Nobel Prize in Physics – 2018
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Unrestricted Immigration and the Foreign Dominance Of
Unrestricted Immigration and the Foreign Dominance of United States Nobel Prize Winners in Science: Irrefutable Data and Exemplary Family Narratives—Backup Data and Information Andrew A. Beveridge, Queens and Graduate Center CUNY and Social Explorer, Inc. Lynn Caporale, Strategic Scientific Advisor and Author The following slides were presented at the recent meeting of the American Association for the Advancement of Science. This project and paper is an outgrowth of that session, and will combine qualitative data on Nobel Prize Winners family histories along with analyses of the pattern of Nobel Winners. The first set of slides show some of the patterns so far found, and will be augmented for the formal paper. The second set of slides shows some examples of the Nobel families. The authors a developing a systematic data base of Nobel Winners (mainly US), their careers and their family histories. This turned out to be much more challenging than expected, since many winners do not emphasize their family origins in their own biographies or autobiographies or other commentary. Dr. Caporale has reached out to some laureates or their families to elicit that information. We plan to systematically compare the laureates to the population in the US at large, including immigrants and non‐immigrants at various periods. Outline of Presentation • A preliminary examination of the 609 Nobel Prize Winners, 291 of whom were at an American Institution when they received the Nobel in physics, chemistry or physiology and medicine • Will look at patterns of -
Donna Strickland '89 (Phd), a Self-Described “Laser Jock,” Receives
Donna Strickland ’89 (PhD), a self-described “laser jock,” receives the Nobel Prize, along with her advisor, Gérard Mourou, for work they did at the Laboratory for Laser Energetics. By Lindsey Valich Donna Strickland ’89 (PhD) still recalls the visit she took to the On- tario Science Centre when she was a child growing up in the town of Guelph, outside Toronto. Her father pointed to a laser display. “ ‘Donna, this is the way of the future,’ ” Strickland remembers him telling her. Lloyd Strickland, an electrical engineer, along with Donna’s moth- er, sister, and brother, was part of the family that “continually sup- ported and encouraged me through all my years of education,” Donna Strickland wrote in the acknowledgments of her PhD thesis, “De- velopment of an Ultra-Bright Laser and an Application to Multi- Photon Ionization.” She was captivated by that laser display. And since then, she says, “I’ve always thought lasers were cool.” Her passion for laser science research and her commitment to be- ing a “laser jock,” as she has called herself, has led her across North America, from Canada to the United States and back again. But it’s the work that she did as a graduate student at Rochester in the 1980s that has earned her the remarkable accolade of Nobel Prize laureate. When Strickland entered the University’s graduate program in op- tics, laser physicists were grappling with a thorny problem: how could they create ultrashort, high-intensity laser pulses that wouldn’t de- stroy the very material the laser was used to explore in the first place? Working with former Rochester engineering professor Gérard Mourou, Strickland developed and made workable a method to over- come the barrier. -
Quantitative Force Measurements with Optical Tweezers: the JPK Nanotracker™
Quantitative force measurements with optical tweezers: The JPK NanoTracker™ Introduction to optical tweezers manipulate biomolecules and cells, but also to directly and accurately measure the minute forces (on the order of Optical tweezers methodology has developed from proof-of- fractions of picoNewtons) involved. Most often, the principle experiments to an established quantitative biomolecules of interest are not trapped themselves technique in fields ranging from (bio)physics through cell directly, but manipulated through functionalized biology. As the name suggests, optical tweezers are a microspheres. means to manipulate objects with light. With this technique, The correct physical description of optical trapping depends microscopically small objects can be held and manipulated. on the size of the trapped object. One speaks of the ‘ray- At the same time, the forces exerted on the trapped objects optics’ regime when the object’s dimension d is much larger can be accurately measured. The basic physical principle than the wavelength of the trapping light: d>>λ. In this case, underlying optical tweezers is the radiation pressure diffraction effects can be neglected and the trapping forces exerted by light when colliding with matter. For macroscopic of the light can be understood in terms of ray optics. The objects, the radiation pressure exerted by typical light regime where d<<λ is called the Rayleigh regime. In this sources is orders of magnitude too small to have any case, the trapped particles can be treated as point dipoles, measurable effect: we do not feel the light power of the sun as the electromagnetic field is constant on the scale of the pushing us away. -
A Quantum Origin of Life?
