Reverse Flow Fan Filter Units Models: 92Ffu-Rf and 92Ffum-Rf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Thermal Assessment of a Novel Combine Evaporative Cooling Wind Catcher
energies Article Thermal Assessment of a Novel Combine Evaporative Cooling Wind Catcher Azam Noroozi * and Yannis S. Veneris School of Architecture, National Technical University of Athens, Section III, 42 Patission Av., 10682 Athens, Greece; [email protected] * Correspondence: [email protected]; Tel.: +30-210-772-3885 (ext. 3567) Received: 5 January 2018; Accepted: 13 February 2018; Published: 15 February 2018 Abstract: Wind catchers are one of the oldest cooling systems that are employed to provide sufficient natural ventilation in buildings. In this study, a laboratory scale wind catcher was equipped with a combined evaporative system. The designed assembly was comprised of a one-sided opening with an adjustable wetted pad unit and a wetted blades section. Theoretical analysis of the wind catcher was carried out and a set of experiments were organized to validate the results of the obtained models. The effect of wind speed, wind catcher height, and mode of the opening unit (open or closed) was investigated on temperature drop and velocity of the moving air through the wind catcher as well as provided sensible cooling load. The results showed that under windy conditions, inside air velocity was slightly higher when the pad was open. Vice versa, when the wind speed was zero, the closed pad resulted in an enhancement in air velocity inside the wind catcher. At wind catcher heights of 2.5 and 3.5 m and wind speeds of lower than 3 m/s, cooling loads have been approximately doubled by applying the closed-pad mode. Keywords: wind catcher; cooling system; experimental validation; thermal modeling 1. -
VAV Systems, on the Other Hand, Are Designed to Simultaneously Meet a Variety of Cooling and Heating Loads in a Relatively Efficient Manner
PDHonline Course M252 (4 PDH) HVAC Design Overview of Variable Air Volume Systems Instructor: A. Bhatia, B.E. 2012 PDH Online | PDH Center 5272 Meadow Estates Drive Fairfax, VA 22030-6658 Phone & Fax: 703-988-0088 www.PDHonline.org www.PDHcenter.com An Approved Continuing Education Provider www.PDHcenter.com PDH Course M252 www.PDHonline.org HVAC Design Overview of Variable Air Volume Systems A. Bhatia, B.E. VARIABLE AIR VOLUME SYSTEMS In central air conditioning systems there are two basic methods for delivering air to the conditioned space 1) the constant air volume (CAV) systems and 2) the variable air volume (VAV) systems. As the name implies, constant volume systems deliver a constant air volume to the conditioned space irrespective of the load with the air conditioner cycling on and off as the load varies. The fan may or may not continue to run during the off cycle. VAV systems, on the other hand, are designed to simultaneously meet a variety of cooling and heating loads in a relatively efficient manner. The system achieves this by varying the distribution of air depending on the cooling or heating loads of each area. The air flow variation allows for adjusting the temperature in a single zone without changing the temperature of air in the whole system, minimizing any instances of overcooling or overheating. This flexibility has made this one of the most popular HVAC systems for large buildings with varying conditioning needs such as office buildings, schools, or apartments. How a VAV system works? What distinguishes a variable air volume system from other types of air delivery systems is the use of a variable air volume box in the ductwork. -
Aspirating Smoke Detection APPLICATIONS GUIDE: ASPIRATING SMOKE DETECTION Aspirating Smoke Detection
