Development of Economizer Control Method with Variable Mixed Air Temperature

Total Page:16

File Type:pdf, Size:1020Kb

Development of Economizer Control Method with Variable Mixed Air Temperature energies Article Development of Economizer Control Method with Variable Mixed Air Temperature Jin-Hyun Lee 1, Yong-Shik Kim 2, Jae-Hun Jo 3, Hyun Cho 4 and Young-Hum Cho 5,* 1 Department of Architectural Engineering, Graduate School of Yeungnam University, Gyeongsan 38541, Korea; [email protected] 2 Division of Architecture and Urban Planning, Incheon National University, Incheon 22012, Korea; [email protected] 3 Division of Architecture, Inha University, Incheon 22212, Korea; [email protected] 4 R&D Center, POSCO E&C, Incheon 22009, Korea; [email protected] 5 School of Architecture, Yeungnam University, Gyeongsan 38541, Korea * Correspondence: [email protected]; Tel.: +82-53-810-3081 Received: 14 August 2018; Accepted: 4 September 2018; Published: 14 September 2018 Abstract: Achieving energy efficiency by improving the operating method of the system used in existing buildings is attracting considerable attention. The Building Design Criteria for Energy Saving was established to induce energy saving design in the domestic construction field, and the introduction of a free-cooling system, such as an economizer system, as an item of the mechanical sector, was evaluated. The economizer is an energy saving method that reduces the building load by introducing outdoor air through damper control according to the indoor and outdoor conditions. The system consists of dry-bulb temperature control and enthalpy control and the mixed air temperature is kept constant in the conventional economizer controls. On the other hand, in dry-bulb temperature control, when the set value of the mixed air temperature is changed according to the load, additional energy savings are expected compared to the conventional control method. Therefore, this paper proposes an economizer control that makes the mixed air temperature variable according to the load in a Constant Air Volume single duct system. For this, a load prediction is needed and an Artificial Neural Network is used for the load prediction. In addition, the relationship between the mixed air temperature and energy were analyzed using the BIN method and TRNSYS 17. Based on the results of previous analysis, a control method which predicting the load using Artificial Neural Network and controlling the mixed air temperature according to the predicted load in the dry-bulb temperature control of a Constant Air Volume single duct system is proposed and the proposed control was applied to the dynamic simulation program and compared with the conventional control. The results show that the temperature of each room was 21–23 ◦C in summer and 22.5–26 ◦C in winter when the economizer was controlled using the proposed control method and the energy consumption analysis showed that 19% of the energy was reduced compared to the conventional method when the proposed method was controlled. Keywords: economizer; mixed air temperature; Constant Air Volume single duct system; Artificial Neural Network 1. Introduction Reducing greenhouse gas emissions and energy use is a global issue [1,2]. In Korea, various policies are being implemented to reduce greenhouse gas emissions. The demand for technology development for energy conservation is increasing and various laws and regulations have been enacted. Moreover, various studies are underway in the construction sector, which comprises a large share of domestic energy consumption [3]. Energies 2018, 11, 2445; doi:10.3390/en11092445 www.mdpi.com/journal/energies Energies 2018, 11, 2445 2 of 18 Energy efficiency by improving the operation method of the system used in existing buildings is attracting considerable attention. In the domestic construction sector, the Building Design Criteria for Energy Saving was established to induce energy savings design, and it suggests an energy saving design for the passive, active, and electric sector. As one of the active items in the building design criteria, it evaluates free-cooling systems, such as the economizer, which is one of the energy efficiency methods by improving the operating method. This evaluation criterion shall be rated when the outdoor cooling system such as the economizer system is applied to reduce the cooling load by introducing outdoor air during intermediate season [4]. According to ASHRAE standard 90.1, “The economizer means that the outdoor air temperature is low or the air is introduced by adjusting the damper to reduce mechanical cooling” [5]. According to the equipment engineering manual, “The outdoor air cooling cycle can reduce the cooling cost when the outdoor air is low enough to be used as a cooling medium. The return, exhaust and outdoor side damper are adjusted for the cooling setting value when the outdoor air temperature is below the upper limit value, when the outdoor air temperature is above the set temperature value, the return and exhaust damper are opened and closed