June 26, 2008 11:1 World Scientific Book - 9in x 6in quantum Chapter 1 A Quantum Origin of Life? Paul C. W. Davies The origin of life is one of the great unsolved problems of science. In the nineteenth century, many scientists believed that life was some sort of magic matter. The continued use of the term “organic chemistry” is a hangover from that era. The assumption that there is a chemical recipe for life led to the hope that, if only we knew the details, we could mix up the right stuff in a test tube and make life in the lab. Most research on biogenesis has followed that tradition, by assuming chemistry was a bridge—albeit a long one—from matter to life. Elucidat- ing the chemical pathway has been a tantalizing goal, spurred on by the famous Miller-Urey experiment of 1952, in which amino acids were made by sparking electricity through a mixture of water and common gases [Miller (1953)]. But this concept turned out to be something of a blind alley, and further progress with pre-biotic chemical synthesis has been frustratingly slow. In 1944, Erwin Schr¨odinger published his famous lectures under the ti- tle What is Life? [Schr¨odinger (1944)] and ushered in the age of molecular biology. Sch¨odinger argued that the stable transmission of genetic infor- mation from generation to generation in discrete bits implied a quantum mechanical process, although he was unaware of the role of or the specifics of genetic encoding. The other founders of quantum mechanics, including Niels Bohr, Werner Heisenberg and Eugene Wigner shared Schr¨odinger’s belief that quantum physics was the key to understanding the phenomenon Received May 9, 2007 3 QUANTUM ASPECTS OF LIFE © Imperial College Press http://www.worldscibooks.com/physics/p581.html June 26, 2008 11:1 World Scientific Book - 9in x 6in quantum 4 Quantum Aspects of Life of life. -
DONNA STRICKLAND, PH.D. Professor, University of Waterloo
DONNA STRICKLAND, PH.D. Professor, University of Waterloo Donna Strickland is a professor in the Department of Physics and Astronomy at the University of Waterloo and is one of the recipients of the Nobel Prize in Physics 2018 for developing chirped pulse amplification with Gérard Mourou, her PhD supervisor at the time. They published this Nobel-winning research in 1985 when Strickland was a PhD student at the University of Rochester in New York state. Together they paved the way toward the most intense laser pulses ever created. The research has several applications today in industry and medicine — including the cutting of a patient’s cornea in laser eye surgery, and the machining of small glass parts for use in cell phones. Strickland was a research associate at the National Research Council Canada, a physicist at Lawrence Livermore National Laboratory and a member of technical staff at Princeton University. In 1997, she joined the University of Waterloo, where her ultrafast laser group develops high-intensity laser systems for nonlinear optics investigations. Strickland was named a Companion of the Order of Canada. She is a recipient of a Sloan Research Fellowship, a Premier’s Research Excellence Award and a Cottrell Scholar Award. She received the Rochester Distinguished Scholar Award and the Eastman Medal from the University of Rochester. Strickland served as the president of the Optical Society (OSA) in 2013 and is a fellow of OSA, the Royal Society of Canada, and SPIE (International Society for Optics and Photonics). She is an honorary fellow of the Canadian Academy of Engineering as well as the Institute of Physics. -
Depth-Resolved Measurement of Optical Radiation-Pressure Forces with Optical Coherence Tomography
Vol. 26, No. 3 | 5 Feb 2018 | OPTICS EXPRESS 2410 Depth-resolved measurement of optical radiation-pressure forces with optical coherence tomography NICHALUK LEARTPRAPUN, RISHYASHRING R. IYER, AND STEVEN G. ADIE* Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA *[email protected] Abstract: A weakly focused laser beam can exert sufficient radiation pressure to manipulate microscopic particles over a large depth range. However, depth-resolved continuous measurement of radiation-pressure force profiles over an extended range about the focal plane has not been demonstrated despite decades of research on optical manipulation. Here, we present a method for continuous measurement of axial radiation-pressure forces from a weakly focused beam on polystyrene micro-beads suspended in viscous fluids over a depth range of 400 μm, based on real-time monitoring of particle dynamics using optical coherence tomography (OCT). Measurements of radiation-pressure forces as a function of beam power, wavelength, bead size, and refractive index are consistent with theoretical trends. However, our continuous measurements also reveal localized depth-dependent features in the radiation- pressure force profiles that deviate from theoretical predictions based on an aberration-free Gaussian beam. The combination of long-range radiation pressure and OCT offers a new mode of quantitative optical manipulation and detection with extended spatial coverage. This may find applications in the characterization of optical tractor beams, or volumetric optical manipulation and interrogation of beads in viscoelastic media. © 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement OCIS codes: (110.4500) Optical coherence tomography; (350.4855) Optical tweezers or optical manipulation. -
Optical Micromachines for Biological Studies
