics of both a hormone and a number of differentiated cells keep their potential to morphogen. Studies on auxin transport, as well as tracing the elongate, forming the basis of plant tropisms. Thus, plants intracellular movement of its molecular components, have can ¯exibly change their shape and size to optimally suggested a possible scenario to explain how growth plasticity is adjust themselves to a changing environment. During conferred at the cellular and molecular level. The plant perceives the past century, an endogenous plant signal, auxin, and stimuli and changes the subcellular position of auxin-transport its distribution in the plant have been increasingly estab- components accordingly. These changes modulate auxin ¯uxes, lished as playing a central role in these complex adapta- and the newly established auxin distribution triggers the tion responses. Recently emerging molecular data have corresponding developmental response. shed light on the mode of auxin action and its regulated transport, and have begun to connect the plasticity of Addresses whole-plant development with processes at the cellular Zentrum fuÈ r Molekularbiologie der P¯anzen, UniversitaÈ tTuÈ bingen, Auf level. der Morgenstelle 3, 72076 TuÈ bingen, Germany e-mail: [email protected] A century towards molecular players Our linden tree had to wait more than 300 years before our Current Opinion in Plant Biology 2003, 6:7±12 curiosity was turned towards the mysterious mechanisms that so strangely affected its fate. At that time, a German 1369-5266/03/$ ± see front matter botanist, Julius Sachs, proposed the existence of signaling ß 2003 Elsevier Science Ltd. All rights reserved. substances that regulate coordinated plant growth, and DOI 10.1016/S1369-5266(02)00003-1 Charles Darwin together with his brother Francis grew grass coleoptiles in unilateral light to demonstrate the Abbreviations existence of a transported signal that mediates plant AUX1 AUXIN1 phototropism [1,2]. Thus, the history of auxin began. IAA indole-3-acetic acid During the century that followed, the chemical nature MDR multidrug resistance of auxin was uncovered, but we remained confused by the PIN PIN-FORMED SGR2 SHOOT GRAVITROPIC2 variety of apparently unrelated developmental processes ZIG ZIGZAG that are regulated by such a simple molecule as indole-3- acetic acid (IAA). Prelude Ð The linden tree of innocence Our attention was drawn to the transport of auxin, as its On the margin of the ChirÏiby hills, an old mediaeval castle disruption interferes with almost all auxin-related devel- `Buchlov' guards the wide valley of the South Moravian river opmental processes. We learned that auxin can be dis- `Morava'. There, on the terrace where the tribunal of the hunter's tributed via the phloem or by a directional, so-called court used to sit, and where the last farewells with the convicts `polar', transport system (see Figure 1; [3]). The large were held, a famous linden tree of innocence stands as a witness amount of physiological and biochemical data on polar of a local legend. It is told that early in the 16th century the lord auxin transport has been integrated into the `chemiosmo- of the castle was deceitfully slain during one of his frequent hunts. tic hypothesis'. This classical model explains the cell-to- A young servant was accused of this murder and imprisoned. cell movement of auxin by the action of speci®c auxin- After long days of unavailing torture he was condemned to death in¯ux and -ef¯ux carriers. The asymmetric positioning of on the castle terrace. At this, the young man rose and pulled out the latter at a particular side of the cell was proposed to the young linden tree growing nearby. He set it inverted back into determine the direction of auxin ¯ux [4,5]. This model the soil with the words, ``If next year this small tree will grow was reinforced by the identi®cation and characterization green, it will be a sign of God that you killed an innocent''. And of candidate proteins for auxin in¯ux (AUXIN1 [AUX1]/ indeed, in the spring, small green leaves ¯ourished from the LIKE-AUX1 [LAX] family) and ef¯ux (PIN-FORMED previous roots and the young man was set free. [PIN] family) carriers [6±8]. Numerous pieces of circum- stantial evidence demonstrate the role of these proteins in This rather romantic story demonstrates the fascinating auxin transport despite the lack of rigorous proof for their plasticity of plant growth, which plants developed as an function as carriers [3]. PIN proteins are asymmetrically www.current-opinion.com Current Opinion in Plant Biology 2003, 6:7±12 8 Growth and development Figure 1 lamic acid (NPA), an inhibitor of auxin transport, thus providing an additional connection between MDRs and auxin delivery [14]. Although detailed information is still lacking, a