APPLICATIONS GUIDE Aspirating Smoke Detection APPLICATIONS GUIDE: ASPIRATING SMOKE DETECTION Aspirating Smoke Detection Contents Aspirating Smoke Detection ...............................................................................3 Design Best Practices .......................................................................................21 Codes and Standards .......................................................................................4 More on Hot Aisle/ Cold Aisle Configurations .................................................22 Definitions ............................................................................................................4 Coordination and Interface with other Systems ..............................................26 United States Definitions and Requirements .....................................................4 Common Issues / Application Troubleshooting .............................................26 Requirements of SFD systems according to NFPA 72 .....................................4 Telecommunications .......................................................................................28 Requirements of EWFD systems according to NFPA 76 .................................4 Application Overview.........................................................................................28 Requirements of VEWFD systems according to NFPA 76 ...............................5 Benefits of Aspirating Smoke Detection ..........................................................29 European EN 54-20 Requirements -
The Wind-Catcher, a Traditional Solution for a Modern Problem Narguess
THE WIND-CATCHER, A TRADITIONAL SOLUTION FOR A MODERN PROBLEM NARGUESS KHATAMI A submission presented in partial fulfilment of the requirements of the University of Glamorgan/ Prifysgol Morgannwg for the degree of Master of Philosophy August 2009 I R11 1 Certificate of Research This is to certify that, except where specific reference is made, the work described in this thesis is the result of the candidate’s research. Neither this thesis, nor any part of it, has been presented, or is currently submitted, in candidature for any degree at any other University. Signed ……………………………………… Candidate 11/10/2009 Date …………………………………....... Signed ……………………………………… Director of Studies 11/10/2009 Date ……………………………………… II Abstract This study investigated the ability of wind-catcher as an environmentally friendly component to provide natural ventilation for indoor environments and intended to improve the overall efficiency of the existing designs of modern wind-catchers. In fact this thesis attempts to answer this question as to if it is possible to apply traditional design of wind-catchers to enhance the design of modern wind-catchers. Wind-catchers are vertical towers which are installed above buildings to catch and introduce fresh and cool air into the indoor environment and exhaust inside polluted and hot air to the outside. In order to improve overall efficacy of contemporary wind-catchers the study focuses on the effects of applying vertical louvres, which have been used in traditional systems, and horizontal louvres, which are applied in contemporary wind-catchers. The aims are therefore to compare the performance of these two types of louvres in the system. For this reason, a Computational Fluid Dynamic (CFD) model was chosen to simulate and study the air movement in and around a wind-catcher when using vertical and horizontal louvres. -
Controlling Airflow in Class II Biosafety Cabinets
Controlling Airfl ow in Class II Biosafety Cabinets by Jim Hunter, Senior Project Engineer, Mark Meinders, Product Manager, and Brian Garrett, Product Specialist, Labconco Corporation Introduction Class II biosafety cabinets are defi ned by the National Sanitation Founda- tion (NSF International) as: “A ventilated cabinet for personnel, product, and environmental protec- tion having an open front with inward airfl ow for personnel protection, downward HEPA fi ltered laminar airfl ow for product protection, and HEPA fi ltered exhausted air for environmental protection.”1 In order to maintain proper containment, NSF stipulates that recircu- lating and exhausted airfl ow volumes, and therefore velocities, must be maintained within a tolerance of +/- 5 feet per minute (FPM).2 HEPA fi lter loading can compromise a biological safety cabinet’s ability to maintain proper airfl ow. This paper will review the current technologies used by various biosafety cabinet manufacturers to monitor and maintain proper airfl ows as HEPA fi lters load. Manually Controlling Airfl ow Differential Pressure Gauges When biosafety cabinets were originally developed in the 1960s and 70s, ® ® built-in electronic technologies for measuring and displaying airfl ow were The Purifi er Logic Biosafety Cabinet is one example of a biologi- cal safety cabinet that uses sensorless airfl ow control. prohibitively expensive. To indicate that the cabinet was running prop- erly, most manufacturers opted to equip their cabinets with differential pressure gauges. The differential pressure gauge simply reports the pres- readings may not be intuitive and since most gauges do not have an sure change between points. The most commonly used gauge is known by alarm to indicate a performance failure, there is potential for users to be the trade name Magnehelic™, manufactured by Dwyer Instruments Incor- exposed to unsafe conditions before performance is restored. -
