Highlights of Modern Physics and Astrophysics

Total Page:16

File Type:pdf, Size:1020Kb

Highlights of Modern Physics and Astrophysics Highlights of Modern Physics and Astrophysics How to find the “Top Ten” in Physics & Astrophysics? - List of Nobel Laureates in Physics - Other prizes? Templeton prize, … - Top Citation Rankings of Publication Search Engines - Science News … - ... Nobel Laureates in Physics Year Names Achievement 2020 Sir Roger Penrose "for the discovery that black hole formation is a robust prediction of the general theory of relativity" Reinhard Genzel, Andrea Ghez "for the discovery of a supermassive compact object at the centre of our galaxy" 2019 James Peebles "for theoretical discoveries in physical cosmology" Michel Mayor, Didier Queloz "for the discovery of an exoplanet orbiting a solar-type star" 2018 Arthur Ashkin "for groundbreaking inventions in the field of laser physics", in particular "for the optical tweezers and their application to Gerard Mourou, Donna Strickland biological systems" "for groundbreaking inventions in the field of laser physics", in particular "for their method of generating high-intensity, ultra-short optical pulses" Nobel Laureates in Physics Year Names Achievement 2017 Rainer Weiss "for decisive contributions to the LIGO detector and the Kip Thorne, Barry Barish observation of gravitational waves" 2016 David J. Thouless, "for theoretical discoveries of topological phase transitions F. Duncan M. Haldane, and topological phases of matter" John M. Kosterlitz 2015 Takaaki Kajita, "for the discovery of neutrino oscillations, which shows that Arthur B. MsDonald neutrinos have mass" 2014 Isamu Akasaki, "for the invention of efficient blue light-emitting diodes which has Hiroshi Amano, enabled bright and energy-saving white light sources" Shuji Nakamura 2013 Francois Englert, "for the theoretical discovery of a mechanism that contributes to Peter Higgs our understanding of the origin of mass of subatomic particles, and which recently was confirmed through the discovery of the predicted fundamental particle, by the ATLAS and CMS experiments at CERN's Large Hadron Collider" Nobel Laureates in Physics Year Names Achievement 2012 Serge Haroche, "for ground-breaking experimental methods that enable David J. Wineland measuring and manipulation of individual quantum systems." 2011 Saul Perlmutter, "for the discovery of the accelerating expansion of the Universe Brian P. Schmidt, through observations of distant supernovae" Adam G. Riess 2010 Andre Geim, "for groundbreaking experiments regarding the two-dimensional Konstantin Novoselov material graphene" 2009 Charles K. Kao "for groundbreaking achievements concerning the transmission of light in fibers for optical communication" William S. Boyle, George E. Smith "for the invention of an imaging semiconductor circuit – the CCD sensor" 2008 Makoto Kobayashi, "for the discovery of the origin of the broken symmetry which predicts Toshihide Masakawa the existence of at least three families of quarks in nature" Yoichiro Nambu "for the discovery of the mechanism of spontaneous broken symmetry in subatomic physics" Nobel Laureates in Physics Year Names Achievement 2007 Albert Fert, "for the discovery of giant magnetoresistance" Peter Grünberg 2006 John C. Mather, "for their discovery of the blackbody form and anisotropy of the George F. Smoot cosmic microwave background radiation" 2005 Roy Glauber "for his contribution to the quantum theory of optical coherence" John L. Hall, "for their contributions to the development of laser-based precision Theodor W. Hänsch spectroscopy, including the optical frequency comb technique" 2004 David J. Gross, "for the discovery of asymptotic freedom in the theory of the Hugh David Politzer, strong interaction" Frank Wilczek 2003 Alexei Alexeyevich Abrikosov, "for pioneering contributions to the theory of superconductors and Vitali Lazarevich Ginzburg, superfluids" Anthony James Leggett https://en.wikipedia.org/wiki/List_of_Nobel_laureates_in_Physics Nobel Laureates in Physics Year Names Achievement 2002 Raymond Davis Jr., "for pioneering contributions to astrophysics, in particular for Masatobi Koshiba the detection of cosmic neutrinos" Riccardo Giacconi "for pioneering contributions to astrophysics, which have led to the discovery of cosmic X-ray sources" 2001 Eric Allin Cornell, "for the achievement