VAV Systems, on the Other Hand, Are Designed to Simultaneously Meet a Variety of Cooling and Heating Loads in a Relatively Efficient Manner
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Hvac System Covid Procedures
HVAC SYSTEM COVID PROCEDURES August 17, 2020 Prepared by: Johnson Roberts Associates 15 Properzi Way Somerville, MA 02143 Prepared for: City of Cambridge Executive Summary The HVAC COVID procedures are a compilation of Industry Standards and CDC recommendations. However, it should be noted that good PPE (personal protective equipment), social distancing, hand washing/hygiene, and surface cleaning and disinfection strategies should be performed with HVAC system measures, as studies have shown that diseases are easily transmitted via direct person to person contact, contact from inanimate objects (e.g. room furniture, door and door knob surfaces) and through hand to mucous membrane (e.g. those in nose, mouth and eyes) contact than through aerosol transmission via a building’s HVAC system. Prior to re-occupying buildings, it is recommended that existing building HVAC systems are evaluated to ensure the HVAC system is in proper working order and to determine if the existing system or its associated control operation can be modified as part of a HVAC system mitigation strategy. Any identified deficiencies should be repaired and corrected, and if the building HVAC system is a good candidate for modifications those measures should be implemented. In general HVAC system mitigation strategies should include the following recommendations: 1. Increase Outdoor Air. The OA increase must be within Unit's capacity in order to provide adequate heating or cooling so Thermal Comfort is not negatively impacted. Also use caution when increasing OA in polluted areas (e.g. High Traffic/City areas) and during times of high pollen counts. 2. Disable Demand Control Ventilation where present. -
Variable Air Volume Fundamentals Belimo Automation FZE
ASHRAE Qatar Oryx Chapter Qatar University, Doha-Qatar 20th April 2013 Variable Air Volume Fundamentals Belimo Automation FZE Speaker: Ahmed Khatib Content • VAV Overview and core concepts • Keys of control loop of VAV terminal unit • Fundamentals of VAV terminal unit Parts, Responsibility, Flow measurement, Probe installation & placement, c-factor Pressure drop, Specification, Information and Accuracy • VAV Flow-sensors • Linearization and calibration • Conclusions Target: • Ductwork for VAV systems should be designed for the lowest practical static pressure loss, especially ductwork closest to the fan or air- handling unit. • VAV systems must be selected to operate with efficiency and stability throughout the operating range. • Sound data for VAV units should be obtained according to the procedures specified by the latest ARI Standard 880. • General design consideration and precautions. VAV Overview A variable-air-volume (VAV) system is a single-path system that controls zone temperature by modulating airflow while maintaining constant supply air temperature. VAV terminal units, located at each zone, adjust the quantity of air reaching each zone depending on its load requirements. Reheat coils may be included to provide required heating for perimeter zones. A VAV boxes provide constant or variable airflow depending on the temperature demands of the space. As the temperature raises the VAV damper opens to send a designed amount of airflow to the space/ or room. There are many different types of VAV units: . Single Duct / cooling only, or cooling with reheat . Dual Duct terminal . Induction VAV terminal . Parallel Flow Fan Powered VAV terminal . Series Flow Fan Powered VAV terminal VAV Core concept VAV terminals can also be classified as: VAV - Pressure Independent: A pressure independent teriminal unit is equipped with a flow sensing controller that can be set to limit maximum and minimum primary air discharge from terminal unit. -
Performance Improvement of Airflow Distribution and Contamination Control for an Unoccupied Operating Room