Extract from the Proceedings of Building Simulation and Optimization 2012
First Building Simulation and Optimization Conference Loughborough, UK BSO12 10-11 September 2012 MODELING AND SIMULATION OF BUILDING ECONOMIZER AND ENERGY RECOVERY SYSTEMS FOR OPTIMUM PERFORMANCE Stephen Treado, Xing Liu Pennsylvania State University University Park, PA appropriate to provide “free cooling”, the rough ABSTRACT equivalent of opening the windows on a nice day This paper describes how building economizer and rather than using mechanical cooling. The former energy/enthalpy recovery system control and study has demonstrated that the energy savings operation can be modelled and simulated to evaluate associated with economizer could be very significant and optimize their performance. A improved method (Brandemuehl et al., 1999). The energy saving of the to determine optimum temperature setpoints and robust control strategy on cooling coil energy outdoor air fractions is discussed and demonstrated. consumption which was evaluated by over one year’s Through the simulation, the new strategy based on comparison tests on two air-handling units in a total system energy use is shown to be able to save building was 88.47% in contrast to the energy up to 11% of energy under certain conditions and to consumption using the conventional control (damper be most useful for dry climates. at fixed position) in Hong Kong (Wang et al., 2004). Energy recovery systems exploit the “free heating or INTRODUCTION cooling” provided by exchanging energy between the exhaust and outdoor airstreams. In both of these Buildings are constructed to serve a purpose, namely systems, some control logic must be implemented to to provide a comfortable, safe, healthy and determine how and when the systems should be productive environment for human endeavours. -
FFU-HE High Efficiency Fan Filter Unit
FFU-HE High Efficiency Fan Filter Unit Price High-Efficiency Fan Filter Units (FFU-HE) are the most energy efficient line of fan filter units (fan filter modules) on the market today. Designed specifically for use in cleanrooms, pharmacies, pharmaceutical manufacturing facilities and laboratories, the FFU-HE delivers high volumes of HEPA (or ULPA) filtered air at low sound levels while reducing energy consumption by 15 to 50% versus comparable products. Typical Applications Fan Filter Units are used in critical FFU-HE, Roomside FFU-HE, Bench Top Removable Filter Replaceable Filter applications such as healthcare, Ducted Inlet Non-Ducted pharmaceutical compounding, or microelectronics manufacturing. With the integrated HEPA or ULPA filters, ultra-clean air is delivered with a unidirectional vertical downward airflow pattern into the space. The integrated high efficiency motors are designed to overcome the static pressure of the filter, and are ideal for retrofit applications where the FFU-HE Filter Options air handler is not able to provide the required static. Product Information FFU-HE is available in 24x24, 24x36 and 24x48 modules, in both aluminum, stainless steel and hybrid construction. Both PSC and EC motors are available, and have been optimized for industry leading energy efficiency. HEPA filters are typical, while ULPA are available as an option. FEATURES AND OPTIONS High Energy Efficiency • High Energy Efficiency • Industry leading energy efficiency means lower operating costs, potentially saving thousands of dollars in electricity per year. • High Airflow Capacity • Energy consumption as low as 55 Watts at 90 fpm (2x4 module) • Complete Control and • See performance data for specific energy consumptions Monitoring via BACnet High Airflow Capacity • Roomside Removable • High airflow capacity per unit means fewer units and lower first cost (RSR) filter • Active filter area is maximized with the Bench Top Replaceable (BTR) filter, with 2x4 units able to achieve up to 930 CFM. -