century of studies on auxin transport have brought us the identity of a couple of players that are involved in auxin responses, and an image of a complex network of several transport systems that are involved in distributing auxin throughout the whole plant. Hormone or morphogen? Two theoretical concepts have greatly in¯uenced the way that we think about auxin and its action: the concepts of a hormones and a morphogen. The mammalian hormone concept de®nes hormones as extracellular signaling mole- cules, which act on target cells distant from their localized site of synthesis [15]. Although recent studies have demonstrated the potential for IAA synthesis in a variety of Arabidopsis organs, its movement from its main source in young apical tissues throughout the whole plant has been proven many times [3,16]. A known role for auxin in coordinating the development of organs, for example lateral roots, with the developmental stage of the shoot provides a functional meaning for this long-distance sig- naling [17,18]. Thus, auxin formally adheres to the clas- Gravity sical de®nition of a hormone. However, the most-studied form of auxin transport, cell-to-cell polar transport, con- trasts with the passive allocation of animal hormones through blood, which is more analogous to non-polar auxin distribution. Several arguments indicate that Current Opinion in Plant Biology non-polar transport in phloem contributes to the move- ment of auxin from its main source in the apical tissues to Auxin response and transport in a gravistimulated Arabidopsis hypocotyl. Auxin transport throughout the plant involves both non-polar the root. First, the known velocity of active transport transport in phloem (dashed line) and an active, cell-to-cell polar (about 10 mm per hour) is too slow to execute ef®cient transport (red arrows), which can transport auxin either basipetally signaling, especially in larger plant species. Second, free (from the apexto the base) or laterally. During gravitropic or phototropic auxin has been detected at relatively high concentrations bending, increased auxin response (as indicated by DR5::GUS, displayed as blue staining) corresponding to higher auxin levels is found (of about 1 mM) in phloem exudates [19]. And third, aux1 in the more elongated, outer side of bending hypocotyl. This mutants, which are apparently impaired in loading auxin asymmetric lateral auxin distribution appears to be established by from leaves into the phloem and in unloading auxin from lateral auxin transport and to trigger asymmetric growth. phloem into the root, display defects in their ability to distribute auxin between the shoot apex and the root [12,20]. Thus, the putative auxin permease AUX1 localized in different cells, and this localization impres- seems to act at both ends of the auxin route in phloem, sively coincides with the known directions of auxin ¯ux connecting it at its lower end to the polar transport system [8,9,10,11]. The AUX1 protein also localizes asymme- in the root tip. trically in root protophloem cells at the opposite cell side from PIN1 [12]. These ®ndings suggest that, at least in In the root meristem, auxin is implicated in regulating the some tissues, in¯ux and ef¯ux carriers in concert facilitate pattern of cell division and differentiation (see Figure 2), the vectorial movement of auxin. Recently, members of a short-distance activity that is related to the role of auxin another protein family, namely multidrug resistance as morphogen. The term morphogen was introduced as a (MDR)-type ATP-binding cassette (ABC) proteins, have purely theoretical term in mathematical models of self- been implicated in auxin transport. Two of these proteins, organizing systems, and has evolved into a basic concept AtMDR1 and Arabidopsis thaliana P-glycoprotein1 of developmental biology [21]. The least stringent de®ni- (AtPGP1), were originally identi®ed as being functionally tion refers to a morphogen as a substance that forms a related to anion channels; nonetheless, the corresponding concentration gradient and is involved in developmental mutants and double mutants showed auxin-related phe- patterning [21]. More rigorous de®nitions provide three notypes including a reduced rate of auxin transport [13]. critical conditions that bona ®de morphogens must meet: Moreover, these proteins can bind 1-N-naphthylphtha- ®rst, a morphogen forms a stable concentration gradient; Current Opinion in Plant Biology 2003, 6:7±12 www.current-opinion.com Auxin transport Friml 9 Figure 2 How does the auxin gradient arise? In the root, the auxin ef¯ux regulator PIN4 is asymmetrically distributed towards cells with increased DR5 response, and both Epi pin4 mutations and the chemical inhibition of auxin Cor Ste transport disrupt the distribution of DR5 activity End [11,26].