Performance improvement of airflow distribution and contamination control for an unoccupied operating room F.J. Wang1,*, T.B. Chang2, C.M. Lai3, Z.Y. Liu1 1Department of Refrigeration, Air Conditioning and Energy Engineering, National Chin- Yi University of Technology, Taichung, Taiwan. 2Institute of Energy Engineering, Southern Taiwan University, Tainan, Taiwan. 3Department of Civil Engineering, National Cheng Kung University, Tainan, Taiwan. ABSTRACT The HVAC systems for operating rooms are energy-intensive and sophisticated in that they operate 24 hours per day year-round and use large amount of fresh air to deal with infectious problems and to dilute microorganisms. However, little quantitative information has been investigated about trade-off between energy-efficient HVAC system and indoor environment quality especially when the operating room is not occupied. The objective of this study is to present the field measurement approach on performance evaluation of the HVAC system for an unoccupied operating room. Variable air volume terminal boxes were conducted to verify the compromise of energy-saving potential and indoor environment parameters including particle counts, microbial counts, pressurization, temperature and humidity. Field measurements of a full-scale operating room have been carried out at a district hospital in Taiwan. Numerical simulation has been applied to evaluate the air flow distribution and concentration contours while conducting the velocity reduction approach in the unoccupied operating room. The results reveal that it is feasible to achieve satisfactory indoor environment by reducing the supply air volume (or velocity) in the unoccupied operating room. Optimal face velocity of HEPA filter and percentage of damper opening for the variable air volume terminal boxes could be obtained through compromising of indoor environment quality control and energy consumption. -
Controlling Airflow in Class II Biosafety Cabinets
Controlling Airfl ow in Class II Biosafety Cabinets by Jim Hunter, Senior Project Engineer, Mark Meinders, Product Manager, and Brian Garrett, Product Specialist, Labconco Corporation Introduction Class II biosafety cabinets are defi ned by the National Sanitation Founda- tion (NSF International) as: “A ventilated cabinet for personnel, product, and environmental protec- tion having an open front with inward airfl ow for personnel protection, downward HEPA fi ltered laminar airfl ow for product protection, and HEPA fi ltered exhausted air for environmental protection.”1 In order to maintain proper containment, NSF stipulates that recircu- lating and exhausted airfl ow volumes, and therefore velocities, must be maintained within a tolerance of +/- 5 feet per minute (FPM).2 HEPA fi lter loading can compromise a biological safety cabinet’s ability to maintain proper airfl ow. This paper will review the current technologies used by various biosafety cabinet manufacturers to monitor and maintain proper airfl ows as HEPA fi lters load. Manually Controlling Airfl ow Differential Pressure Gauges When biosafety cabinets were originally developed in the 1960s and 70s, ® ® built-in electronic technologies for measuring and displaying airfl ow were The Purifi er Logic Biosafety Cabinet is one example of a biologi- cal safety cabinet that uses sensorless airfl ow control. prohibitively expensive. To indicate that the cabinet was running prop- erly, most manufacturers opted to equip their cabinets with differential pressure gauges. The differential pressure gauge simply reports the pres- readings may not be intuitive and since most gauges do not have an sure change between points. The most commonly used gauge is known by alarm to indicate a performance failure, there is potential for users to be the trade name Magnehelic™, manufactured by Dwyer Instruments Incor- exposed to unsafe conditions before performance is restored. -
Extract from the Proceedings of Building Simulation and Optimization 2012
First Building Simulation and Optimization Conference Loughborough, UK BSO12 10-11 September 2012 MODELING AND SIMULATION OF BUILDING ECONOMIZER AND ENERGY RECOVERY SYSTEMS FOR OPTIMUM PERFORMANCE Stephen Treado, Xing Liu Pennsylvania State University University Park, PA appropriate to provide “free cooling”, the rough ABSTRACT equivalent of opening the windows on a nice day This paper describes how building economizer and rather than using mechanical cooling. The former energy/enthalpy recovery system control and study has demonstrated that the energy savings operation can be modelled and simulated to evaluate associated with economizer could be very significant and optimize their performance. A improved method (Brandemuehl et al., 1999). The energy saving of the to determine optimum temperature setpoints and robust control strategy on cooling coil energy