separately, and the outdoor air side damper is controlled to be opened to the minimum” [6]. In this study, reducing the Heating, Ventilating, and Air Conditioning (HVAC) load by introducing the outdoor air through damper control according to the indoor and outdoor air conditions was defined as the economizer. Typical control methods of the economizer include dry-bulb temperature control and enthalpy control. In conventional economizer control, the mixed air temperature is constant. Dry-bulb temperature control is a method for determining the amount of outdoor air intake by comparing the indoor air and outdoor air according to the dry-bulb temperature reference. In other words, when the outdoor air temperature is lower than the return air temperature, the outdoor air side damper is opened to increase the outdoor air damper opening rate and reduce the opening rate of the return damper to increase the outdoor air intake amount. In the HVAC system, the airflow rate of the outdoor air and the return air can be expressed using Equation (1) according to the law of conservation of mass, and the relationship between temperature and airflow of outdoor air, return and mixed air can be expressed as Equation (2). In addition, the outdoor air intake amount can be expressed using Equation (3). That is, in dry-bulb temperature control, the outdoor air intake ratio can be calculated from the outdoor air temperature, airflow of outdoor air, return air temperature, and airflow of the return air. It is a simple control method considering only sensible heat. In the case of the enthalpy control, the latent heat, which is not considered in the dry-bulb temperature control, is taken into consideration, and the temperature control values are controlled in place of the enthalpy in a manner complementing the limit that cannot consider the humidity of the dry-bulb temperature control. That is, the outdoor air is introduced by considering the enthalpy of the outdoor air and return air simultaneously. When the outdoor air enthalpy is smaller than the return air enthalpy, the air is introduced for cooling. In the case of enthalpy control, however, it is difficult to calibrate the humidity sensor, and it is difficult to install and operate it economically. Figure1 shows the intake ratio of the outdoor air temperature to the outdoor air temperature during operation of the economizer system. moa + mr = mmix (1) moaToa + mrTr = mmixTmix (2) T − T α = min r mix , 1 (3) Tr − Toa To analyze the operation status of the domestic economizer, a high-rise building with economizer control was selected as the target building. The selected building is a business building and hotel located in Songdo, Incheon. The building has three floors underground and 68 floors aboveground. Floors 1–35 are used as a business building and the Floors 36–65 are used as a hotel. In addition, Floors 66–68 are composed of a machine room and electric room. Table1 provides an overview of target Energies 2018, 11, x FOR PEER REVIEW 3 of 19 Energies 2018, 11, x FOR PEER REVIEW 3 of 19 Energies 2018, 11, 2445 3 of 18 overview of target building and Figure 2 is the picture related to the target building. Air Handling overview of target building and Figure 2 is the picture related to the target building. Air Handling Unit (AHU), Fan Coil Unit (FCU), Variable Airflow Volume (VAV) system, and Constant Airflow buildingUnit (AHU) and, FigureFan Coil2 is Unit the picture (FCU), related Variable to theAirflow target Volume building. (VAV) Air Handling system, and Unit Constant (AHU), Fan Airflow Coil Volume (CAV) system units are installed in the target building for air conditioning, and a medium UnitVolume (FCU), (CAV) Variable system Airflow units Volumeare installed (VAV) in system, the target and building Constant for Airflow air conditioning, Volume (CAV) and system a medium units temperature water absorption type refrigerator, an air cooling type inverter refrigerator, a cooling aretemperature installed inwater the targetabsorption building type for refrigerator, air conditioning, an air and cooling a medium type inverter temperature refrigerator, water absorption a cooling tower, and a heat exchanger are used as the heat source. Two HVAC systems are installed in each of typetower, refrigerator, and a heat anexchanger air cooling are typeused inverter as the heat refrigerator, source. Two a cooling HVAC tower, systems and are a heatinstalled exchanger in each are of floors that are used for business, and the two units are in charge of one floor. Six outboards are usedfloors as that the are heat used source. for Twobusiness, HVAC and systems the two are unit installeds are inin eachcharge of floorsof one that floor. are Six used outboards for business, are responsible for introducing the outdoor air of the entire building to supply outdoor air to each floor andresponsible the two for units introducing are in charge the of outdoor one floor. air Sixof the outboards entire building are responsible to supply for outdoor introducing air to the each outdoor floor air conditioner.