Installation, Operation & Maintenance Fan Filter Units Technical Air Products
Installation, Operation & Maintenance Fan Filter Units Technical Air Products Rev. 04/12/21 800.595.0020 616.863.9115 8069 Belmont Ave. NE technicalairproducts.com Belmont, MI 49306 Contents Page No. Introduction 2 Critical Information & Warnings 3 Installation Instructions Checklist 4 Installation Instructions 5 Startup Checklist 6 Cleaning and Maintenance 6 When is it time to replace your filter? 7 Final Filter Replacement 7 Prewiring Package 8 3-Year Warranty 9 Softwall Cleanroom 10 Rigidwall Cleanroom 11 Page | 1 Introduction No matter the critical environment you need to control, you will appreciate the price, performance, and quiet operation of Technical Air Products’ motorized fan filter units (FFU). FFUs deliver clean air through high-efficiency particulate air (HEPA) filters, or ultra-low penetration air (ULPA) filters. Our quiet and efficient motorized filter modules are designed to achieve ISO 4 (class 10) levels of air cleanliness. Technical Air Products offers a wide variety of sizes, metal construction and motor type/voltages to better meet your needs. Whether you are looking for a single FFU with a power cord to make your work area cleaner, or you are looking for a smart, fully automated laminar flow cleanroom, Technical Air Products has a solution for you. Page | 2 Critical Information & Warnings • Immediately upon receiving your FFU’s, inspect all boxes for shipping damage. • If there is any noticeable shipping damage, note the damage on the Bill of Lading and immediately file a freight claim with the shipping company. • Do not touch the HEPA filter media. A painted expanded metal screen exists as an option to protect the HEPA filter downstream side against accidental contact. -
Acquisition of Flanders
Acquisition of Flanders February 9, 2016 Main Points of This Announcement American Air Filter Company Inc. (AAF), a Daikin <Sales of Filter Manufacturers > subsidiary that has developed a global filter business, 2014 Results (including P&I business) is acquiring and integrating Flanders, the air filter at 110JPY/1USD ※Daikin survey manufacturer with the top share in the United States, (unit:1billion JPY) for 50.7 billion JPY. Daikin Group 104.0 +Flanders From this, AAF will become the overwhelming top Competitor C 87.0 manufacturer in the U.S. air filter market, the world’s largest, and gain the position of the leading company in the global Daikin Group 72.0 market. (AAF+Nippon Muki) Flanders 32.0 With this acquisition, the Daikin Group filter business will exceed 100 billion JPY and focus on becoming the third pillar behind the air conditioning and chemicals business. ・Sustainable growth is anticipated for the filter business in supporting such expanding markets as pharmaceuticals, biotechnology, and food processing. Not only will the filter business contribute to a stable profit structure of the Group, it will also strongly complement our air conditioning business, a mainstay business of the Daikin Group, and future synergies are expected. ・In addition to indoor environments, filters are also actively involved in such areas as mitigating air pollution, including PM2.5. and VOC, which is increasing worldwide. In acquiring Flanders, Daikin intends to further intensify its efforts in solving all issues related to “air and space.” 2 Summary of Acquisition Company Flanders Holdings LLC (hereinafter, Flanders) Acquisition Total acquisition price is 430 million dollars. -
Various Energy-Saving Approaches to a TFT-LCD Panel Fab
