Arthur Ashkin (1922 - 2020)
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Unrestricted Immigration and the Foreign Dominance Of
Unrestricted Immigration and the Foreign Dominance of United States Nobel Prize Winners in Science: Irrefutable Data and Exemplary Family Narratives—Backup Data and Information Andrew A. Beveridge, Queens and Graduate Center CUNY and Social Explorer, Inc. Lynn Caporale, Strategic Scientific Advisor and Author The following slides were presented at the recent meeting of the American Association for the Advancement of Science. This project and paper is an outgrowth of that session, and will combine qualitative data on Nobel Prize Winners family histories along with analyses of the pattern of Nobel Winners. The first set of slides show some of the patterns so far found, and will be augmented for the formal paper. The second set of slides shows some examples of the Nobel families. The authors a developing a systematic data base of Nobel Winners (mainly US), their careers and their family histories. This turned out to be much more challenging than expected, since many winners do not emphasize their family origins in their own biographies or autobiographies or other commentary. Dr. Caporale has reached out to some laureates or their families to elicit that information. We plan to systematically compare the laureates to the population in the US at large, including immigrants and non‐immigrants at various periods. Outline of Presentation • A preliminary examination of the 609 Nobel Prize Winners, 291 of whom were at an American Institution when they received the Nobel in physics, chemistry or physiology and medicine • Will look at patterns of -
Nfap Policy Brief » October 2019
NATIONAL FOUNDATION FOR AMERICAN POLICY NFAP POLICY BRIEF» OCTOBER 2019 IMMIGRANTS AND NOBEL PRIZES : 1901- 2019 EXECUTIVE SUMMARY Immigrants have been awarded 38%, or 36 of 95, of the Nobel Prizes won by Americans in Chemistry, Medicine and Physics since 2000.1 In 2019, the U.S. winner of the Nobel Prize in Physics (James Peebles) and one of the two American winners of the Nobel Prize in Chemistry (M. Stanley Whittingham) were immigrants to the United States. This showing by immigrants in 2019 is consistent with recent history and illustrates the contributions of immigrants to America. In 2018, Gérard Mourou, an immigrant from France, won the Nobel Prize in Physics. In 2017, the sole American winner of the Nobel Prize in Chemistry was an immigrant, Joachim Frank, a Columbia University professor born in Germany. Immigrant Rainer Weiss, who was born in Germany and came to the United States as a teenager, was awarded the 2017 Nobel Prize in Physics, sharing it with two other Americans, Kip S. Thorne and Barry C. Barish. In 2016, all 6 American winners of the Nobel Prize in economics and scientific fields were immigrants. Table 1 U.S. Nobel Prize Winners in Chemistry, Medicine and Physics: 2000-2019 Category Immigrant Native-Born Percentage of Immigrant Winners Physics 14 19 42% Chemistry 12 21 36% Medicine 10 19 35% TOTAL 36 59 38% Source: National Foundation for American Policy, Royal Swedish Academy of Sciences, George Mason University Institute for Immigration Research. Between 1901 and 2019, immigrants have been awarded 35%, or 105 of 302, of the Nobel Prizes won by Americans in Chemistry, Medicine and Physics. -
The Links of Chain of Development of Physics from Past to the Present in a Chronological Order Starting from Thales of Miletus
ISSN (Online) 2393-8021 IARJSET ISSN (Print) 2394-1588 International Advanced Research Journal in Science, Engineering and Technology Vol. 5, Issue 10, October 2018 The Links of Chain of Development of Physics from Past to the Present in a Chronological Order Starting from Thales of Miletus Dr.(Prof.) V.C.A NAIR* Educational Physicist, Research Guide for Physics at Shri J.J.T. University, Rajasthan-333001, India. *[email protected] Abstract: The Research Paper consists mainly of the birth dates of scientists and philosophers Before Christ (BC) and After Death (AD) starting from Thales of Miletus with a brief description of their work and contribution to the development of Physics. The author has taken up some 400 odd scientists and put them in a chronological order. Nobel laureates are considered separately in the same paper. Along with the names of researchers are included few of the scientific events of importance. The entire chain forms a cascade and a ready reference for the reader. The graph at the end shows the recession in the earlier centuries and its transition to renaissance after the 12th century to the present. Keywords: As the contents of the paper mainly consists of names of scientists, the key words are many and hence the same is not given I. INTRODUCTION As the material for the topic is not readily available, it is taken from various sources and the collection and compiling is a Herculean task running into some 20 pages. It is given in 3 parts, Part I, Part II and Part III. In Part I the years are given in Chronological order as per the year of birth of the scientist and accordingly the serial number. -
Alfred Nobel Och Nobelpriset