Recommended publications
  • Consider Installing a Condensing Economizer, Energy Tips
    ADVANCED MANUFACTURING OFFICE Energy Tips: STEAM Steam Tip Sheet #26A Consider Installing a Condensing Economizer Suggested Actions The key to a successful waste heat recovery project is optimizing the use of the recovered energy. By installing a condensing economizer, companies can im- ■■ Determine your boiler capacity, prove overall heat recovery and steam system efficiency by up to 10%. Many average steam production, boiler applications can benefit from this additional heat recovery, such as district combustion efficiency, stack gas heating systems, wallboard production facilities, greenhouses, food processing temperature, annual hours of plants, pulp and paper mills, textile plants, and hospitals. Condensing economiz- operation, and annual fuel ers require site-specific engineering and design, and a thorough understanding of consumption. the effect they will have on the existing steam system and water chemistry. ■■ Identify in-plant uses for heated Use this tip sheet and its companion, Considerations When Selecting a water, such as boiler makeup Condensing Economizer, to learn about these efficiency improvements. water heating, preheating, or A conventional feedwater economizer reduces steam boiler fuel requirements domestic hot water or process by transferring heat from the flue gas to the boiler feedwater. For natural gas-fired water heating requirements. boilers, the lowest temperature to which flue gas can be cooled is about 250°F ■■ Determine the thermal to prevent condensation and possible stack or stack liner corrosion. requirements that can be met The condensing economizer improves waste heat recovery by cooling the flue through installation of a gas below its dew point, which is about 135°F for products of combustion of condensing economizer.
    [Show full text]
  • VAV Systems, on the Other Hand, Are Designed to Simultaneously Meet a Variety of Cooling and Heating Loads in a Relatively Efficient Manner
    PDHonline Course M252 (4 PDH) HVAC Design Overview of Variable Air Volume Systems Instructor: A. Bhatia, B.E. 2012 PDH Online | PDH Center 5272 Meadow Estates Drive Fairfax, VA 22030-6658 Phone & Fax: 703-988-0088 www.PDHonline.org www.PDHcenter.com An Approved Continuing Education Provider www.PDHcenter.com PDH Course M252 www.PDHonline.org HVAC Design Overview of Variable Air Volume Systems A. Bhatia, B.E. VARIABLE AIR VOLUME SYSTEMS In central air conditioning systems there are two basic methods for delivering air to the conditioned space 1) the constant air volume (CAV) systems and 2) the variable air volume (VAV) systems. As the name implies, constant volume systems deliver a constant air volume to the conditioned space irrespective of the load with the air conditioner cycling on and off as the load varies. The fan may or may not continue to run during the off cycle. VAV systems, on the other hand, are designed to simultaneously meet a variety of cooling and heating loads in a relatively efficient manner. The system achieves this by varying the distribution of air depending on the cooling or heating loads of each area. The air flow variation allows for adjusting the temperature in a single zone without changing the temperature of air in the whole system, minimizing any instances of overcooling or overheating. This flexibility has made this one of the most popular HVAC systems for large buildings with varying conditioning needs such as office buildings, schools, or apartments. How a VAV system works? What distinguishes a variable air volume system from other types of air delivery systems is the use of a variable air volume box in the ductwork.
