Title Age-Related Muscle Atrophy in the Lower Extremities and Daily
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Anatomy of the Posterolateral Aspect of the Rabbit Knee
Journal of Orthopaedic Research ELSEVIER Journal of Orthopaedic Research 2 I (2003) 723-729 www.elsevier.com/locate/orthres The anatomy of the posterolateral aspect of the rabbit knee Joshua A. Crum, Robert F. LaPrade *, Fred A. Wentorf Dc~~ur/niiviiof Orthopuer/ic Surgery. Unicrrsity o/ Minnesotu. MMC 492, 420 Dcluwur-c Si. S. E., Minnwpoli,s, MN 55455, tiSA Accepted 14 November 2002 Abstract The purpose of this study was to determine the anatomy of the posterolateral aspect of the rabbit knee to serve as a basis for future in vitro and in vivo posterolateral knee biomechanical and injury studies. Twelve nonpaired fresh-frozen New Zealand white rabbit knees were dissected to determine the anatomy of the posterolateral corner. The following main structures were consistently identified in the rabbit posterolateral knee: the gastrocnemius muscles, biceps femoris muscle, popliteus muscle and tendon, fibular collateral ligament, posterior capsule, ligament of Wrisberg, and posterior meniscotibial ligament. The fibular collateral ligament was within the joint capsule and attached to the femur at the lateral epi- condyle and to the fibula at the midportion of the fibular head. The popliteus muscle attached to the medial edge of the posterior tibia and ascended proximally to give rise to the popliteus tendon, which inserted on the proximal aspect of the popliteal sulcus just anterior to the fibular collateral ligament. The biceps femoris had no attachment to the fibula and attached to the anterior com- partment fascia of the leg. This study increased our understanding of these structures and their relationships to comparative anatomy in the human knee. -
Myofascial Pain Syndrome of Gluteus Minimus Mimicking Lumbar Radiculitis -A Case Report
Anesth Pain Med 2015; 10: 16-20 http://dx.doi.org/10.17085/apm.2015.10.1.16 ■Case Report■ Myofascial pain syndrome of gluteus minimus mimicking lumbar radiculitis -A case report- Department of Anesthesiology and Pain Medicine, Daegu Fatima Hospital, Daegu, Korea Joong-Ho Park, Kwang-Suk Shim, Young-Min Shin, Chiu Lee, Sang-Gon Lee, and Eun-Ju Kim Myofascial pain syndrome (MPS) can be characterized by pain difficult. Delays in making the correct diagnosis can result in caused by trigger points (TrPs) and fascial constrictions. Patients longer hospital stays, higher hospital fees, and unnecessary with MPS of the gluteus minimus muscles often complain of diagnostic tests and inadequate treatments. The authors have symptoms such as hip pain, especially when standing up after sitting or lying on the affected side, limping, and pain radiating down to successfully diagnosed and treated a patient with MPS of the the lower extremities. A 24-year-old female patient presenting with gluteus minimus initially diagnosed with lumbar radiculitis. motor and sensory impairments of both lower extremities was With thorough physical examination and injection of TrPs referred to our pain clinic after initially being diagnosed with lumbar radiculitis. Under the impression of MPS of the gluteus minimus under ultrasonography guidance, the patient was relieved of her muscles following through evaluation and physical examination of symptoms. We report this case to emphasize the importance of the patient, we performed trigger point injections under ultrasonography physical examination in patients presenting with symptoms guidance on the myofascial TrPs. Dramatic improvement of the suggestive of lumbar radiculitis. -
The Absence of Piriformis Muscle, Combined Muscular Fusion, and Neurovascular Variation in the Gluteal Region