of Bose–Einstein condensation in dilute Carl Edwin Wiemann, gases of alkali atoms, and for early fundamental studies of the Wolfgang Ketterle properties of the condensates" 2000 Zhores Ivanovich Alferov, "for developing semiconductor heterostructures used in high-speed- Herbert Kroemer and optoelectronics" Jack St. Clair Kilby "for his part in the invention of the integrated circuit" 1999 Gerard ‘t Hooft, "for elucidating the quantum structure of electroweak interactions in Martinus J. G. Veltman physics" 1998 Robert B. Laughlin, "for their discovery of a new form of quantum fluid with fractionally Horst Ludwig Störmer, charged excitations" Daniel Chee Tsui Templeton Prize Awarded for “achievements that advance Sir John Templeton's philanthropic vision: harnessing the power of the sciences to explore the deepest questions of the universe and humankind’s place and purpose within it.” Laureates (selection) 1989 Carl Friedrich Freiherr von Weizsäcker 1995 Paul Davies 2000 Freeman Dyson 2004 George F. R. Ellis 2005 Charles Hard Townes 2006 John D. Barrow 2008 Michal Heller 2011 Martin Rees 2019 Marcelo Gleiser Presentations of Highlights No. Topic Name Date 1 Quantum Information Science: Entanglement, Teleportation, 11.3. Non-destructive Quantum Measurement Rafal Młynarczykowski 2a LIGO-Virgo Collab – The art of gravitational wave detectors Jan Boreczek 18.3. 2b Detection of BBH, BNS and NSBH mergers and implications 3 X-ray observatories: ROSAT, Chandra, XMM, NICER, eROSITA Natalia Posiłek 15.4. … Radius, Mass and Cooling of Neutron Stars 4 Exoplanets: Observations and Plasma Physics of Giant Planets Piotr Zawadzki 6.5. 5 CMB Radiation: Detection and Precision Cosmology Agnieszka Kopacz 1.4. 6a High-Intensity Lasers: Table-Top Fundamental Physics Katarzyna Kowalska 29.4. 6b Attosecond Lasers: Watching chemical processes Daria Smolenchenko 29.4. 7 Graphene: Super Material for Applied and Fundamental Science Mateusz Ślęczek 15.4. 8 Neutrino Oscillations: Detectors and Beyond Standard Model Natalia Maleszewska 22.4. Presentations of Highlights No. Topic Name Date 9 Resurgence and Trans-series: Towards nonperturbative QFT 6.5. 10 EPR Paradox, Bell Inequalities and Quantum Entanglement Maciej Gromek 20.5. 11 Black Holes: From General Relativity to Information Paradox Dmytro Konakhovych 8.4. 12a Atoms in Traps: Creating a Bose-Einstein Condensate Ewa Klajmon 3.6. 12b Atomic superfluids: Lab tests of Quantum Many-Body Theories Adrian Wójcik 3.6. 13 Origin of Particle Masses: Higgs vs. Chiral Symmetry Breaking Michalina Puławska 25.3. 14 Deconfinement: Heavy-Ion Collision and LQCD Experiments Radoslaw Wnęk 27.5. 15 Deconfinement in Cold Dense Matter: Neutron Stars & Jakub Krajewski 10.6. Mergers 16 17 18 Students and their Topics in this Seminar No. Last name First names # Title Date 1. Boreczek Jan Robert 2 LIGO-Virgo Collab – gravitational wave detection from BBH, BNS and NSBH 18.3. mergers and their implications 2. Gromek Maciej 10 EPR Paradox, Bell Inequalities and Quantum Entanglement 20.5. 3. Klajmon Ewa Dorota 12a Atoms in Traps: Creating a Bose-Einstein Condensate 3.6. 4. Konakhovych Dmytro 11 Black Holes: From General Relativity to Information Paradox 8.4. 5. Kopacz Agnieszka Czesława 5 CMB Radiation: Detection and Precision Cosmology 1.4. 6. Kowalska Katarzyna Aleksandra 6a High-Intensity Lasers: Table-Top Fundamental Physics 29.4. 7. Krajewski Jakub Marcin 15 Deconfinement in Cold Dense Matter: Neutron Stars & Mergers 10.6. 8. Maleszewska Natalia Cecylia 8 Neutrino Oscillations: Detectors and Beyond Standard Model 22.4. 9. Młynarczykowski Rafał 1 Quantum Information Science: Entanglement, Teleportation, Non-destructive 11.3. Quantum Measurement 10. Posiłek Natalia Zofia 3 X-ray observatories: ROSAT, Chandra, XMM, NICER, eROSITA … Radius, Mass and 15.4. Cooling of Neutron Stars 11. Puławska Michalina Maria 13 Origin of Particle Masses: Higgs vs. Chiral Symmetry Breaking 25.3. 12. Ślęczek Mateusz 7 Graphene: Super Material for Applied and Fundamental Science 15.4. 13. Smolenchenko Daria 6b Attosecond Lasers: Watching chemical processes 29.4. 14. Wnęk Radosław Jerzy 14 Deconfinement in Cold Dense Matter: Neutron Stars & Mergers 17.5. 15. Wójcik Adrian 12b Atomic superfluids: Lab tests of Quantum Many-Body Theories 3.6. 16. Zawadzki Piotr Roman 4 Exoplanets: Observations and Plasma Physics of Giant Planets 6.5..