    [Show full text]
  • Use Feedwater Economizers for Waste Heat Recovery, Energy Tips
    ADVANCED MANUFACTURING PROGRAM Energy Tips: STEAM Steam Tip Sheet #3 Use Feedwater Economizers for Waste Heat Recovery Suggested Actions ■■ Determine the stack temperature A feedwater economizer reduces steam boiler fuel requirements by transferring after the boiler has been tuned heat from the flue gas to incoming feedwater. Boiler flue gases are often to manufacturer’s specifications. rejected to the stack at temperatures more than 100°F to 150°F higher than The boiler should be operating the temperature of the generated steam. Generally, boiler efficiency can at close-to-optimum excess be increased by 1% for every 40°F reduction in flue gas temperature. By air levels with all heat transfer recovering waste heat, an economizer can often reduce fuel requirements by 5% surfaces clean. to 10% and pay for itself in less than 2 years. The table provides examples of ■■ Determine the minimum the potential for heat recovery. temperature to which stack gases Recoverable Heat from Boiler Flue Gases can be cooled subject to criteria such as dew point, cold-end Recoverable Heat, MMBtu/hr corrosion, and economic heat Initial Stack Gas transfer surface. (See Exhaust Temperature, °F Boiler Thermal Output, MMBtu/hr Gas Temperature Limits.) 25 50 100 200 ■■ Study the cost-effectiveness of installing a feedwater economizer 400 1.3 2.6 5.3 10.6 or air preheater in your boiler. 500 2.3 4.6 9.2 18.4 600 3.3 6.5 13.0 26.1 Based on natural gas fuel, 15% excess air, and a final stack temperature of 250˚F. Example An 80% efficient boiler generates 45,000 pounds per hour (lb/hr) of 150-pounds-per-square-inch-gauge (psig) steam by burning natural gas.
    [Show full text]
  • Energy and Exergy Analysis of Data Center Economizer Systems
    San Jose State University SJSU ScholarWorks Master's Theses Master's Theses and Graduate Research Spring 2011 Energy and Exergy Analysis of Data Center Economizer Systems Michael Elery Meakins San Jose State University Follow this and additional works at: https://scholarworks.sjsu.edu/etd_theses Recommended Citation Meakins, Michael Elery, "Energy and Exergy Analysis of Data Center Economizer Systems" (2011). Master's Theses. 3944. DOI: https://doi.org/10.31979/etd.bf7d-khxd https://scholarworks.sjsu.edu/etd_theses/3944 This Thesis is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been accepted for inclusion in Master's Theses by an authorized administrator of SJSU ScholarWorks. For more information, please contact [email protected]. ENERGY AND EXERGY ANALYSIS OF DATA CENTER ECONOMIZER SYSTEMS A Thesis Presented to The Faculty of the Department of Mechanical and Aerospace Engineering San José State University In Partial Fulfillment of the Requirements for the Degree Master of Science By Michael E. Meakins May 2011 © 2011 Michael E. Meakins ALL RIGHTS RESERVED The Designated Thesis Committee Approves the Thesis Titled ENERGY AND EXERGY ANALYSIS OF DATA CENTER ECONOMIZER SYSTEMS by Michael E. Meakins APPROVED FOR THE DEPARTMENT OF MECHANICAL AND AEROSPACE ENGINEERING SAN JOSÉ STATE UNIVERSITY May 2011 Dr. Nicole Okamoto Department of Mechanical and Aerospace Engineering Dr. Jinny Rhee Department of Mechanical and Aerospace Engineering Mr. Cullen Bash Hewlett Packard Labs ABSTRACT ENERGY AND EXERGY ANALYSIS OF DATA CENTER ECONOMIZER SYSTEMS By Michael E. Meakins Electrical consumption for data centers is on the rise as more and more of them are being built.