Autopsy Case Report The absence of piriformis muscle, combined muscular fusion, and neurovascular variation in the gluteal region Matheus Coelho Leal1 , João Gabriel Alexander1 , Eduardo Henrique Beber1 , Josemberg da Silva Baptista1 How to cite: Leal MC, Alexander JG, Beber EH, Baptista JS. The absence of piriformis muscle, combined muscular fusion, and neuro-vascular variation in the gluteal region. Autops Case Rep [Internet]. 2021;11:e2020239. https://doi.org/10.4322/ acr.2020.239 ABSTRACT The gluteal region contains important neurovascular and muscular structures with diverse clinical and surgical implications. This paper aims to describe and discuss the clinical importance of a unique variation involving not only the piriformis, gluteus medius, gluteus minimus, obturator internus, and superior gemellus muscles, but also the superior gluteal neurovascular bundle, and sciatic nerve. A routine dissection of a right hemipelvis and its gluteal region of a male cadaver fixed in 10% formalin was performed. During dissection, it was observed a rare presentation of the absence of the piriformis muscle, associated with a tendon fusion between gluteus and obturator internus, and a fusion between gluteus minimus and superior gemellus muscles, along with an unusual topography with the sciatic nerve, which passed through these group of fused muscles. This rare variation stands out with clinical manifestations that are not fully established. Knowing this anatomy is essential to avoid surgical iatrogeny. Keywords Anatomic Variation; Anatomy; Buttocks; Muscle; Piriformis Muscle Syndrome. INTRODUCTION The gluteal region contains important Over the years, these variations have been neurovascular and muscular structures that may classified and distributed into different groups. impose diverse clinical and surgical approaches. -
Evaluation of the Hip Adam Lewno, DO PCSM Fellow, University of Michigan Primary Care Sports Update 2017 DEPARTMENT of FAMILY MEDICINE
DEPARTMENT OF FAMILY MEDICINE Evaluation of the Hip Adam Lewno, DO PCSM Fellow, University of Michigan Primary Care Sports Update 2017 DEPARTMENT OF FAMILY MEDICINE Disclosures • Financial: None • Images: I would like to acknowledge the work of the original owners and artists of the pictures used today DEPARTMENT OF FAMILY MEDICINE Objectives • Identify the main anatomic components of the hip • Perform basic Hip examination along with associated special tests • Use a group educational model to correlate Hip examination with hip anatomy DEPARTMENT OF FAMILY MEDICINE Why do we care about the Hip? • The hip distributes weight between the appendicular and axial skeleton but it is also the joint from which motion is initiated and executed for the lower extremity • Forces through the hip joint can reach 3-5 times the body weight during running and jumping • 10-24% of athletic injuries in children are hip related • 5-6% adult athletic injuries in adults are hip and pelvis DEPARTMENT OF FAMILY MEDICINE Why is the Hip difficult to diagnosis? The hip is difficult to diagnosis secondary to parallel presenting symptoms of back pain which can exist concomitantly or independently of hip pathology DEPARTMENT OF FAMILY MEDICINE Hip Anatomy • Bone • Ligament • Muscle • Nerve • Vessels DEPARTMENT OF FAMILY MEDICINE DEPARTMENT OF FAMILY MEDICINE Bones DEPARTMENT OF FAMILY MEDICINE Ligaments DEPARTMENT OF FAMILY MEDICINE Everything is Connected DEPARTMENT OF FAMILY MEDICINE Muscles DEPARTMENT OF FAMILY MEDICINE Important Movers DEPARTMENT OF FAMILY MEDICINE -
Peroneal Nerve Compression Secondary to an Anomalous Biceps Femoris Muscle in an Adolescent Athlete Kevin M
(aspects of sports medicine • a case report) Peroneal Nerve Compression Secondary to an Anomalous Biceps Femoris Muscle in an Adolescent Athlete Kevin M. Kaplan, MD, Abhay Patel, MD, and Drew A. Stein, MD ABSTRACT compression can present a consid- 3/5, with all other muscle groups Common peroneal nerve compres- erable challenge. Other conditions 5/5. Sensation was significantly sion is a well-recognized entity must be excluded in order to make decreased at the first dorsal web that can cause severe debilitating the proper diagnosis.3 Symptoms space and the dorsal lateral foot. clinical manifestations. The cur- can occur after exercise, can develop Pulses were intact, and all reflexes rent literature describes numerous gradually after a period of training, were 2+ with negative clonus and locations and mechanisms of com- pression, including both structural or can have an insidious onset. Babinski reflexes bilaterally. The and systemic causes. Anatomical We present the case of a 14-year- patient had no lumbar tenderness variants should be considered old basketball player who developed and had a negative straight leg part of the differential diagnosis a compressive neuropathy of the raise bilaterally. in peroneal nerve impingement. common peroneal nerve secondary to On the basis of the clinical his- We present the case of a 14-year-old an accessory biceps femoris muscle. tory and physical examination, the basketball player with footdrop sec- ondary to compression of the com- mon peroneal nerve from an acces- sory biceps femoris muscle, which “...the diagnosis of an accessory biceps was treated by neurolysis. In addition, we review the systematic workup of femoris muscle should be part of the patients with nerve compression. -