outdoor air fractions is discussed and demonstrated. consumption which was evaluated by over one year’s Through the simulation, the new strategy based on comparison tests on two air-handling units in a total system energy use is shown to be able to save building was 88.47% in contrast to the energy up to 11% of energy under certain conditions and to consumption using the conventional control (damper be most useful for dry climates. at fixed position) in Hong Kong (Wang et al., 2004). Energy recovery systems exploit the “free heating or INTRODUCTION cooling” provided by exchanging energy between the exhaust and outdoor airstreams. In both of these Buildings are constructed to serve a purpose, namely systems, some control logic must be implemented to to provide a comfortable, safe, healthy and determine how and when the systems should be productive environment for human endeavours. -
System Controls Engineering Guide
SECTION G Engineering Guide System Controls System Controls Engineering Guide Introduction to VAV Terminal Units The control of air temperature in a space requires that the loads in the space are offset by some means. Space loads can consist of exterior loads and/or interior loads. Interior loads can consist of people, mechanical equipment, lighting, com puters, etc. In an 'air' conditioning system compensating for the loads is achieved by introducing air into the space at a given temperature and quantity. Since space loads are always fluctuating the compensation to offset the loads must also be changing in a corresponding manner. Varying the air temperature or varying the air volume or a combination of both in a controlled manner will offset the space load as required. The variable air volume terminal unit or VAV box allows us to vary the air volume into a room and in certain cases also lets us vary the air temperature into a room. YSTEM CONTROLS YSTEM S The VAV terminal unit may be pressure dependent or pressure independent. This is a function of the control package. ENGINEERING GUIDE - Pressure Dependent A device is said to be pressure dependent when the flow rate passing through it varies as the system inlet pressure fluctuates. The flow rate is dependent only on the inlet pressure and the damper position of the terminal unit. The pressure dependent terminal unit consists of a damper and a damper actuator controlled directly by a room thermostat. The damper is modulated in response to room temperature only. Since the air volume varies with inlet pressure, the room may experience temperature swings until the thermostat repositions the damper. -
HVAC Operational Adjustments Can Help Mitigate the Spread of COVID-19
Fan Application ® FA/131-20 A technical bulletin for engineers, contractors and students in the air movement and control industry. HVAC Operational Adjustments Can Help Mitigate the Spread of COVID-19 In response to the COVID-19 pandemic, the American A dedicated ventilation unit provides 100% outdoor Society of Heating, Refrigerating and Air-Conditioning air and controls the latent load, while air handling Engineers (ASHRAE) has published guidelines units (AHUs) control the space sensible load. VAV for HVAC system operation in commercial and systems mix high percentages of outdoor air with educational buildings to help mitigate the spread return air to maintain indoor temperature and of COVID-19 via airborne respiratory droplets. The humidity. Figure 2 shows a single-zone VAV guidelines fall into three general categories: system serving a gymnasium. 1. Increased ventilation 2. Increased filtration efficiency 3. Electronic air cleaners These HVAC system upgrades can pose challenges to building operation and energy usage. However, properly designed dedicated outdoor air systems (DOAS) and variable air volume (VAV) systems help minimize the challenges. DOAS and VAV systems provide high percentages of conditioned outdoor air into buildings. Many of the upgrades recommended by ASHRAE are easily implemented with these systems. Increased Ventilation Increased ventilation dilutes the concentration of indoor contaminants, including infectious respiratory droplets, and mitigates the spread of COVID-19 via airborne transmission.1 DOAS and VAV systems are Figure 2: A gymnasium served well suited for increased ventilation recommendations by a single-zone VAV system. because each has features available to control and condition high percentages of outdoor air efficiently. -