Recommended publications
  • Unrestricted Immigration and the Foreign Dominance Of
    Unrestricted Immigration and the Foreign Dominance of United States Nobel Prize Winners in Science: Irrefutable Data and Exemplary Family Narratives—Backup Data and Information Andrew A. Beveridge, Queens and Graduate Center CUNY and Social Explorer, Inc. Lynn Caporale, Strategic Scientific Advisor and Author The following slides were presented at the recent meeting of the American Association for the Advancement of Science. This project and paper is an outgrowth of that session, and will combine qualitative data on Nobel Prize Winners family histories along with analyses of the pattern of Nobel Winners. The first set of slides show some of the patterns so far found, and will be augmented for the formal paper. The second set of slides shows some examples of the Nobel families. The authors a developing a systematic data base of Nobel Winners (mainly US), their careers and their family histories. This turned out to be much more challenging than expected, since many winners do not emphasize their family origins in their own biographies or autobiographies or other commentary. Dr. Caporale has reached out to some laureates or their families to elicit that information. We plan to systematically compare the laureates to the population in the US at large, including immigrants and non‐immigrants at various periods. Outline of Presentation • A preliminary examination of the 609 Nobel Prize Winners, 291 of whom were at an American Institution when they received the Nobel in physics, chemistry or physiology and medicine • Will look at patterns of
    [Show full text]
  • Donna Strickland '89 (Phd), a Self-Described “Laser Jock,” Receives
    Donna Strickland ’89 (PhD), a self-described “laser jock,” receives the Nobel Prize, along with her advisor, Gérard Mourou, for work they did at the Laboratory for Laser Energetics. By Lindsey Valich Donna Strickland ’89 (PhD) still recalls the visit she took to the On- tario Science Centre when she was a child growing up in the town of Guelph, outside Toronto. Her father pointed to a laser display. “ ‘Donna, this is the way of the future,’ ” Strickland remembers him telling her. Lloyd Strickland, an electrical engineer, along with Donna’s moth- er, sister, and brother, was part of the family that “continually sup- ported and encouraged me through all my years of education,” Donna Strickland wrote in the acknowledgments of her PhD thesis, “De- velopment of an Ultra-Bright Laser and an Application to Multi- Photon Ionization.” She was captivated by that laser display. And since then, she says, “I’ve always thought lasers were cool.” Her passion for laser science research and her commitment to be- ing a “laser jock,” as she has called herself, has led her across North America, from Canada to the United States and back again. But it’s the work that she did as a graduate student at Rochester in the 1980s that has earned her the remarkable accolade of Nobel Prize laureate. When Strickland entered the University’s graduate program in op- tics, laser physicists were grappling with a thorny problem: how could they create ultrashort, high-intensity laser pulses that wouldn’t de- stroy the very material the laser was used to explore in the first place? Working with former Rochester engineering professor Gérard Mourou, Strickland developed and made workable a method to over- come the barrier.