Bflh Is Usually Compromised During Sprinting, but Slowspeed
anatomY REVIEW OF HAMSTRING ANATOMY – Written by Stephanie J Woodley and Richard N Storey, New Zealand The collective term ‘hamstrings’ refers may be related. For example, BFlh is usually BICEPS FEMORIS LONG HEAD to three separate muscles located in the compromised during sprinting, but slow- This muscle is of particular interest given posterior compartment of the thigh - biceps speed stretching injuries predominantly its susceptibility to injury. Some anatomical femoris (which consists of two components, affect SM1. Increasingly, imaging is being parameters that may be relevant when a long head [BFlh] and a short head [BFsh]), employed to confirm the location and considering strain injuries include its unique semitendinosus (ST) and semimembranosus severity of hamstring injuries and to inform muscle architecture and the arrangement of (SM) (Figure 1). There are numerous theories prognosis, particularly in professional and its proximal tendon which it shares with ST, on how this muscle group derived its name, elite athletes. a feature which may explain why injuries to but it appears to originate from the early With the above factors in mind, the Germanic language as well as the butchery purpose of this paper is to provide an trade. Slaughtered pigs were hung from overview of our current understanding of these strong tendons, hence the reference the morphology of the hamstring muscles. to ‘ham’ (meaning ‘crooked’ and thus Terms used frequently within this review BFlh is usually referring to the knee, the crooked part of require some explanation. Firstly, a tendon compromised the leg) and ‘string’ (referring to the string- can be considered to consist of two main like appearance of the tendons). -
Gluteal Region and Back of Thigh Doctors Notes Notes/Extra Explanation Editing File Objectives
Color Code Important Gluteal Region and Back of Thigh Doctors Notes Notes/Extra explanation Editing File Objectives Know contents of gluteal region: Groups of Glutei muscles and small muscles (Lateral Rotators). Nerves & vessels. Foramina and structures passing through them as: 1-Greater Sciatic Foramen. 2-Lesser Sciatic Foramen. Back of thigh : Hamstring muscles. Movements of the lower limb Hip = Thigh Knee=Leg Foot=Ankle Flexion/Extension Flexion/Extension Flexion/Extension Rotation Adduction/Abduction Inversion/Eversion Contents Of Gluteal Region: Muscles / Nerves / Vessels 1- Muscles: • Glutei: 1. Gluteus maximus. 2. Gluteus medius. 3. Gluteus minimus. Abductors: • Group of small muscles (Lateral Rotators): 1. Gluteus medius. 2. Gluteus minimus. 1.Piriformis. Rotators: 2.Obturator internus 1. Obturator internus. 3.Superior gemellus 2. Quadratus femoris. 4.Inferior gemellus Extensor: 5.Quadratus femoris Gluteus maximus. Contents Of Gluteal Region: Muscles / Nerves / Vessels 2- Nerves (All from Sacral Plexus): 1. Sciatic nerve. 2. Superior gluteal nerve. 3. Inferior gluteal nerve. 4. Post. cutaneous nerve of thigh. 5. Nerve to obturator internus. 6. Nerve to quadratus femoris. 7. Pudendal nerve. Contents Of Gluteal Region: Muscles / Nerves / Vessels 3- VESSELS: (all from internal iliac vessels): 1. Superior gluteal 2. Inferior gluteal 3. Internal pudendal vessels. Greater sciatic foreamen: Greater sciatic notch of hip bone is transformed into foramen by: sacrotuberous (between the sacrum to ischial tuberosity) & sacrospinous (between the sacrum to ischial spine ) Structures passing through Greater sciatic foramen : Nerves: Vessels: Greater sciatic foramen Above 1. Superior gluteal nerves, 2. Superior gluteal piriformis vessels. Lesser sciatic foramen muscle. 3. Piriformis muscle. Belew 4. Inferior gluteal nerves 10. -
Lateral Hip & Buttock Pain