micromachines Review Optical Micromachines for Biological Studies Philippa-Kate Andrew 1 , Martin A. K. Williams 2,3 and Ebubekir Avci 1,3,* 1 Department of Mechanical and Electrical Engineering, Massey University, Palmerston North 4410, New Zealand; [email protected] 2 School of Fundamental Sciences, Massey University, Palmerston North 4410, New Zealand; [email protected] 3 MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand * Correspondence: [email protected] Received: 21 January 2020; Accepted: 9 February 2020; Published: 13 February 2020 Abstract: Optical tweezers have been used for biological studies since shortly after their inception. However, over the years research has suggested that the intense laser light used to create optical traps may damage the specimens being studied. This review aims to provide a brief overview of optical tweezers and the possible mechanisms for damage, and more importantly examines the role of optical micromachines as tools for biological studies. This review covers the achievements to date in the field of optical micromachines: improvements in the ability to produce micromachines, including multi-body microrobots; and design considerations for both optical microrobots and the optical trapping set-up used for controlling them are all discussed. The review focuses especially on the role of micromachines in biological research, and explores some of the potential that the technology has in this area. Keywords: optical tweezers; multi-component micromanipulators; radiation damage; life sciences; optical microrobots 1. Introduction Improvements in tools for the visualisation of objects at the micro- and nano- scale have given researchers the ability to investigate materials and processes previously out of reach. -
Arthur Ashkin (1922 - 2020)
September 2020 IN MEMORIAM Arthur Ashkin (1922 - 2020) Arthur Ashkin, IEEE Life Fellow, Throughout his life, Art also never failed to considered “the father of optical tweezers” mention the contributions of his for which he was awarded the Nobel Prize colleagues at Bell Labs that helped him in Physics 2018, has passed away at the achieve scientific breakthroughs, age of 98. especially his assistant Joseph Dziedzic. The IEEE Photonics Society and its And, the most significant support Ashkin members mourn this great loss of a friend, ever received is from Aline, his wife of 66 colleague and pioneer in the fields of years, who he met in college at Cornell optics and photonics. University. She herself is well trained in chemistry and taught at Holmdel High Art, as he was known in the community, School in New Jersey. One can find a worked most of his career at AT&T Bell comprehensive historical account of the Laboratories, from 1952 to 1991. There he scientific development of optical trapping began his work on manipulation of in a book written by Ashkin with the help microparticles with laser light in the late of Aline. 1960s which resulted in the invention of optical tweezers in 1986. He also Together, he and Aline raised three pioneered the optical trapping process. children and five grandchildren. Such traps have found a wide range of important and unique applications. They Ashkin was a mentor, collaborator, and are used to manipulate small objects friend to many within the scientific down to the size of atoms. community. René-Jean Essiambre, a close friend and mentee who presented This includes “small living things”, as the Nobel Lecture in Physics for Ashkin in Ashkin liked to say, such as viruses, 2018, expressed the profound impact he bacteria, living cells, organelles within had on the optics and photonics fields. -
Pulsed Optical Tweezers for Levitation and Manipulation of Stuck Biological
2005 Conference on Lasers & Electro-Optics (CLEO) CFN3 Pulsed optical tweezers for levitation and manipulation of stuck biological particles Amol Ashok Ambardekar and Yong-qing Li Department ofPhysics, East Carolina University, Greenville, North Carolina 27858 acube3(1!yahoo. covm,livrnail.ecu. ec/ Abstract: We report on optical levitation and manipulation of microscopic particles that are stuck on a glass surface with a pulsed optical tweezers. Both the stuck dielectric beads and biological cells are demonstrated to be levitated. ©2005 Optical Society of America OCIS codes: (170.4520) Optical confinement and manipulation; (140.7010) Trapping Optical tweezers has become a powerful tool for capturing and manipulation of micron-sized particles, typically by using continuous-wave (cw) lasers [1, 2]. It has been routinely applied to manipulate living cells, bacteria, viruses, chromosomes and other organelles [3, 4], To reduce the photodamage to the trapped particles, the average power of the trapping lasers is usually limited to below hundreds of mW and near-infrared (NIR) or infrared lasers were used for trapping [3, 6]. The trapping force generated by the cw optical tweezers is typically in the order of 10-12 N [4, 5]. This weak force is efficient to confine micro-particles suspended in liquids, but not sufficient to levitate the particles that are stuck on the glass surface, where it has to overcome the binding force. Therefore, the stuck particles cannot be manipulated with the optical tweezers that only employs cw lasers. In this paper, we describe a pulsed optical tweezers that employs a pulsed laser for levitation of the stuck particles and a low-power cw laser for successive trapping and manipulation. -