    [Show full text]
  • Frank Wilczek on the World's Numerical Recipe
    Note by All too often, we ignore goals, genres, or Frank Wilczek values, or we assume that they are so apparent that we do not bother to high- light them. Yet judgments about whether an exercise–a paper, a project, an essay Frank Wilczek response on an examination–has been done intelligently or stupidly are often on the dif½cult for students to fathom. And since these evaluations are not well world’s understood, few if any lessons can be numerical drawn from them. Laying out the criteria recipe by which judgments of quality are made may not suf½ce in itself to improve qual- ity, but in the absence of such clari½- cation, we have little reason to expect our students to go about their work intelligently. Twentieth-century physics began around 600 b.c. when Pythagoras of Samos pro- claimed an awesome vision. By studying the notes sounded by plucked strings, Pythagoras discovered that the human perception of harmony is connected to numerical ratios. He examined strings made of the same material, having the same thickness, and under the same tension, but of different lengths. Under these conditions, he found that the notes sound harmonious precisely when the ratio of the lengths of string can be expressed in small whole numbers. For example, the length ratio Frank Wilczek, Herman Feshbach Professor of Physics at MIT, is known, among other things, for the discovery of asymptotic freedom, the develop- ment of quantum chromodynamics, the invention of axions, and the discovery and exploitation of new forms of quantum statistics (anyons).
    [Show full text]
  • Dc Josephson Current Between an Isotropic and a D-Wave Or Extended S-Wave Partially Gapped Charge Density Wave Superconductor
    Chapter 12 dc Josephson Current Between an Isotropic and a d-Wave or Extended s-Wave Partially Gapped Charge Density Wave Superconductor Alexander M. Gabovich, Suan Li Mai, Henryk Szymczak and Alexander I. Voitenko Additional information is available at the end of the chapter http://dx.doi.org/10.5772/46073 1. Introduction The discovery and further development of superconductivity is extremely interesting because of its pragmatic (practical) and purely academic reasons. At the same time, the superconductivity science is very remarkable as an important object for the study in the framework of the history and methodology of science, since all the details are well documented and well-known to the community because of numerous interviews by participants including main heroes of the research and the fierce race for higher critical temperatures of the superconducting transition, Tc. Moreover, the whole science has well-documented dates, starting from the epoch-making discovery of the superconducting transition by Heike Kamerlingh-Onnes in 1911 [1–7], although minor details of this and, unfortunately, certain subsequent discoveries in the field were obscured [8–11]. As an illustrative example of a senseless dispute on the priority, one can mention the controversy between the recognition of Bardeen-Cooper-Schrieffer (BCS) [12] and Bogoliubov [13] theories. If one looks beyond superconductivity, it is easy to find quite a number of controversies in different fields of science [14, 15]. Recent attempts [16–18] to contest and discredit the Nobel Committee decision on the discovery of graphene by Andre Geim and Kostya Novoselov [19, 20] are very typical. The reasons of a widespread disagreement concerning various scientific discoveries consist in a continuity of scientific research process and a tense competition between different groups, as happened at liquefying helium and other cryogenic gases [9, 21–24] and was reproduced in the course of studying graphite films [25, 26].
    [Show full text]
  • Isamu Akasaki(Professor at Meijo University
    Nanotechnology and Materials (FY2016 update) Meeting the challenge of "impossible" technology Succeeded in the practical implementation of blue light-emitting diode! Research in the unattainable territory that won the Nobel Prize The 2014 Nobel Physics Prize was presented to blue LED. The development of blue LED resulted in the three researchers, Professor Isamu Akasaki, Professor commercialization of much brighter and energy-saving Hiroshi Amano and Professor Shuji Nakamura for the white light, thus contributing to energy conservation invention of an efficient blue light-emitting diode (LED). in the world and an improvement of people's lives in Red LEDs and yellow-green LEDs were developed in the areas without sufficient electricity. In addition to their 1960s; however, practical implementation of blue LEDs use as light sources, blue LEDs are now being widely was so difficult that it was even said that "it would be applied in various fields such as information technology, impossible to realize blue LEDs by the end of the 20th transportation, medicine and agriculture. Additionally, century." Amid such a circumstance, Professor Akasaki, the technology to put gallium nitride into practical Professor Amano and Professor Nakamura worked on implementation developed by the three researchers is the high-quality single crystallization and the p-type expected to find various applications in the future, such doping of gallium nitride (GaN), both of which had been as an application in power devices that serve as electric given up by researchers around the world. Their efforts power converters in electric vehicles and smart grids, from the 1980s to the 1990s finally led to their success next-generation power distribution grids,.