Variable Air Volume (VAV) Air Handling System Control What Makes VAV Box Performance Better Technology
Air flow Measuring Technology Air Flow Variable air volume (VAV) Air Handling System Control What Makes VAV Box Performance Better Technology Factory Calibrated Yong Zhao Solution Johnson Controls Australia 1 Johnson Controls Variable air volume (VAV) Air Handling System VAV systems are vary popular in many modern buildings • VAV systems contain many zones with diverse airflow needs • VAV systems have “bad” zones • VAV systems are dynamic • VAV systems have minimum airflow zones 2 Johnson Controls Variable air volume (VAV) Terminal Unit Consider the relationship between damper position and airflow System is sensitive as damper starts to open, so large proportional band is needed When damper is almost open, system is not very sensitive, so a small proportional band is needed Consider the “optimal” proportional band for a mixed air control loop It will vary by a factor of ten between summer and winter Good commissioning is critical Air Conventional PI control resulted in Flow Systems tuned for “worst case” (typically low load) conditions and unresponsive at other times Comfort problems High energy (fan consumption) cost Damper Position 3 Johnson Controls Variable air volume (VAV) Terminal Unit 1 2 3 4 5 Velocity Sensor Flow Damper Mixing Box VAV Brain Reheat measures air flow controls air flow reduces noise calculates & controls option air flow 4 Johnson Controls Variable air volume (VAV) Terminal Unit What makes VAV box performance better 1. Air flow measuring – Velocity sensor more accurate to measure the air flow = better control (less hunting) = less temperature variation = less energy consumption not easy to maintain accuracy when flow rate is lower 2. -
Reverse Flow Fan Filter Units Models: 92Ffu-Rf and 92Ffum-Rf
MEETING THE NEED FOR COVID-19 PATIENT ISOLATION ROOMS WITH REVERSE FLOW FAN FILTER UNITS MODELS: 92FFU-RF AND 92FFUM-RF According to the ASHRAE Standard 170, all Airborne Infection Isolation (AII) Our Reverse Flow FFU’s create negative pressure environments that remove rooms should be kept at a negative static pressure at all times to prevent the air from an isolation room and clean it via the unit’s built-in HEPA filter, the spread of infected air to the rest of the building. To accomplish this, the which keeps airborne contaminants from escaping the room. These units are exhaust air should be filtered and exceed the supply air. However, in most the most powerful available, featuring... cases, the central exhaust will not be able to accommodate HEPA filtration. • The industry’s highest output, up to 1125 CFM Therefore, using a Reverse Flow Fan Filter Unit (FFU) with HEPA filter can keep the • Energy efficiency (only 65 watts at 90 FPM velocity/450 CFM) room at negative pressure and decontaminate the exhaust air at the same time. • Quiet performance (only 45 DBA at 90 FPM, 58 DBA at 1100 CFM) Nailor has played an important role in helping hospitals provide critical • Ceiling-mount version has the industry’s lowest plenum height – just 16” environment patient isolation care – from the Ebola outbreak of 2014 to the for easier retrofits current COVID-19 pandemic – with our Critical Environment products. • Standard and High Flow HEPA and ULPA filter options Nailor’s Reverse Flow - Fan Filter Units are available in both ceiling-mounted • Ducted and non-ducted versions are available and portable models, making it easier to quickly convert existing spaces into patient isolation rooms. -
Electing the Inlet Size of a Variable Air Volume (VAV) Terminal Box Requires
The following article was published in ASHRAE Journal, March 2004. © Copyright 2004 American Society of Heating, Refrigerating and Air- Conditioning Engineers, Inc. It is presented for educational purposes only. This article may not be copied and/or distributed electronically or in paper form without permission of ASHRAE. By Steven T. Taylor, P.E., Fellow ASHRAE, and Jeff Stein, P.E., Member ASHRAE schematic for a parallel fan-powered VAV (FPV) box. For both box types, Vmax is electing the inlet size of a variable air volume (VAV) terminal box typically the design cooling airflow rate. For VRH boxes, V is typically selected S requires the consideration of five factors: (1) pressure drop across min S to be the largest of the following: the box; (2) ability of the VAV box controller to measure and