PHYSICS PRIZE 2018 Nobel Prize Lessons THE NOBEL PRIZE NOBEL PRIZE LESSONS. NOBEL PRIZE IN PHYSICS 2018 The Nobel Prize in Physics Since 1901 ”to the person who made the most important discovery or invention in the field of physics” Photo: Alexander Mahmoud THE NOBEL PRIZE NOBEL PRIZE LESSONS THE NOBEL PRIZE IN PHYSICS 2018 Who is rewarded with the Physics Prize? Persons who have made important discoveries or inventions in the field of physics. THE NOBEL PRIZE NOBEL PRIZE LESSONS THE NOBEL PRIZE IN PHYSICS 2018 © Johan Jarnestad / The Royal Academy of of Sciences Academy /Royal The Jarnestad Johan © Physics Prize 2018 A tool for using laser light to capture and manipulate particles, and a method for creating very strong, rapid laser pulses. THE NOBEL PRIZE NOBEL PRIZE LESSONS THE NOBEL PRIZE IN PHYSICS 2018 The 2018 Nobel Iillustration : Niklas Niklas : Elmehed Laureates in Physics Arthur Ashkin, “for the optical tweezers and their application to biological systems”. Donna Strickland and Gérard Mourou, “for their method of generating high-intensity, ultra-short optical pulses”. Arthur Ashkin Gérard Mourou Donna Strickland THE NOBEL PRIZE NOBEL PRIZE LESSONS THE NOBEL PRIZE IN PHYSICS 2018 Lasers A laser generates light with a single wavelength, intensity and direction. THE NOBEL PRIZE NOBEL PRIZE LESSONS THE NOBEL PRIZE IN PHYSICS 2018 © Johan Jarnestad / The Royal Academy of of Sciences Academy /Royal The Jarnestad Johan © Optical tweezers Using a laser beam to move and capture objects. THE NOBEL PRIZE NOBEL PRIZE LESSONS THE NOBEL PRIZE IN PHYSICS 2018 Photo: Photo: Nokia Bell Labs Benefits of optical tweezers By using a laser that generated infrared light, Ashkin was able to capture viruses, bacteria and living cells. -
Highlights of Modern Physics and Astrophysics
Highlights of Modern Physics and Astrophysics How to find the “Top Ten” in Physics & Astrophysics? - List of Nobel Laureates in Physics - Other prizes? Templeton prize, … - Top Citation Rankings of Publication Search Engines - Science News … - ... Nobel Laureates in Physics Year Names Achievement 2020 Sir Roger Penrose "for the discovery that black hole formation is a robust prediction of the general theory of relativity" Reinhard Genzel, Andrea Ghez "for the discovery of a supermassive compact object at the centre of our galaxy" 2019 James Peebles "for theoretical discoveries in physical cosmology" Michel Mayor, Didier Queloz "for the discovery of an exoplanet orbiting a solar-type star" 2018 Arthur Ashkin "for groundbreaking inventions in the field of laser physics", in particular "for the optical tweezers and their application to Gerard Mourou, Donna Strickland biological systems" "for groundbreaking inventions in the field of laser physics", in particular "for their method of generating high-intensity, ultra-short optical pulses" Nobel Laureates in Physics Year Names Achievement 2017 Rainer Weiss "for decisive contributions to the LIGO detector and the Kip Thorne, Barry Barish observation of gravitational waves" 2016 David J. Thouless, "for theoretical discoveries of topological phase transitions F. Duncan M. Haldane, and topological phases of matter" John M. Kosterlitz 2015 Takaaki Kajita, "for the discovery of neutrino oscillations, which shows that Arthur B. MsDonald neutrinos have mass" 2014 Isamu Akasaki, "for the invention of -
Nobel Prize in Physics – 2018
GENERAL ARTICLE Nobel Prize in Physics – 2018 Debabrata Goswami On Tuesday, 02 October 2018, Arthur Ashkin of the United States, who pioneered a way of using light to manipulate phys- ical objects, shared the first half of the 2018 Nobel Prize in Physics. The second half was divided equally between Gerard´ Mourou of France and Donna Strickland of Canada for their method of generating high-intensity, ultra-short optical pulses. With this announcement, Donna Strickland, who was awarded the Nobel for her work as a PhD student with Gerard´ Mourou, Debabrata Goswami is a became the third woman to have ever won the Physics Nobel Senior Professor at Indian Prize, and the 96-year-old Arthur Ashkin who was awarded Institute of Technology Kanpur, and holds the for his work on optical tweezers and their application to bi- endowed Prof. S Sampath ological systems, became the oldest Nobel Prize winner. Ac- Chair Professorship of cording to Nobel.org, the practical applications leading to the Chemistry. His research work Prize in 2018 are tools made of light that have revolutionised spans across frontiers of interdisciplinary research laser physics – a discipline which in turn is represented by with femtosecond lasers that generations of advancements and not just a single example of have been recognised brilliant work. globally, the latest being the 2018 Galileo Galilei Award of It is easy to take lasers for granted; more so in 2018, as they are the International Commission a near-ubiquitous symbol of technological acumen. Light may be of Optics. As a part of his doctoral thesis at Princeton, a wave, but producing coherent (in-phase), monochromatic (of a Prof. -
The Nobel Prize in Physics 2018 the Royal Swedish Academy of Sciences Has Decided to Award the Nobel Prize in Physics 2018