    [Show full text]
  • DONNA STRICKLAND, PH.D. Professor, University of Waterloo
    DONNA STRICKLAND, PH.D. Professor, University of Waterloo Donna Strickland is a professor in the Department of Physics and Astronomy at the University of Waterloo and is one of the recipients of the Nobel Prize in Physics 2018 for developing chirped pulse amplification with Gérard Mourou, her PhD supervisor at the time. They published this Nobel-winning research in 1985 when Strickland was a PhD student at the University of Rochester in New York state. Together they paved the way toward the most intense laser pulses ever created. The research has several applications today in industry and medicine — including the cutting of a patient’s cornea in laser eye surgery, and the machining of small glass parts for use in cell phones. Strickland was a research associate at the National Research Council Canada, a physicist at Lawrence Livermore National Laboratory and a member of technical staff at Princeton University. In 1997, she joined the University of Waterloo, where her ultrafast laser group develops high-intensity laser systems for nonlinear optics investigations. Strickland was named a Companion of the Order of Canada. She is a recipient of a Sloan Research Fellowship, a Premier’s Research Excellence Award and a Cottrell Scholar Award. She received the Rochester Distinguished Scholar Award and the Eastman Medal from the University of Rochester. Strickland served as the president of the Optical Society (OSA) in 2013 and is a fellow of OSA, the Royal Society of Canada, and SPIE (International Society for Optics and Photonics). She is an honorary fellow of the Canadian Academy of Engineering as well as the Institute of Physics.
    [Show full text]
  • Nobel Laureates Endorse Joe Biden
    Nobel Laureates endorse Joe Biden 81 American Nobel Laureates in Physics, Chemistry, and Medicine have signed this letter to express their support for former Vice President Joe Biden in the 2020 election for President of the United States. At no time in our nation’s history has there been a greater need for our leaders to appreciate the value of science in formulating public policy. During his long record of public service, Joe Biden has consistently demonstrated his willingness to listen to experts, his understanding of the value of international collaboration in research, and his respect for the contribution that immigrants make to the intellectual life of our country. As American citizens and as scientists, we wholeheartedly endorse Joe Biden for President. Name Category Prize Year Peter Agre Chemistry 2003 Sidney Altman Chemistry 1989 Frances H. Arnold Chemistry 2018 Paul Berg Chemistry 1980 Thomas R. Cech Chemistry 1989 Martin Chalfie Chemistry 2008 Elias James Corey Chemistry 1990 Joachim Frank Chemistry 2017 Walter Gilbert Chemistry 1980 John B. Goodenough Chemistry 2019 Alan Heeger Chemistry 2000 Dudley R. Herschbach Chemistry 1986 Roald Hoffmann Chemistry 1981 Brian K. Kobilka Chemistry 2012 Roger D. Kornberg Chemistry 2006 Robert J. Lefkowitz Chemistry 2012 Roderick MacKinnon Chemistry 2003 Paul L. Modrich Chemistry 2015 William E. Moerner Chemistry 2014 Mario J. Molina Chemistry 1995 Richard R. Schrock Chemistry 2005 K. Barry Sharpless Chemistry 2001 Sir James Fraser Stoddart Chemistry 2016 M. Stanley Whittingham Chemistry 2019 James P. Allison Medicine 2018 Richard Axel Medicine 2004 David Baltimore Medicine 1975 J. Michael Bishop Medicine 1989 Elizabeth H. Blackburn Medicine 2009 Michael S.