    [Show full text]
  • Controlling Airflow in Class II Biosafety Cabinets
    Controlling Airfl ow in Class II Biosafety Cabinets by Jim Hunter, Senior Project Engineer, Mark Meinders, Product Manager, and Brian Garrett, Product Specialist, Labconco Corporation Introduction Class II biosafety cabinets are defi ned by the National Sanitation Founda- tion (NSF International) as: “A ventilated cabinet for personnel, product, and environmental protec- tion having an open front with inward airfl ow for personnel protection, downward HEPA fi ltered laminar airfl ow for product protection, and HEPA fi ltered exhausted air for environmental protection.”1 In order to maintain proper containment, NSF stipulates that recircu- lating and exhausted airfl ow volumes, and therefore velocities, must be maintained within a tolerance of +/- 5 feet per minute (FPM).2 HEPA fi lter loading can compromise a biological safety cabinet’s ability to maintain proper airfl ow. This paper will review the current technologies used by various biosafety cabinet manufacturers to monitor and maintain proper airfl ows as HEPA fi lters load. Manually Controlling Airfl ow Differential Pressure Gauges When biosafety cabinets were originally developed in the 1960s and 70s, ® ® built-in electronic technologies for measuring and displaying airfl ow were The Purifi er Logic Biosafety Cabinet is one example of a biologi- cal safety cabinet that uses sensorless airfl ow control. prohibitively expensive. To indicate that the cabinet was running prop- erly, most manufacturers opted to equip their cabinets with differential pressure gauges. The differential pressure gauge simply reports the pres- readings may not be intuitive and since most gauges do not have an sure change between points. The most commonly used gauge is known by alarm to indicate a performance failure, there is potential for users to be the trade name Magnehelic™, manufactured by Dwyer Instruments Incor- exposed to unsafe conditions before performance is restored.
    [Show full text]
  • Extract from the Proceedings of Building Simulation and Optimization 2012
    First Building Simulation and Optimization Conference Loughborough, UK BSO12 10-11 September 2012 MODELING AND SIMULATION OF BUILDING ECONOMIZER AND ENERGY RECOVERY SYSTEMS FOR OPTIMUM PERFORMANCE Stephen Treado, Xing Liu Pennsylvania State University University Park, PA appropriate to provide “free cooling”, the rough ABSTRACT equivalent of opening the windows on a nice day This paper describes how building economizer and rather than using mechanical cooling. The former energy/enthalpy recovery system control and study has demonstrated that the energy savings operation can be modelled and simulated to evaluate associated with economizer could be very significant and optimize their performance. A improved method (Brandemuehl et al., 1999). The energy saving of the to determine optimum temperature setpoints and robust control strategy on cooling coil energy outdoor air fractions is discussed and demonstrated. consumption which was evaluated by over one year’s Through the simulation, the new strategy based on comparison tests on two air-handling units in a total system energy use is shown to be able to save building was 88.47% in contrast to the energy up to 11% of energy under certain conditions and to consumption using the conventional control (damper be most useful for dry climates. at fixed position) in Hong Kong (Wang et al., 2004). Energy recovery systems exploit the “free heating or INTRODUCTION cooling” provided by exchanging energy between the exhaust and outdoor airstreams. In both of these Buildings are constructed to serve a purpose, namely systems, some control logic must be implemented to to provide a comfortable, safe, healthy and determine how and when the systems should be productive environment for human endeavours.
    [Show full text]
  • Thermal Optimization of Solar Biomass Hybrid Cogeneration Plants
    Journal of Scientific & Industrial Research Vol. 65 April 2006, pp. 355-363 Thermal optimization of solar biomass hybrid cogeneration plants Anuradha Mishra 1, M N Chakravarty 2 and N D Kaushika 2, * 1IEC College of Engineering and Technology, Greater Noida 2School of Research and Development, Bharati Vidyapeeth College of Engineering, Paschim Vihar, New Delhi Received 10 February 2005; accepted 25 January 2006 Thermal optimization and performance matching of subsystems in solar biomass hybrid plant are investigated. The plant incorporates solar collector field, multiple fuel boiler, steam turbine, deaerator and economizer units. The solar field consists of line focus parabolic trough collectors. The thermal model is used for comparative study of various variations of parabolic trough collectors; LS3, Euro Trough (ET) and Duke solar excel over others. The matching of the output heat Qu and the temperature to the feed water conditions indicate that ET is the most suitable for the application; its inlet temperature requirement also matches the energy balance of the deaerator. Keywords : Biogas, Cogeneration, Hybrid power plant, Parabolic trough collector Introduction Cogeneration Plant Configuration India produces abundant quantities of agro residues A solar biomass hybrid plant would incorporate (rice husk, coffee husk, cashew shells, groundnut solar collector field, multiple fuel boiler, steam shells) and wastes (distillery waste). Co-generation of turbine, deaerator and economizer units (Fig. 1). The process heat and power is an important energy saving solar field consists of concentrating collectors. Three approach. It is particularly suitable for paper, solar thermal collector technologies (parabolic trough, chemicals, textiles, food and petroleum refining parabolic dish and solar tower) have reached the stage industries.