Recommended publications
  • Auxin Regulation Involved in Gynoecium Morphogenesis of Papaya Flowers
    Zhou et al. Horticulture Research (2019) 6:119 Horticulture Research https://doi.org/10.1038/s41438-019-0205-8 www.nature.com/hortres ARTICLE Open Access Auxin regulation involved in gynoecium morphogenesis of papaya flowers Ping Zhou 1,2,MahparaFatima3,XinyiMa1,JuanLiu1 and Ray Ming 1,4 Abstract The morphogenesis of gynoecium is crucial for propagation and productivity of fruit crops. For trioecious papaya (Carica papaya), highly differentiated morphology of gynoecium in flowers of different sex types is controlled by gene networks and influenced by environmental factors, but the regulatory mechanism in gynoecium morphogenesis is unclear. Gynodioecious and dioecious papaya varieties were used for analysis of differentially expressed genes followed by experiments using auxin and an auxin transporter inhibitor. We first compared differential gene expression in functional and rudimentary gynoecium at early stage of their development and detected significant difference in phytohormone modulating and transduction processes, particularly auxin. Enhanced auxin signal transduction in rudimentary gynoecium was observed. To determine the role auxin plays in the papaya gynoecium, auxin transport inhibitor (N-1-Naphthylphthalamic acid, NPA) and synthetic auxin analogs with different concentrations gradient were sprayed to the trunk apex of male and female plants of dioecious papaya. Weakening of auxin transport by 10 mg/L NPA treatment resulted in female fertility restoration in male flowers, while female flowers did not show changes. NPA treatment with higher concentration (30 and 50 mg/L) caused deformed flowers in both male and female plants. We hypothesize that the occurrence of rudimentary gynoecium patterning might associate with auxin homeostasis alteration. Proper auxin concentration and auxin homeostasis might be crucial for functional gynoecium morphogenesis in papaya flowers.
    [Show full text]
  • Maintenance of Asymmetric Cellular Localization of an Auxin Transport Protein Through Interaction with the Actin Cytoskeleton
    J Plant Growth Regul (2000) 19:385–396 DOI: 10.1007/s003440000041 © 2000 Springer-Verlag Maintenance of Asymmetric Cellular Localization of an Auxin Transport Protein through Interaction with the Actin Cytoskeleton Gloria K. Muday* Department of Biology, Wake Forest University, Winston-Salem, North Carolina 27109-7325, USA ABSTRACT In shoots, polar auxin transport is basipetal (that is, addition, the idea that this localization of the efflux from the shoot apex toward the base) and is driven carrier may control both the polarity of auxin move- by the basal localization of the auxin efflux carrier ment and more globally regulate developmental po- complex. The focus of this article is to summarize the larity is explored. Finally, evidence indicating that experiments that have examined how the asymmet- the gravity vector controls auxin transport polarity is ric distribution of this protein complex is controlled summarized and possible mechanisms for the envi- and the significance of this polar distribution. Ex- ronmentally induced changes in auxin transport po- perimental evidence suggests that asymmetries in larity are discussed. the auxin efflux carrier may be established through localized secretion of Golgi vesicles, whereas an at- tachment of a subunit of the efflux carrier to the Key words: Auxin transport; Actin cytoskeleton; actin cytoskeleton may maintain this localization. In Polarity; F-actin; Gravity; Embryo development INTRODUCTION maintaining the localization after initial sorting is complete (Drubin and Nelson 1996; Nelson and The mechanism by which cells and tissues develop Grindstaff 1997). Protein sorting through directed and maintain polarity is a growing area of study. In vesicle targeting is critical for establishment of asym- mammalian systems, a number of proteins have metry (Nelson and Grindstaff 1997), whereas at- been examined to understand how asymmetric cel- tachment to the actin cytoskeleton, either directly or lular localization is established and maintained.