    [Show full text]
  • Nfap Policy Brief » O C T O B E R 2017
    NATIONAL FOUNDATION FOR AMERICAN POLICY NFAP POLICY BRIEF» O CTOBER 2017 IMMIGRANTS AND NOBEL PRIZES : 1901- 2017 EXECUTIVE SUMMARY Immigrants have been awarded 39 percent, or 33 of 85, of the Nobel Prizes won by Americans in Chemistry, Medicine and Physics since 2000. In 2017, the sole American winner of the Nobel Prize in Chemistry was an immigrant, Joachim Frank, a Columbia University professor born in Germany. Immigrant Reiner Weiss, who was born in Germany and came to the United States as a teenager, was awarded the 2017 Nobel Prize in Physics, sharing it with two other Americans, Kip S. Thorne and Barry C. Barish. In 2016, all 6 American winners of the Nobel Prize in economics and scientific fields were immigrants. These achievements by immigrants point to the gains to America of welcoming talent from across the globe. It does not mean America should welcome only Nobel Prize winners. Such a policy would be impossible to implement, since most immigrant Nobel Prize winners enter the United States many years before being awarded this honor. Most people immigrate to another country in their 20s, particularly employment-based immigrants, who either study in America or come here to work shortly after obtaining a degree abroad. The average of age of Nobel Prize winners at the time of the award is 59.5 years, according to economist Mark J. Perry.1 Table 1 Immigrant Nobel Prize Winners in Chemistry, Medicine and Physics Since 2000 Immigrant Nobel Winners Since 2000 33 of 85 American winners have been immigrants Percentage of Immigrant Winners Since 2000 39% Source: Royal Swedish Academy of Sciences, National Foundation for American Policy, George Mason University Institute for Immigration Research.
    [Show full text]
  • 1 / 3 Anwendungen Von Festkörperphysik 1 / 4
    1 / 3 Anwendungen von Festkörperphysik Elektronik/Optoelektronik 1 / 4 Anwendungen von Festkörperphysik Organische (Opto-)elektronik Selbstreinigende Oberflächen Energietechnologie 2 1 / 5 Anwendungen von Festkörperphysik „intelligente“ Materialien Schaltbare Molekülschichten Magnetoelektrische Sensoren „Brain-Maschine-Interface“ 1 / 6 Nobelpreise für Physik zu festkörperphysikalischen Themen 1913 Heike Kamerlingh Onnes 1914 Max von Laue 1915 William Henry Bragg, William Lawrence Bragg 1920 Charles Edouard Guillaume 1921 Albert Einstein 1923 Robert Andrews Millikan Details siehe 1924 Karl Manne Siegbahn 1926 Jean Baptiste Perrin http://almaz.com/nobel/ 1937 Clinton Davisson, George Paget physics/physics.html 1946 Percy W. Bridgman 1956 William B. Shockley, John Bardeen und Walter H. Brattain 1961 Rudolf Mößbauer 1962 Lev Landau 1971 Louis Néel 1972 John Bardeen, Leon Neil Cooper, Robert Schrieffer 1973 Leo Esaki, Ivar Giaever, Brian Davon Josephson 1977 Philip W. Anderson, Nevill F. Mott, John H. van Vleck 1978 Pjotr Kapiza 1982 Kenneth G. Wilson 1985 Klaus von Klitzing 1986 Ernst Ruska, Gerd Binnig, Heinrich Rohrer 1987 Johannes Georg Bednorz, Karl Alex Müller 1991 Pierre-Gilles de Gennes 1994 Bertram N. Brockhouse, Clifford Glenwood Shull 1996 David M. Lee, Douglas D. Osheroff, Robert C. Richardson 1998 Robert B. Laughlin, Horst Ludwig Störmer, Daniel Chee Tsui 2000 Schores Alfjorow, Herbert Kroemer, Jack S. Kilby 2001 Eric A. Cornell, Wolfgang Ketterle, Carl E. Wieman 2003 Alexei Abrikossow, Witali Ginsburg, Anthony James Leggett 2007
    [Show full text]
  • Arthur Ashkin (1922 - 2020)
    September 2020 IN MEMORIAM Arthur Ashkin (1922 - 2020) Arthur Ashkin, IEEE Life Fellow, Throughout his life, Art also never failed to considered “the father of optical tweezers” mention the contributions of his for which he was awarded the Nobel Prize colleagues at Bell Labs that helped him in Physics 2018, has passed away at the achieve scientific breakthroughs, age of 98. especially his assistant Joseph Dziedzic. The IEEE Photonics Society and its And, the most significant support Ashkin members mourn this great loss of a friend, ever received is from Aline, his wife of 66 colleague and pioneer in the fields of years, who he met in college at Cornell optics and photonics. University. She herself is well trained in chemistry and taught at Holmdel High Art, as he was known in the community, School in New Jersey. One can find a worked most of his career at AT&T Bell comprehensive historical account of the Laboratories, from 1952 to 1991. There he scientific development of optical trapping began his work on manipulation of in a book written by Ashkin with the help microparticles with laser light in the late of Aline. 1960s which resulted in the invention of optical tweezers in 1986. He also Together, he and Aline raised three pioneered the optical trapping process. children and five grandchildren. Such traps have found a wide range of important and unique applications. They Ashkin was a mentor, collaborator, and are used to manipulate small objects friend to many within the scientific down to the size of atoms. community. René-Jean Essiambre, a close friend and mentee who presented This includes “small living things”, as the Nobel Lecture in Physics for Ashkin in Ashkin liked to say, such as viruses, 2018, expressed the profound impact he bacteria, living cells, organelles within had on the optics and photonics fields.