    [Show full text]
  • Reverse Flow Fan Filter Units Models: 92Ffu-Rf and 92Ffum-Rf
    MEETING THE NEED FOR COVID-19 PATIENT ISOLATION ROOMS WITH REVERSE FLOW FAN FILTER UNITS MODELS: 92FFU-RF AND 92FFUM-RF According to the ASHRAE Standard 170, all Airborne Infection Isolation (AII) Our Reverse Flow FFU’s create negative pressure environments that remove rooms should be kept at a negative static pressure at all times to prevent the air from an isolation room and clean it via the unit’s built-in HEPA filter, the spread of infected air to the rest of the building. To accomplish this, the which keeps airborne contaminants from escaping the room. These units are exhaust air should be filtered and exceed the supply air. However, in most the most powerful available, featuring... cases, the central exhaust will not be able to accommodate HEPA filtration. • The industry’s highest output, up to 1125 CFM Therefore, using a Reverse Flow Fan Filter Unit (FFU) with HEPA filter can keep the • Energy efficiency (only 65 watts at 90 FPM velocity/450 CFM) room at negative pressure and decontaminate the exhaust air at the same time. • Quiet performance (only 45 DBA at 90 FPM, 58 DBA at 1100 CFM) Nailor has played an important role in helping hospitals provide critical • Ceiling-mount version has the industry’s lowest plenum height – just 16” environment patient isolation care – from the Ebola outbreak of 2014 to the for easier retrofits current COVID-19 pandemic – with our Critical Environment products. • Standard and High Flow HEPA and ULPA filter options Nailor’s Reverse Flow - Fan Filter Units are available in both ceiling-mounted • Ducted and non-ducted versions are available and portable models, making it easier to quickly convert existing spaces into patient isolation rooms.
    [Show full text]
  • Impacts of Commercial Building Controls on Energy Savings and Peak Load Reduction May 2017
    PNNL-25985 Impacts of Commercial Building Controls on Energy Savings and Peak Load Reduction May 2017 N Fernandez Y Xie S Katipamula M Zhao W Wang C Corbin Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830 PNNL-25985 Impacts of Commercial Building Controls on Energy Savings and Peak Load Reduction N Fernandez Y Xie S Katipamula M Zhao W Wang C Corbin May 2017 Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830 Pacific Northwest National Laboratory Richland, Washington 99352 Summary Background Commercial buildings in the United States consume approximately 18 quadrillion British thermal units (quads) of primary energy annually (EIA 2016). Inadequate building operations leads to preventable excess energy consumption along with failure to maintain acceptable occupant comfort. Studies have shown that as much as 30% of building energy consumption can be eliminated through more accurate sensing, more effective use of existing controls, and deployment of advanced controls (Fernandez et al. 2012; Fernandez et al. 2014; AEDG 2008). Studies also have shown that 10% to 20% of the commercial building peak load can be temporarily managed or curtailed to provide grid services (Kiliccote et al. 2016; Piette et al. 2007). Although many studies have indicated significant potential for energy savings in commercial buildings by deploying sensors and controls, very few have documented the actual measured savings (Mills 2009; Katipamula and Brambley 2008). Furthermore, previous studies only provided savings at the whole-building level (Mills 2009), making it difficult to assess the savings potential of each individual measure deployed. Purpose Pacific Northwest National Laboratory (PNNL) conducted this study to systematically estimate and document the potential energy savings from Re-tuning™ commercial buildings using the U.S.