    [Show full text]
  • Auxin Transport Inhibitors Block PIN1 Cycling and Vesicle Trafficking
    letters to nature Acknowledgements thesis and degradation or continuous cycling between the plasma We thank R. M. Zinkernagel, F. Melchers and J. E. DeVries for critically reviewing the membrane and endosomal compartments, we inhibited protein manuscript, as well as C. H. Heusser and S. Alkan for anti-IL-4 and anti-IFN-g antibodies. synthesis by cycloheximide (CHX). Incubation of roots in 50 mM This work was sponsored by the Swiss National Science Foundation. CHX for 30 min reduced 35S-labelled methionine incorporation Correspondence and requests for materials should be addressed to M.J. into proteins to below 10% of the control value (data not shown). (e-mail: [email protected]) or C.A.A. (e-mail: [email protected]). However, treatment with 50 mM CHX for 4 h had no detectable effect on the amount of labelled PIN1 at the plasma membrane (Fig. 1d), suggesting that PIN1 protein is turned over slowly. CHX did not interfere with the reversible BFA effect as PIN1 still ................................................................. accumulated in endomembrane compartments (Fig. 1e) and, on withdrawal of BFA, reappeared at the plasma membrane (Fig. 1f). Auxin transport inhibitors block Thus, BFA-induced intracellular accumulation of PIN1 resulted from blocking exocytosis of a steady-state pool of PIN1 that rapidly PIN1 cycling and vesicle traf®cking cycles between the plasma membrane and some endosomal com- partment. Niko Geldner*², JirÏõ Friml²³§k, York-Dieter Stierhof*, Gerd JuÈrgens* In animal cells, BFA alters structure and function of endomem- & Klaus Palme³ brane compartments, especially the Golgi apparatus, which fuses with other endomembranes20±22.
    [Show full text]
  • Polar Transport of Auxin: Carrier-Mediated flux Across the Plasma Membrane Or Neurotransmitter-Like Secretion?
    282 Update TRENDS in Cell Biology Vol.13 No.6 June 2003 Polar transport of auxin: carrier-mediated flux across the plasma membrane or neurotransmitter-like secretion? Frantisˇek Balusˇkap, Jozef Sˇ amaj and Diedrik Menzel Rheinische Friedrich-Wilhelms University of Bonn, Institute of Botany, Kirschallee 1, Bonn, D-53115, Germany. Auxin (indole-3-acetic acid) has its name derived from activator GNOM [7,9–11] both localize to endosomes the Greek word auxein, meaning ‘to increase’, and it where GNOM mediates sorting of PIN1 from the endosome drives plant growth and development. Auxin is a small to the apical plasma membrane. These studies not only molecule derived from the amino acid tryptophan and shed new light on the polar cell-to-cell transport of auxin has both hormone- and morphogen-like properties. but also raise new crucial questions. Where does PIN1 Although there is much still to be learned, recent perform its auxin-transporting functions? Does PIN1 progress has started to unveil how auxin is transported transport auxin across the plasma membrane, as all from cell-to-cell in a polar manner. Two recent break- through papers from Gerd Ju¨ rgens’ group indicate that Root base auxin transport is mediated by regulated vesicle trafficking, thus encompassing neurotransmitter-like features. Auxin is one of the most important molecules regulating plant growth and morphogenesis. At the same time, auxin represents one of the most enigmatic and controversial molecules in plants. Currently, the most popular view is that auxin is a hormone-like substance. However, there are several auxin features and actions that can be much better explained if one considers auxin to be a morphogen- like agent [1–3].