PRESS RELEASE 2 October 2018 The Nobel Prize in Physics 2018 The Royal Swedish Academy of Sciences has decided to award the Nobel Prize in Physics 2018 “for groundbreaking inventions in the field of laser physics” with one half to and the other half jointly to Arthur Ashkin Gérard Mourou Donna Strickland Bell Laboratories, Holmdel, USA École Polytechnique, Palaiseau, France University of Waterloo, Canada University of Michigan, Ann Arbor, USA “for the optical tweezers and their “for their method of generating high-intensity, application to biological systems” ultra-short optical pulses” Tools made of light The inventions being honoured this year have revo- the amplifying material. First they stretched the laser lutionised laser physics. Extremely small objects pulses in time to reduce their peak power, then amplified and incredibly rapid processes are now being seen them, and finally compressed them. If a pulse is compres- in a new light. Advanced precision instruments are sed in time and becomes shorter, then more light is packed opening up unexplored areas of research and a together in the same tiny space – the intensity of the pulse multitude of industrial and medical applications. increases dramatically. Arthur Ashkin invented optical tweezers that grab Strickland and Mourou’s newly invented technique, particles, atoms, viruses and other living cells with their called chirped pulse amplification, CPA, soon became stan- laser beam fingers. This new tool allowed Ashkin to rea- dard for subsequent high-intensity lasers. Its uses include lise an old dream of science fiction – using the radiation the millions of corrective eye surgeries that are conducted pressure of light to move physical objects. -
Frontiers in Optics 2010/Laser Science XXVI
Frontiers in Optics 2010/Laser Science XXVI FiO/LS 2010 wrapped up in Rochester after a week of cutting- edge optics and photonics research presentations, powerful networking opportunities, quality educational programming and an exhibit hall featuring leading companies in the field. Headlining the popular Plenary Session and Awards Ceremony were Alain Aspect, speaking on quantum optics; Steven Block, who discussed single molecule biophysics; and award winners Joseph Eberly, Henry Kapteyn and Margaret Murnane. Led by general co-chairs Karl Koch of Corning Inc. and Lukas Novotny of the University of Rochester, FiO/LS 2010 showcased the highest quality optics and photonics research—in many cases merging multiple disciplines, including chemistry, biology, quantum mechanics and materials science, to name a few. This year, highlighted research included using LEDs to treat skin cancer, examining energy trends of communications equipment, quantum encryption over longer distances, and improvements to biological and chemical sensors. Select recorded sessions are now available to all OSA members. Members should log in and go to “Recorded Programs” to view available presentations. FiO 2010 also drew together leading laser scientists for one final celebration of LaserFest – the 50th anniversary of the first laser. In honor of the anniversary, the conference’s Industrial Physics Forum brought together speakers to discuss Applications in Laser Technology in areas like biomedicine, environmental technology and metrology. Other special events included the Arthur Ashkin Symposium, commemorating Ashkin's contributions to the understanding and use of light pressure forces on the 40th anniversary of his seminal paper “Acceleration and trapping of particles by radiation pressure,” and the Symposium on Optical Communications, where speakers reviewed the history and physics of optical fiber communication systems, in honor of 2009 Nobel Prize Winner and “Father of Fiber Optics” Charles Kao. -
89 (Phd), a Self-Described “Laser Jock,” Receives the Nobel Prize, Along with Her Advisor, Gérard Mourou, for Work They Did at the Laboratory for Laser Energetics
Donna Strickland ’89 (PhD), a self-described “laser jock,” receives the Nobel Prize, along with her advisor, Gérard Mourou, for work they did at the Laboratory for Laser Energetics. By Lindsey Valich Donna Strickland ’89 (PhD) still recalls the visit she took to the On- tario Science Centre when she was a child growing up in the town of Guelph, outside Toronto. Her father pointed to a laser display. “ ‘Donna, this is the way of the future,’ ” Strickland remembers him telling her. Lloyd Strickland, an electrical engineer, along with Donna’s moth- er, sister, and brother, was part of the family that “continually sup- ported and encouraged me through all my years of education,” Donna Strickland wrote in the acknowledgments of her PhD thesis, “De- velopment of an Ultra-Bright Laser and an Application to Multi- Photon Ionization.” She was captivated by that laser display. And since then, she says, “I’ve always thought lasers were cool.” Her passion for laser science research and her commitment to be- ing a “laser jock,” as she has called herself, has led her across North America, from Canada to the United States and back again. But it’s the work that she did as a graduate student at Rochester in the 1980s that has earned her the remarkable accolade of Nobel Prize laureate. When Strickland entered the University’s graduate program in op- tics, laser physicists were grappling with a thorny problem: how could they create ultrashort, high-intensity laser pulses that wouldn’t de- stroy the very material the laser was used to explore in the first place? Working with former Rochester engineering professor Gérard Mourou, Strickland developed and made workable a method to over- come the barrier. -