    [Show full text]
  • Economizers in Chiller Systems
    Ekaterina Vinogradova T662KA ECONOMIZERS IN CHILLER SYSTEMS Bachelor’s Thesis Building Services Engineering November 2012 DESCRIPTION Date of the bachelor's thesis 17.12.12 Author(s) Degree programme and option Ekaterina Vinogradova Double Degree Programme in Building Services Engineering Name of the bachelor's thesis Economizers in Chiller Systems Abstract There are many buildings that have cooling demands for different purposes. They can be hospitals, administrative and office buildings, shopping centers, data centers and also industrial buildings. Cooling of processes and products, cool rooms, ice halls, and air-conditioning systems require chiller system application. Chiller system is usually the substantial part of energy consumption of the build- ing. That’s why different ways of increasing of the chiller systems efficiency began to be used more often. Due to the widespread use a lot of schemes to optimize and improve the effectiveness of chiller sys- tems have been developed. One possibility is the installation of an additional low-cost equipment like the economizer systems. They may be applied in the refrigeration cycle of the chiller or in the rest chiller system. In the theoretical part of the thesis measures and methods of the chiller systems efficiency increasing and different types of economizers were described. Influencing on the economizers efficiency factors were noted. Study case contains the simulation of the office building in different modes with IDA Indoor Climate and Energy software. Some results of the simulations are presented in the tables. The benefit from the economizer operation is calculated as compared with traditional chiller system. Also influence of the economizer set-point temperature on its benefits was evaluated.
    [Show full text]
  • Alfa Laval VHE Economizer
    305021_PFT00177EN:252873_VHE Economizer 02/09/10 9:17 Side 1 VHE Economizer For deodorization and physical refining of fats and oils The VHE Economizer Application the tube side and flows through a multipass tube system This high-performance heat exchanger is specially designed until it reaches the outlet connection at the other end. to recover heat by cooling the deodorized edible fats and oils in deodorization and physical refining plants and – at the Counter-current flow between the incoming oil and same time – heating the incoming oil. This cooling takes deodorized oil is maintained by a special design of the place under vacuum and sparging steam conditions. tubes and baffles on the shell side. The VHE Economizer is part of the Alfa Laval deodorization To avoid cross-contamination and provide fast draining during concept, but is also available as a retrofit component for stock changes, the heat exchanger is fitted with a special installation in other deodorization systems – irrespective of fast-drain valve arrangement on both sides. origin. Design features Operating principles The VHE Economizer is designed to achieve a high level of The hot deodorized oil enters the VHE Economizer at one heat recovery by cooling the deodorized oil under vacuum end of the shell side, which is under vacuum, and flows and sparge steam conditions, while heating the incoming oil. through a special system of channels and baffles until it Under full sparge steam conditions, this gradual cooling reaches the outlet connection at the other end. It is then means the oil is treated gently and the quality improves.
    [Show full text]
  • "Free" Cooling Using Water Economizers
    engineers newsletter volume 37–3 • providing insights for today’s hvac system designer "free" cooling using Standard 90.1 requirements Water Economizers The following sections of the Standard 90.1 prescriptive path are relevant for water economizers.[4] from the editor … Why economize? In past newsletters, we addressed the ability to accomplish "free" cooling by There are times of the year when a Section 6.5.1 Economizers. "Each artfully rearranging traditional cooling cooling system…" over the size equipment [1] and other ways to achieve system can use outdoor conditions to byproduct cooling virtually for free.[2] cool the building or process using the thresholds shown below "that has a fan We’ve also provided newsletters that standard cooling components to shall include either an air or water discussed air economizers and energy distribute its cooling effect. economizer." There are nine exceptions: code requirements.[3] small individual fan cooling units, In this EN, Susanna Hanson (Trane The most prevalent technique is an air spaces humidified above 35°F (2ºC) applications engineer) focuses on the economizer. When the temperature, or dew point for processes, systems with traditional methods of water-side enthalpy, of the outdoor air is low, condenser heat recovery, some economizing and associated energy code requirements. cooler outdoor air is used to reduce the residential applications, and systems temperature (or enthalpy) of air entering with minimal hours or cooling loads. the cooling coil. This can reduce or There is also an option to use higher eliminate mechanical cooling for much Let’s start with some definitions. efficiency equipment in lieu of an of the year in many climates.
    [Show full text]