    [Show full text]
  • Phototropism in Seedlings of Sunflower, Helianthus Annuus L
    1 m % %ik PHOTOTROPISM IN SEEDLINGS OF SUNFLOWER, HELIANTHUS ANNUUS L. J. M. FRANSSEN NN08201,824 581.184.5:582.998 J. M. FRANSSEN PHOTOTROPISM IN SEEDLINGS OF SUNFLOWER, HELIÂNTHUS ANNUUSL. Proefschrift ter verkrijging van degraa d van doctor in de landbouwwetenschappen, opgeza gva n derecto r magnificus, dr. H. C.-vande rPlas , hoogleraar in de organische scheikunde, in het openbaar te verdedigen opvrijda g 14 november 1980 desnamiddag s tevie ruu r in de aula van de Landbouwhogeschool teWageningen . H. VEENMAN &ZONE N B.V. - WAGENINGEN - 1980 STELLINGEN I De Cholodny-Went theoriei snie t algemeen geldig. Dit proefschrift II De fototrope kromming in kiemplanten van Helianthusannum L. is onaf­ hankelijk van de groeisnelheid. Dit proefschrift III Fototropie in kiemplanten van Helianthus annuus L. is een blauw-licht effect, zoweltijden s de-etioleringal stijden s eenzijdige belichting. Dit proefschrift IV De bewering van Lam en Leopold dat de cotylen een rol spelen in de fototrope reactie is niet juist en berust op een door de cotylen gereguleerde invloed op delengtegroe i van het hypocotyl. LAM, S. L. and A. C. LEOPOLD (1966): Plant Physiol. 41, 847-851; SHUTTLEWORTH, J. E. and M. BLACK (1977): Planta t35, 51-55 V Debenaminge n 'tip-response'voo rd eeerst epositiev ereacti ee n 'base-response' voor de C-type reactie bij fototropie van geëtioleerde Avena saliva coleop- tielen zijn foutief. BLAAUW, O. H. and G. BLAAUW-JANSEN (1970): Acta Bot. Neerl. 19, 764-776. VI De basipetale verplaatsing van het punt van kromming, waargenomen in geo- tropie, is niet het gevolg van de geotrope reactie zelf maar van de auto- trope reactie.
    [Show full text]
  • Tropism Flip Book Unit 8
    Name ____________________________________________________________ Period _______ 7th Grade Science Tropism Flip Book Unit 8 Directions: You are going to create a quick reference chart for the various types of Tropism . Tropism is a term that refers to how an organism grows due to an external stimulus. For each type of tropism, you will need to provide a definition and a picture/example of that type of tropism. Below is a list of terms that you will include in your “Flip Book”. Flip Book Terms: Internal Stimuli External Stimuli Gravitropism Phototropism Geotropism Hydrotropism Thigmatropism How Do You Create a Flip Book? Step 1: Obtain 4 half sheets of paper. Stack the sheets of paper on top of each other. They should be staggered about a 2 cm. See the picture below. 2 cm 2 cm 2 cm Step 2: Now fold the top half of the 4 pieces of paper forward. Now all of the pieces of paper are staggered 2 cm. You should have 8 tabs. Place two staples at the very top. Staples Tab #1 Tab #2 Tab #3 Tab #4 Tab #5 Tab #6 Tab #7 Tab #8 Step 3: On the very top tab (Tab #1) you are going to write/draw the words " Tropism Flip Book ". You may use markers or colored pencils throughout this project to color and decorate your flip book. Also write your name and period. See the example below. Tropism Flip Book Your Name Period Step 4: At the bottom of each tab you are going to write each of the flip book terms (Internal Stimuli, External Stimuli, Gravitropism, Phototropism, Geotropism, Hydrotropism, and Thigmatropism ).
    [Show full text]
  • Plant Hormones: Ins and Outs of Auxin Transport Ottoline Leyser
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE R8 Dispatch provided by Elsevier - Publisher Connector Plant hormones: Ins and outs of auxin transport Ottoline Leyser Regulated transport has long been known to play a key Treatment of plants with auxin transport inhibitors has a part in action of the plant hormone auxin. Now, at last, wide range of effects [5]. Auxin transport inhibitors disrupt a family of auxin efflux carriers has been identified, and axis formation, vascular differentiation, apical dominance, the characterisation of one family member has provided organogenesis and tropic growth. The role of auxin transport strong evidence in support of models that have been in tropic growth is particularly noteworthy, as it has been proposed to explain gravitropic curvature in roots. suggested that tropisms — growth in a direction defined by some environmental cue, such as the direction of sunlight — Address: Department of Biology, Box 373, University of York, York YO1 5YW, UK. are mediated by changes in auxin transport activity, although E-mail: [email protected] it is likely that changes in auxin sensitivity also play a role. Current Biology 1999, 9:R8–R10 A good example of this is the direction of root growth, http://biomednet.com/elecref/09609822009R0008 defined by the vector representing the force of gravity, © Elsevier Science Ltd ISSN 0960-9822 Figure 1 The mechanism by which the hormone auxin regulates plant growth and development is a particularly exciting (a) area of research at present, with rapid progress being made on several fronts. The latest advance is in the field Cortex of auxin transport, with the recent identification of a fam- Elongation Vascular zone ily of auxin efflux carriers [1–4].