Contributions of Civilizations to International Prizes
CONTRIBUTIONS OF CIVILIZATIONS TO INTERNATIONAL PRIZES Split of Nobel prizes and Fields medals by civilization : PHYSICS .......................................................................................................................................................................... 1 CHEMISTRY .................................................................................................................................................................... 2 PHYSIOLOGY / MEDECINE .............................................................................................................................................. 3 LITERATURE ................................................................................................................................................................... 4 ECONOMY ...................................................................................................................................................................... 5 MATHEMATICS (Fields) .................................................................................................................................................. 5 PHYSICS Occidental / Judeo-christian (198) Alekseï Abrikossov / Zhores Alferov / Hannes Alfvén / Eric Allin Cornell / Luis Walter Alvarez / Carl David Anderson / Philip Warren Anderson / EdWard Victor Appleton / ArthUr Ashkin / John Bardeen / Barry C. Barish / Nikolay Basov / Henri BecqUerel / Johannes Georg Bednorz / Hans Bethe / Gerd Binnig / Patrick Blackett / Felix Bloch / Nicolaas Bloembergen -
Nobel Physics Honours Dark Matter, Exoplanets
WEDNESDAY, OCTOBER 9, 2019 06 Nobel Physics honours dark matter, exoplanets This year’s Physics Laureates Michel Mayor and Didier Queloz have explored our home galaxy, the Milky Way, looking for unknown worlds. In 1995, they made the first discovery of a planet outside our solar system, an exoplanet, orbiting a solar-type star, 51 Pegasi. • The 2019 #NobelPrize The discovery by 2019 #NobelPrize in Physics has been laureates Michel Mayor and Didier awarded with one half Queloz started a revolution in as- to James Peebles “for tronomy and over 4,000 exoplanets theoretical discoveries have since been found in the Milky KNOW WHAT Goran K Hansson (c), Secretary General of the Royal Swedish Academy of in physical cosmology” Way. Strange new worlds are still Sciences, and academy members Mats Larrson (L) and Ulf Danielsson, announce being discovered, with an incredible winners of the 2019 Nobel Prize in Physics during a news conference at the Royal The other half wealth of sizes, forms and orbits. Swedish Academy of Sciences in Stockholm, Sweden jointly• to Michel Mayor and Didier Queloz “simply extraordinary”, saying ‘Revolution in astronomy’ the discovery was “the most ex- “for the discovery of citing of our careers”. an exoplanet orbiting His work showed that the The prize consists of a gold a solar-type star” matter known to us -- such as medal, a diploma and the sum stars, planets, and ourselves of nine million Swedish kronor AFP | Stockholm -- only make up five percent, (about $914,000 or 833,000 eu- while the other 95 are made up ros). -
Nobel Lecture: Optical Tweezers and Their Application to Biological Systems
65 Optical Tweezers and their Application to Biological Systems Nobel Lecture, December 8, 2018 by Arthur Ashkin* Bell Laboratories, Holmdel, NJ, USA. it is a pleasure to present this summary of my 2018 Physics Nobel Lecture [1] that was delivered in Stockholm, Sweden, on December 8, 2018 by my fellow Bell Labs scientist and friend René-Jean Essiambre. This summary is presented chronologically as in the Lecture. It starts with my fascination with light as a youngster and goes on to the invention of the optical tweezer and its applications to biological systems, the work that was recognized with a Nobel Prize. Along the way, I provide simple and intuitive explanations of how the optical tweezer can be understood to work. This document is a personal recollection of events that led me to invent the optical tweezer. It should not be interpreted as being complete in the historical attribution of the scientifc discoveries discussed here. CROOKES RADIOMETER: THERMAL EFFECTS I have always been fascinated by the forces that light can exert on objects. I started to play with a Crookes radiometer [2] in my early teenage years and tried all kinds of experiments with it. I learned that thermal efects can explain the motion of the Crookes radiometer. * Arthur Ashkin's Nobel Lecture was delivered by René-Jean Essiambre. 66 THE NOBEL PRIZES Figure 1. Crookes radiometer: a) side view b) top view showing the direction of rotation. Thermal effects are responsible for the rotation of the vanes. Black surfaces absorb light which heats up the surface. In contrast, metallic surfaces refect light with negligible heat generation.