Lateral Hip & Buttock Pain Contemporary Diagnostic & Management Strategies Potential sources of nociception in the lateral hip & buttock Lateral Hip & Buttock Pain Contemporary Diagnostic & Management Strategies Introduction Dr Alison Grimaldi BPhty, MPhty(Sports), PhD Australian Sports Physiotherapist Practice Principal Physiotec Adjunct Senior Research Fellow University of Queensland, Australia 12 Myofascial Structures Superficial Nerves Latissimus Dorsi Thoracodorsal IHGN Fascia EO SubCN TFL SCN’s: Superior Cluneal Nerves IO SCN’s MCN’s: Middle Cluneal Nerves GMed MCN’s ICN’s: Inferior Cluneal Nerves GMax Gluteal ITB Fascia PFCN: Posterior Femoral PFCN Cutaneous Nerve VL ICN’s IHGN: Iliohypogastric Nerve AM SubCN: Subcostal nerve ST SM BFLH EO:External Oblique; IO:Internal Oblique; GMed:Gluteus Medius; GMax:Gluteus Maximus; AM:Adductor Magnus; SM:Semimembranosis; ST:Semitendinosis; BFLH:Biceps Femoris Long Head; TFL: Tensor Fascia Lata; ITB:Iliotibial Band 34 Deeper posterolateral musculotendinous structures Major Bursae of the Lateral Hip & Buttock Axial MRI: Level of HOF Coronal MRI: Level of HOF Axial MRI: Level of IT GMed GMin Quadratus Lumborum Gluteus Medius SGMi HOF Gluteus Minimus Piriformis OI SGMe SGMa IS HO Superior Gemellus SGMa SGMi F Gluteus Medius & SGMe IT Minimus Tendons Obturator Internus Inferior Gemellus GMax OIB IG Quadratus femoris Obturator Internus Proximal hamstring tendons SGMa: Subgluteus Maximus (Trochanteric) Bursa; SGMe: Subgluteus Medius Bursa; SGMi: Subgluteus Minimus Bursa; OIB: Obturator Internus Bursa; -
Chapter 9 the Hip Joint and Pelvic Girdle
The Hip Joint and Pelvic Girdle • Hip joint (acetabular femoral) – relatively stable due to • bony architecture Chapter 9 • strong ligaments • large supportive muscles The Hip Joint and Pelvic Girdle – functions in weight bearing & locomotion • enhanced significantly by its wide range of Manual of Structural Kinesiology motion • ability to run, cross-over cut, side-step cut, R.T. Floyd, EdD, ATC, CSCS jump, & many other directional changes © 2007 McGraw-Hill Higher Education. All rights reserved. 9-1 © 2007 McGraw-Hill Higher Education. All rights reserved. 9-2 Bones Bones • Ball & socket joint – Sacrum – Head of femur connecting • extension of spinal column with acetabulum of pelvic with 5 fused vertebrae girdle • extending inferiorly is the coccyx – Pelvic girdle • Pelvic bone - divided into 3 • right & left pelvic bone areas joined together posteriorly by sacrum – Upper two fifths = ilium • pelvic bones are ilium, – Posterior & lower two fifths = ischium, & pubis ischium – Femur – Anterior & lower one fifth = pubis • longest bone in body © 2007 McGraw-Hill Higher Education. All rights reserved. 9-3 © 2007 McGraw-Hill Higher Education. All rights reserved. 9-4 Bones Bones • Bony landmarks • Bony landmarks – Anterior pelvis - origin – Lateral pelvis - for hip flexors origin for hip • tensor fasciae latae - abductors anterior iliac crest • gluteus medius & • sartorius - anterior minimus - just superior iliac spine below iliac crest • rectus femoris - anterior inferior iliac spine © 2007 McGraw-Hill Higher Education. All rights reserved. 9-5 © 2007 McGraw-Hill Higher Education. All rights reserved. 9-6 1 Bones Bones • Bony landmarks • Bony landmarks – Medially - origin for – Posteriorly – origin for hip hip adductors extensors • adductor magnus, • gluteus maximus - adductor longus, posterior iliac crest & adductor brevis, posterior sacrum & coccyx pectineus, & gracilis - – Posteroinferiorly - origin pubis & its inferior for hip extensors ramus • hamstrings - ischial tuberosity © 2007 McGraw-Hill Higher Education. -
Pelvis & Thigh
Pelvis & Thigh 6 After meeting a stranger, you soon begin to palpate their piriformis Topographical Views 276 muscle (located deep in the posterior buttock). You certainly wouldn’t try Exploring the Skin and Fascia 277 this in “everyday life,” but in patient care settings this level of familiarity is Bones of the Pelvis and Thigh 278 commonplace—and welcomed by a client with a hypercontracted piriformis. Bony Landmarks of the Pelvis Touch is a unique privilege afforded to health care providers. As such, we and Thigh 279 need to be mindful of the trust our clients have in us. One way to insure this Overview: Bony Landmark Trails 284 is through good communication skills. For instance, working the adductors Overview: Muscles of the and gluteal region requires a practitioner to provide ample explanation as to Pelvis and Thigh 296 the rationale, need, and goals of working these intimate areas of the body. Synergists—Muscles Working This chapter might pose new challenges for you, as we will be palpating Together 302 structures close to intimate areas. Muscles of the Pelvis and Thigh 306 Ligaments and Other Before proceeding, consider the following questions: Structures of the Pelvis and Thigh 336 E Have you ever been anxious to undergo a physical exam? Was there anything the practitioner did or could have done to alleviate this anxiety? Consider multiple elements, including both verbal and nonverbal communication, draping, physical pressure, and pace. E Tissues and landmarks found in the pelvis and thigh tend to be significantly larger than those discussed in previous chapters. How might your palpation techniques need to change? E Also, how might you properly and comfortably position your patient to access structures needing to be palpated. -