    [Show full text]
  • The TOR–Auxin Connection Upstream of Root Hair Growth
    plants Review The TOR–Auxin Connection Upstream of Root Hair Growth Katarzyna Retzer 1,* and Wolfram Weckwerth 2,3 1 Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, 165 02 Prague, Czech Republic 2 Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, 1010 Vienna, Austria; [email protected] 3 Vienna Metabolomics Center (VIME), University of Vienna, 1010 Vienna, Austria * Correspondence: [email protected] Abstract: Plant growth and productivity are orchestrated by a network of signaling cascades involved in balancing responses to perceived environmental changes with resource availability. Vascular plants are divided into the shoot, an aboveground organ where sugar is synthesized, and the underground located root. Continuous growth requires the generation of energy in the form of carbohydrates in the leaves upon photosynthesis and uptake of nutrients and water through root hairs. Root hair outgrowth depends on the overall condition of the plant and its energy level must be high enough to maintain root growth. TARGET OF RAPAMYCIN (TOR)-mediated signaling cascades serve as a hub to evaluate which resources are needed to respond to external stimuli and which are available to maintain proper plant adaptation. Root hair growth further requires appropriate distribution of the phytohormone auxin, which primes root hair cell fate and triggers root hair elongation. Auxin is transported in an active, directed manner by a plasma membrane located carrier. The auxin efflux carrier PIN-FORMED 2 is necessary to transport auxin to root hair cells, followed by subcellular rearrangements involved in root hair outgrowth.
    [Show full text]
  • AUXIN: TRANSPORT Subject: Botany M.Sc
    Saumya Srivastava_ Botany_ MBOTCC-7_Patna University Topic: AUXIN: TRANSPORT Subject: Botany M.Sc. (Semester II), Department of Botany Course: MBOTCC- 7: Physiology and Biochemistry; Unit – III Dr. Saumya Srivastava Assistant Professor, P.G. Department of Botany, Patna University, Patna- 800005 Email id: [email protected] Saumya Srivastava_ Botany_ MBOTCC-7_Patna University Auxin transport The main axes of shoots and roots, along with their branches, exhibit apex–base structural polarity, and this structural polarity has its origin in the polarity of auxin transport. Soon after Went developed the coleoptile curvature test for auxin, it was discovered that IAA moves mainly from the apical to the basal end (basipetally) in excised oat coleoptile sections. This type of unidirectional transport is termed polar transport. Auxin is the only plant growth hormone known to be transported polarly. A significant amount of auxin transport also occurs in the phloem, and this is the principal route by which auxin is transported acropetally (i.e., toward the tip) in the root. Thus, more than one pathway is responsible for the distribution of auxin in the plant. Polar transport is not affected by the orientation of the tissue (at least over short periods of time), so it is independent of gravity. Tissues differ in degree of polarity of IAA transport. In coleoptiles, vegetative stems, and leaf petioles, basipetal transport predominates. Polar transport of auxin in shoots tends to be predominantly basipetal. Acropetal transport here is minimal. In roots, on the other hand, there appear to be two transport streams. An acropetal stream, arriving from the shoot, flows through xylem parenchyma cells in the central cylinder of the root and directs auxin toward the root tip.