Chirped Pulse Amplification, CPA, Was Both Simple and Elegant
THE NOBEL PRIZE IN PHYSICS 2018 POPULAR SCIENCE BACKGROUND Tools made of light The inventions being honoured this year have revolutionised laser physics. Extremely small objects and incredibly fast processes now appear in a new light. Not only physics, but also chemistry, biology and medicine have gained precision instruments for use in basic research and practical applications. Arthur Ashkin invented optical tweezers that grab particles, atoms and molecules with their laser beam fingers. Viruses, bacteria and other living cells can be held too, and examined and manipulated without being damaged. Ashkin’s optical tweezers have created entirely new opportunities for observing and controlling the machinery of life. Gérard Mourou and Donna Strickland paved the way towards the shortest and most intense laser pulses created by mankind. The technique they developed has opened up new areas of research and led to broad industrial and medical applications; for example, millions of eye operations are performed every year with the sharpest of laser beams. Travelling in beams of light Arthur Ashkin had a dream: imagine if beams of light could be put to work and made to move objects. In the cult series that started in the mid-1960s, Star Trek, a tractor beam can be used to retrieve objects, even asteroids in space, without touching them. Of course, this sounds like pure science fic- tion. We can feel that sunbeams carry energy – we get hot in the sun – although the pressure from the beam is too small for us to feel even a tiny prod. But could its force be enough to push extremely tiny particles and atoms? Immediately after the invention of the first laser in 1960, Ashkin began to experiment with the new instrument at Bell Laboratories outside New York. -
OSA's Support of the Photonics Community
OSA’s Support of the Photonics Community Donna Strickland, OSA President Schematic of First CPA WHAT IS OSA? The early years OSA Annual Meeting 1921 Rochester, NY, USA OSA’s Mission: To promote the generation, application, archiving and worldwide dissemination of knowledge in optics and photonics. 18,000+ OSA members all over the world Headquarters: Washington, DC, USA Our global membership Latin America/Caribbean Mideast/Africa (900) 5% 2% (300) Europe 21% North (3,800) America 50% Asia (9,000) 22% (4,000) Nobel Laureates who are OSA Members Michelson (1907) Millikan (1923) Raman (1930) Zernike (1953) Lamb (1955) Townes (1964) Prokhorov (1964) Kastler (1966) Hartline (1967) Wald (1967) Gabor (1971) Herzberg (1971) Rainwater (1975) Bloembergen (1981) Schawlow (1981) Curl (1996) Chu (1997) Cohen-Tannoudji (1997) Phillips(1997) Alferov (2000) Cornell (2001) Wieman (2001) Ketterle (2001) Glauber (2005) Hall (2005) Hänsch (2005) Mather (2006) Kao (2009) Boyle (2009) Smith (2009) Wineland (2012) Key OSA activities Publishing Conventions and Meetings Membership and Awards Global Programs Industry Relations Public Policy Foundation Key OSA activities Publishing Conventions and Meetings Membership and Awards Global Programs Industry Relations Public Policy Foundation Key OSA activities Publishing Conventions and Meetings Membership and Awards Global Programs Industry Relations Public Policy Foundation Key OSA activities Publishing Conventions and Meetings Membership and Awards Global Programs Industry Relations Public Policy Foundation Key OSA activities Publishing Conventions and Meetings Membership and Awards Global Programs Industry Relations Public Policy Foundation Key OSA activities Publishing Conventions and Meetings Membership and Awards Global Programs Industry Relations Public Policy Foundation Key OSA activities Publishing Conventions and Meetings 2008 Viviane Reding and 2009 Thierry Van der Pyl, EU Rep. -
Nfap Policy Brief » October 2019
NATIONAL FOUNDATION FOR AMERICAN POLICY NFAP POLICY BRIEF» OCTOBER 2019 IMMIGRANTS AND NOBEL PRIZES : 1901- 2019 EXECUTIVE SUMMARY Immigrants have been awarded 38%, or 36 of 95, of the Nobel Prizes won by Americans in Chemistry, Medicine and Physics since 2000.1 In 2019, the U.S. winner of the Nobel Prize in Physics (James Peebles) and one of the two American winners of the Nobel Prize in Chemistry (M. Stanley Whittingham) were immigrants to the United States. This showing by immigrants in 2019 is consistent with recent history and illustrates the contributions of immigrants to America. In 2018, Gérard Mourou, an immigrant from France, won the Nobel Prize in Physics. In 2017, the sole American winner of the Nobel Prize in Chemistry was an immigrant, Joachim Frank, a Columbia University professor born in Germany. Immigrant Rainer Weiss, who was born in Germany and came to the United States as a teenager, was awarded the 2017 Nobel Prize in Physics, sharing it with two other Americans, Kip S. Thorne and Barry C. Barish. In 2016, all 6 American winners of the Nobel Prize in economics and scientific fields were immigrants. Table 1 U.S. Nobel Prize Winners in Chemistry, Medicine and Physics: 2000-2019 Category Immigrant Native-Born Percentage of Immigrant Winners Physics 14 19 42% Chemistry 12 21 36% Medicine 10 19 35% TOTAL 36 59 38% Source: National Foundation for American Policy, Royal Swedish Academy of Sciences, George Mason University Institute for Immigration Research. Between 1901 and 2019, immigrants have been awarded 35%, or 105 of 302, of the Nobel Prizes won by Americans in Chemistry, Medicine and Physics.