Gluteal Region and Back of the Thigh Anatomy Team 434
Gluteal Region and Back of the Thigh Anatomy Team 434 Color Index: If you have any complaint or ▪ Important Points suggestion please don’t ▪ Helping notes hesitate to contact us on: [email protected] ▪ Explanation OBJECTIVES ● Contents of gluteal region: ● Groups of Glutei muscles and small muscles (Lateral Rotators). ● Nerves & vessels. ● Foramina and structures passing through them as: 1-Greater Sciatic Foramen. 2-Lesser Sciatic Foramen. ● Back of thigh : Hamstring muscles. CONTENTS OF GLUTEAL REGION Muscles 1- Gluteui muscles (3): • Gluteus maximus. (extensor) • Gluteus minimus. (abductor) • Gluteus medius. (abductor) 2- Group of small muscles (lateral rotators) (5): from superior to inferior: • Piriformis. • Superior gemellus. • Obturator internus. • Inferior gemellus. • Quadratus femoris. CONTENTS OF GLUTEAL REGION (CONT.) Nerves (all from SACRAL PLEXUS): • Sciatic N. • Superior gluteal N. • Inferior gluteal N. • Posterior cutaneous N. of thigh. • N. to obturator internus. • N. to quadratus Vessels femoris. (all from INTERNAL ILIAC • Pudendal N. VESSELS): 1. Superior gluteal 2. Inferior gluteal 3. Internal pudendal vessels. Sciatic nerve is the largest nerve in the body. Greater sciatic foramen Structures passing through Greater foramen: Greater & lesser sciatic notch of -hippiriformis bone are muscle. transformed into foramen by sacrotuberous & Abovesacrospinous piriformis ligaments. M.: -superior gluteal nerve & vessels. Below piriformis M.: -inferior gluteal nerves & vessels. -sciatic N. -nerve to quadratus femoris. -posterior cutaneous nerve of thigh. -internal pudendal vessels Found in the -nerve to obturator internus. lesser sciatic foramen -pudendal N. Lesser sciatic foramen Structures passing through Lesser sciatic foramen: -internal pudendal vessels -nerve to obturator internus. -pudendal N. -tendon of obturator internus. Glutei Muscles (origins) Origin of glutei muscles: • gluteus minimus: Anterior part of the gluteal surface of ilium. -
Glute Activation
GLUTE By Jeff Richter CSCS, USAW ACTIVATION ne of the foundations and pillars of athletic anteriorly gliding during hip extension rather than maintain- performance is the development of the ing a constant position in the acetabulum1. posterior chain, and in particular, activation O When we examine the anatomy of the glutes (inset) we and strengthening of the glutes. Gymnastics is not notice that there are three “players.” an exception. When considering the comprehensive approach to glute I THINK GLUTE ACTIVATION NEEDS TO BE functioning relative to knee health, we have to look mainly at the two hip abductors (brings the femur laterally) called the VIEWED THROUGH THIS LENS: a skill that needs gluteus minimus and gluteus medius in addition to the gluteus to be programmed and learned neuromuscularly. Gymnasts maximus. These abductors work not only in terms of creat- that repeatedly load their lower body eccentrically through ing concen- the quadriceps have a high risk for developing structural tric muscle imbalances that may result from a weak posterior chain. actions in Over a period of time, if our body becomes unfamiliar which they with the neuromuscular pathways to activate the glutes contract to abduct their functioning can be the hip but according unintentionally hindered to Thomas Myers in his with these imbalanced book, Anatomy Trains, movement patterns. The they also work in terms problems this presents of preventing excessive are not only related to hip adduction (“caving diminished abilities to in”) and thus enable the reach athletic potential hip to display adequate but also present stability. They need to “fire” and “red flags” for injury be neuromuscularly efficient to risk.