    [Show full text]
  • Auxin and Root Gravitropism: Addressing Basic Cellular Processes by Exploiting a Defined Growth Response
    International Journal of Molecular Sciences Review Auxin and Root Gravitropism: Addressing Basic Cellular Processes by Exploiting a Defined Growth Response Nataliia Konstantinova, Barbara Korbei and Christian Luschnig * Department of Applied Genetics and Cell Biology, Institute of Molecular Plant Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190 Wien, Austria; [email protected] (N.K.); [email protected] (B.K.) * Correspondence: [email protected] Abstract: Root architecture and growth are decisive for crop performance and yield, and thus a highly topical research field in plant sciences. The root system of the model plant Arabidopsis thaliana is the ideal system to obtain insights into fundamental key parameters and molecular players involved in underlying regulatory circuits of root growth, particularly in responses to environmental stimuli. Root gravitropism, directional growth along the gravity, in particular represents a highly sensitive readout, suitable to study adjustments in polar auxin transport and to identify molecular determinants involved. This review strives to summarize and give an overview into the function of PIN-FORMED auxin transport proteins, emphasizing on their sorting and polarity control. As there already is an abundance of information, the focus lies in integrating this wealth of information on mechanisms and pathways. This overview of a highly dynamic and complex field highlights recent developments in understanding the role of auxin in higher plants. Specifically, it exemplifies, how analysis of a single, defined growth response contributes to our understanding of basic cellular processes in general. Citation: Konstantinova, N.; Korbei, B.; Luschnig, C. Auxin and Root Keywords: auxin; polar auxin transport; root gravitropism; PIN-FORMED Gravitropism: Addressing Basic Cellular Processes by Exploiting a Defined Growth Response.
    [Show full text]
  • Tropisms, Nastic Movements, & Photoperiods
    Tropisms, Nastic Movements, & Photoperiods Plant Growth & Development Tropisms Defined as: ____________________________ ______________________________________ ______________________________________ 3 Types: - Phototropism - ____________ - Thigmotropism Tropisms Defined as: Plant growth responses to environmental stimuli that occur in the direction of the stimuli 3 Types: - Phototropism - Gravitropism - Thigmotropism Phototropism Defined as: the tendency of a plant to grow toward a light source Cool corn - Can be within hours - Caused by ________________ ____________________________ ____________________________ Phototropism Defined as: the tendency of a plant to grow toward a light source Cool corn - Can be within hours - Caused by changes in auxin concentrations; auxins migrate to shaded tissue, causing elongation of cells Gravitropism Defined as: tendency of shoots to grow upwards (_________ gravitropism) and roots to grow downwards (____________ gravitropism) - Also related to auxin migration - Photoreceptors in shoots determine the light source Arabidopsis Gravitropism Defined as: tendency of shoots to grow upwards (negative gravitropism) and roots to grow downwards (positive gravitropism) - Also related to auxin migration - Photoreceptors in shoots determine the light source Arabidopsis Gravitropism - __________ (cells with starch grains instead of chloroplasts) in roots determine the gravitational pull Gravitropism - Stratoliths (cells with starch grains instead of chloroplasts) in roots determine the gravitational pull Thigmotropism
    [Show full text]
  • PINOID Enhances Polar Auxin Transport 4059 Visualised Using a Zeiss Axioplan2 Imaging Microscope with DIC Optics
    Development 128, 4057-4067 (2001) 4057 Printed in Great Britain © The Company of Biologists Limited 2001 DEV0349 The PINOID protein kinase regulates organ development in Arabidopsis by enhancing polar auxin transport René Benjamins, Ab Quint, Dolf Weijers, Paul Hooykaas and Remko Offringa* Institute of Molecular Plant Sciences, Leiden University, Clusius Laboratory, Wassenaarseweg 64, Leiden, The Netherlands *Author for correspondence (e-mail: [email protected]) Accepted 25 July 2001 SUMMARY Arabidopsis pinoid mutants show a strong phenotypic inhibited in these seedlings. Both meristem organisation resemblance to the pin-formed mutant that is disrupted in and growth of the primary root were rescued when polar auxin transport. The PINOID gene was recently seedlings were grown in the presence of polar auxin cloned and found to encode a protein-serine/threonine transport inhibitors, such as naphthylphtalamic acid kinase. Here we show that the PINOID gene is inducible by (NPA). Moreover, ectopic expression of PINOID cDNA auxin and that the protein kinase is present in the under control of the epidermis-specific LTP1 promoter primordia of cotyledons, leaves and floral organs and in provided further evidence for the NPA-sensitive action of vascular tissue in developing organs or proximal to PINOID. The results presented here indicate that PINOID meristems. Overexpression of PINOID under the control of functions as a positive regulator of polar auxin transport. the constitutive CaMV 35S promoter (35S::PID) resulted We propose that PINOID is involved in the fine-tuning of in phenotypes also observed in mutants with altered polar auxin transport during organ formation in response sensitivity to or transport of auxin.
    [Show full text]