control 1. The airflow required to meet the de- the desired minimum and maximum airflow setpoints; (3) first costs of sign heating load at a supply air tem- the VAV box, its installation, and controls; (4) noise generation; and (5) perature that is not too warm, e.g., ≤ 90°F (≤ 32°C). Warmer temperatures tend to space constraints. result in poor temperature control due to stratification and short circuiting.2 The first three considerations affect using pressure independent control 2. The airflow required to prevent energy costs and first costs and ideally logic. Pressure independent controls use “dumping” and poor distribution. This should be balanced to minimize life- two cascading control loops. The first limit depends on the diffuser style and cycle cost (LCC). The last two consider- loop controls space temperature; its out- sizing. -
BALDWIN HALL (0050) Baldwin Hall Was Originally Constructed in 1937 with Additions Constructed in 1942 and 2018
BALDWIN HALL (0050) Baldwin Hall was originally constructed in 1937 with additions constructed in 1942 and 2018. The 2018 addition also included modifications to the existing air conditioning systems serving the balance of the building to convert them from constant air volume to variable air volume systems. The building is predominantly served by variable volume Air Handling Units (AHUs) serving duct mounted variable air volume terminal units with hot water reheat coils. There are Fan Coil Units that provide heating and cooling within data rooms on each floor and the new annex stairwell. VARIABLE VOLUME AIR HANDLING UNITS The Air Handling Units deliver a variable volume of conditioned air consisting of a mixture of recirculated building air and fresh air from outside of the building. The building return air is mixed with outdoor air, passed through a bank of filters and cooled with chilled water coils in the building’s air handling unit before being supplied to rooms throughout the building through above ceiling ductwork. The Variable Air Volume terminal units (VAVs) are equipped with an air damper to regulate the volume of air delivered from the central AHU to the space based on the current space temperatures. Most of the VAVs also include a fan, a hot water coil and a filter combination that will mix in air from the above ceiling plenum with the conditioned air from the central AHU when the space requires heating. Air is recirculated from the spaces back to the air handling unit through ceiling mounted air return registers located in each space. Return air is pulled from a plenum space above the ceiling, in lieu of ductwork. -
February 10, 2021 From: Chief Facilities Officer To: All District Administrators and Supervisors Subject: Heating, Ventilation
February 10, 2021 From: Chief Facilities Officer To: All District Administrators and Supervisors Subject: Heating, Ventilation, and Air Conditioning (HVAC) in Preparation for Limited In-Person Instruction (LIPI) Phase 2 and Hybrid Learning 1. This memorandum provides a summary of HVAC operations and modifications (as needed) in preparation for LIPI Phase 2 and hybrid learning. The memorandum gives district leaders a resource that can be shared with all staff and school communities on the steps being taken to reduce the risk of COVID-19 transmission. 2. This memorandum is organized into seven (7) areas: ● References ● HVAC Guidance for COVID-19 ● Target Operating Conditions for All District Facilities ● Summary of District HVAC Operations and Systems ● Summary of HVAC Systems at District Facilities ● Standard Operating Procedures in the Event of HVAC System Maintenance or Failure ● Frequently Asked Questions (FAQ) ● Glossary of Acronyms 3. Following the guidance from The Oregon Health Authority (OHA), The Centers for Disease Control and Prevention (CDC), The American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE), and Healthy Buildings, the district will improve indoor air quality and reduce the risk of COVID-19 transmission for LIPI Phase 2 and hybrid learning by doing the following: ● Introduce more outside air (OSA) in most buildings. ● Extend operation run times (in general 6 am - 6 pm). ● The district will upgrade all Minimum Efficiency Reporting Value (MERV) 8 filters to MERV 13. ● The district will use portable High Efficiency Particulate Air (HEPA) air cleaners in areas that need them. ● The district will make some areas off limits for LIPI Phase 2 and hybrid learning 4.