sustainability Article Various Energy-Saving Approaches to a TFT-LCD Panel Fab Cheng-Kuang Chang 1, Tee Lin 1, Shih-Cheng Hu 1,*, Ben-Ran Fu 2,* and Jung-Sheng Hsu 1 1 Department of Energy and Refrigerating Air-conditioning Engineering, National Taipei University of Technology, Taipei 10608, Taiwan; [email protected] (C.-K.C.); [email protected] (T.L.); [email protected] (J.-S.H.) 2 Department of Mechanical Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan * Correspondence: [email protected] (S.-C.H.); [email protected] (B.-R.F.); Tel.: +886-2-2771-2171 (ext. 3512) (S.-C.H.) Academic Editor: Andrew Kusiak Received: 24 August 2016; Accepted: 31 August 2016; Published: 7 September 2016 Abstract: This study employs the developed simulation software for the energy use of the high-tech fabrication plant (hereafter referred as a fab) to examine six energy-saving approaches for the make-up air unit (MAU) of a TFT-LCD (thin-film transistor liquid-crystal display) fab. The studied approaches include: (1) Approach 1: adjust the set point of dry bulb temperature and relative humidity in the cleanroom; (2) Approach 2: lower the flow rate of supply air volume in the MAU; (3) Approach 3: use a draw-through type instead of push through type MAU; (4) Approach 4: combine the two stage cooling coils in MAU to a single stage coil; (5) Approach 5: reduce the original MAU exit temperature from 16.5 ◦C to 14.5 ◦C; and (6) Approach 6: avoid an excessive increase in pressure drop over the filter by replacing the HEPA filter more frequently. -
Fan Filter Unit Clean Air· Our Future FFU FFU Sound Pressure Level Curve (Octave Band)
Fan Filter Unit Clean Air· Our Future www.mayairgroup.com FFU FFU Sound Pressure Level Curve (Octave Band) 90 80 70 NC70 60 NC65 SPL dB(A) NC60 50 NC55 NC50 40 NC45 NC40 30 NC35 NC30 20 NC25 NC20 10 NC15 0 63 125 250 500 1000 2000 4000 8000 High Efficiency, Low noise level Frequency (Hz) FFU Octave Band Sound Pressure Level Curve Applications Uniformity of Air Distribution Ensure the deviation of face velocity is within ±10% Semiconductor Cleanroom Pharmaceutical & Laboratories 0.8 FFU Food Processing Industry 0.7 Product Features 0.6 Casing Construction 0.5 Material: Galvalume / stainless steel / aluminium V(m/s) 0.4 Optional Accessories 0.3 Air inlet prefilter, downstream diffuser, pressure gauge, pressure guage port for filter pressure drop monitoring, cleanliness monitoring port, DOP 0.2 testing port, air inlet collar, five-speed controller, humidity monitoring port, remote control, European plug and others 0.1 0.0 Uniform Air Flow Distribution Low Energy Consumption High efficiency blower Low Noise Level High total static pressure Air Velocity Distribution 3D Diagram Speed Controller Type: None / manual speed controller / small scale centralized speed controller 52 Fan Filter Unit Clean Air· Our Future www.mayairgroup.com FFU AC Motor Technical Data Power Input: 1 220V - 240V 50Hz Series F-22AL F-23AL F-24AM SERIESWxL (mm) F-22AL600x600/575x575 F-23AL 600x900/575x875F-24AL 600x1200/575x1175F-24AM WxL(mm)H (mm) 250 250 275 Air Velocity (m/s) 0.45 0.45 0.45 Static Pressure (Pa) 250 220 310 Power Consumption (W) 80 110 155 Noise Level -
Ffu-Fan-Filter-Unit-Installation-Manual
MANUAL – INSTALLATION + SERVICE Fan Filter Unit FFU Series v100 – Issue Date: 07/10/20 © 2018 Price Industries Limited. All rights reserved. FAN FILTER UNIT TABLE OF CONTENTS Product Overview Balancing Read and Save These Instructions ................................1 Balancing: Technical Note: Design with VAV/Constant Before You Start ...........................................................1 Flow Boxes and Ducted Applications ..........................19 Introduction ..................................................................2 Balancing Un-ducted Supply Units .............................20 Balancing Ducted Supply – Pressure Independent Installation Instructions and Dependent Airflow Control ...................................21 Module Installation ........................................................3 Balancing Ducted Supply – Pressure Independent Speed Controller Installation & Operation ......................4 and Dependent Airflow Control ...................................23 PSCSC/WK ...............................................................4 ECMSC .....................................................................5 Service Instructions BACnet Flow Controller (BFC) ......................................6 Pre-Filter Cleaning ......................................................24 Filter Installation ..........................................................12 Motor Change ............................................................25 Room Side Replaceable Filter (RSR) ........................12 Top Access Motor/Blower