    [Show full text]
  • PDF) Submittals Are Preferred) and Information Particle and Astroparticle Physics As Well As Accelerator Physics
    CERNNovember/December 2019 cerncourier.com COURIERReporting on international high-energy physics WELCOME CERN Courier – digital edition Welcome to the digital edition of the November/December 2019 issue of CERN Courier. The Extremely Large Telescope, adorning the cover of this issue, is due to EXTREMELY record first light in 2025 and will outperform existing telescopes by orders of magnitude. It is one of several large instruments to look forward to in the decade ahead, which will also see the start of high-luminosity LHC operations. LARGE TELESCOPE As the 2020s gets under way, the Courier will be reviewing the LHC’s 10-year physics programme so far, as well as charting progress in other domains. In the meantime, enjoy news of KATRIN’s first limit on the neutrino mass (p7), a summary of the recently published European strategy briefing book (p8), the genesis of a hadron-therapy centre in Southeast Europe (p9), and dispatches from the most interesting recent conferences (pp19—23). CLIC’s status and future (p41), the abstract world of gauge–gravity duality (p44), France’s particle-physics origins (p37) and CERN’s open days (p32) are other highlights from this last issue of the decade. Enjoy! To sign up to the new-issue alert, please visit: http://comms.iop.org/k/iop/cerncourier To subscribe to the magazine, please visit: https://cerncourier.com/p/about-cern-courier KATRIN weighs in on neutrinos Maldacena on the gauge–gravity dual FPGAs that speak your language EDITOR: MATTHEW CHALMERS, CERN DIGITAL EDITION CREATED BY IOP PUBLISHING CCNovDec19_Cover_v1.indd 1 29/10/2019 15:41 CERNCOURIER www.
    [Show full text]
  • Facts and Figures 2013
    Facts and Figures 201 3 Contents The University 2 World ranking 4 Academic pedigree 6 Areas of impact 8 Research power 10 Spin-outs 12 Income 14 Students 16 Graduate careers 18 Alumni 20 Faculties and Schools 22 Staff 24 Estates investment 26 Visitor attractions 28 Widening participation 30 At a glance 32 1 The University of Manchester Our Strategic Vision 2020 states our mission: “By 2020, The University of Manchester will be one of the top 25 research universities in the world, where all students enjoy a rewarding educational and wider experience; known worldwide as a place where the highest academic values and educational innovation are cherished; where research prospers and makes a real difference; and where the fruits of scholarship resonate throughout society.” Our core goals 1 World-class research 2 Outstanding learning and student experience 3 Social responsibility 2 3 World ranking The quality of our teaching and the impact of our research are the cornerstones of our success. 5 The Shanghai Jiao Tong University UK Academic Ranking of World ranking Universities assesses the best teaching and research universities, and in 2012 we were ranked 40th in the world. 7 World European UK European Year Ranking Ranking Ranking ranking 2012 40 7 5 2010 44 9 5 2005 53 12 6 2004* 78* 24* 9* 40 Source: 2012 Shanghai Jiao Tong University World Academic Ranking of World Universities ranking *2004 ranking refers to the Victoria University of Manchester prior to the merger with UMIST. 4 5 Academic pedigree Nobel laureates 1900 JJ Thomson , Physics (1906) We attract the highest calibre researchers and Ernest Rutherford , Chemistry (1908) teachers, boasting 25 Nobel Prize winners among 1910 William Lawrence Bragg , Physics (1915) current and former staff and students.
    [Show full text]