Keeping Cool with Outdoor Air: Airside Economizers

Total Page:16

File Type:pdf, Size:1020Kb

Keeping Cool with Outdoor Air: Airside Economizers engineers newsletter volume 35–2 ● providing insights for today’s hvac system designer handler with economizer controls has keeping cool with outdoor air … four operating modes. Airside Economizers Heating mode. During very cold weather, the air handler brings in minimum outdoor airflow (for many jurisdictions, by the building ventilation) and mixes it with return from the editor … code. For the denizens of commercial air. The mixed air is then heated as buildings, comfort cooling is one of life’s Let’s take a high-level look at airside necessary to maintain the desired basic necessities. Without it, we quickly supply-air (or space) temperature. become irritable, lethargic, and unable economizing: what it is, what it to concentrate. But the cost of keeping requires, and how it’s done. ASHRAE Standard 62.1–2004[2] us comfortably cool rises with each passing day … and that cost isn’t (Standard 62) or building code confined to the person or organization requirements determine the minimum who pays the building utility bill. intake of outdoor air. This minimum How does economizer may be reset downward from the Using outdoor air to help cool a building isn’t a new concept. Thanks to energy cooling work? design value (to save heating energy) standards and local building codes, it’s using various dynamic reset no longer optional in many areas, either. Most commercial buildings have some approaches. But when it’s cold outside, spaces that need cooling all year long. no more than minimum outdoor air In this EN, Dennis Stanke (Trane staff If it’s colder outdoors than indoors, it enters the building, whether or not the engineer and chair of ASHRAE SSPC often makes energy-sense to 62.1) reviews ASHRAE Standard 90.1’s system includes airside economizer requirements for airside economizers “economize” by bringing in more-than- controls. and discusses the underlying design minimum outdoor air to reduce the decisions and benefits of effective airside hours of mechanical cooling system Modulated economizer mode. economizer systems. operation. During “cool” weather (30°F to 55°F A typical “mixed-air” air handler [1°C to 13°C], for example), the You’re in your kitchen on a beautiful, includes dampers for outdoor air, return required space temperature can be breezy fall day, with a pie baking in the air, and relief air (Figure 1). These maintained without any mechanical oven. Would you rather cool off the dampers can be controlled to provide cooling or heating by simply adjusting kitchen by opening your windows or by airside economizing. Usually, an air the mix of outdoor air and return air. turning on your central air conditioner? By opening the windows, of course! Why? If the outdoor air is cool and dry, Figure 1. Typical air handler it can cool the space nicely without using electricity for compressors and fans, and it ventilates the space with fresh outdoor air in the bargain. The same logic holds in non-residential buildings. In fact, it not only makes sense to introduce outdoor air when conditions are “right” but it’s also required by ASHRAE Standard 90.1–2004 [1] (Standard 90) and, in © 2006 Trane All rights reserved ● 1 In this mode, the economizer system Figure 2. U.S. climate zones adjusts both the outdoor- and return-air dampers, modulating these airflows to match cooling capacity with cooling load—without mechanical cooling. Intake airflow varies between the minimum setting and a maximum value (100% of supply airflow) to maintain the supply-air (or space) temperature at setpoint. Integrated economizer mode. During mild weather (55°F to 75°F [13°C to 24°C], for example), outdoor air can provide some cooling capacity, but not enough to satisfy the load, so mechanical cooling supplements the economizer cooling provided by the wide-open outdoor-air damper. We refer to this mode as integrated economizer because it combines “free” cooling (100% outdoor air) downward from its design value to Standard. Figure 3 shows regional with mechanical cooling to meet the save cooling energy. But, when it’s hot economizer requirements, which aim required cooling capacity. The system outside, no more than minimum to minimize the ratio of economizer- stays in integrated economizer mode outdoor air enters the building related costs to energy-related savings. until outdoor conditions reach the high- whether the system includes an These requirements are based on limit shutoff setting (discussed in more airside economizer or not. cooling system capacity and the detail on p. 5), or until the outdoor expected number of hours with conditions fall to the point where Note: Specific control sequences for outdoor conditions that are appropriate modulated economizer operation the preceding operating modes may for economizing. can handle the cooling load. vary with equipment configuration, type of economizer control, and high- Potential energy savings are highest limit settings. where the weather is dry or marine, so Mechanical cooling mode. systems with capacities larger than Economizer operation is disabled ≈5 tons (65,000 Btu/h [19 kW]) in during warm weather, when outdoor these locations must include conditions exceed the high-limit economizer cooling. Moist, cool shutoff setting. Minimum outdoor air What does climates provide fewer opportunities for ventilation (determined by Standard Standard 90 require? for “free” cooling, so the economizer 62 or the local building code) mixes requirement only applies to systems with return air. The mixed air then is According to Standard 90, with capacities larger than ≈11 tons mechanically cooled as needed to Section 6.5.1, economizer cooling (135,000 Btu/h [40 kW]). maintain the supply-air (or space) systems (either airside or waterside) temperature at setpoint. must be used in all cooling systems with fans. There’s also a long list of Potential benefits are lowest where the weather is moist and warm. As in the heating mode, the exceptions to this requirement (see Economizer cooling is not required in minimum outdoor airflow may be reset inset, p. 3) because the value of economizer cooling depends on these climates (although it is allowed) climate, building type, system type, because ASHRAE studies indicate that and control settings. Nevertheless, the potential savings in mechanical Standard 90 requires economizer cooling in many locations for many * buildings and many different systems. Appendix B of Standard 90 also identifies climate zones for various cities elsewhere in North America and around the world. Figure 2 shows the U.S. climate zones* defined in Appendix B of the 2 ● Trane Engineers Newsletter volume 35–2 providing insights for today’s HVAC system designer Figure 3. Standard 90’s regional economizer requirements based on cooling system capacity Figure 4a and Figure 4b (p. 4) show typical economizer sequencing for constant- and variable-volume systems. Standard 90 does not specifically require these operating modes, but they result from logical sequencing of mechanical and economizer cooling. These diagrams expand on the single diagram presented in the Standard 90.1–2004 User’s Manual.[3] Figure 4a: Constant-volume systems. In heating mode, minimum outdoor-air intake flow enters the system. Heating capacity decreases as the outdoor-air heating load decreases. As the weather warms, when the cooling energy may not be sufficient to mechanical cooling to maximize energy system no longer needs heating, it justify the additional cost of savings while avoiding wasteful enters the modulated economizer implementing it. simultaneous cooling and heating. mode. Outdoor air and recirculated To help assure proper sequencing, return air modulate to maintain space Section 6.5.1.1.1: Design capacity. control of the economizer dampers (or supply-air) temperature at setpoint. Airside-economizer systems must shouldn’t be based on mixed-air Outdoor air provides the needed include outdoor- and return-air conditions alone. cooling capacity without any dampers that are sized and modulated mechanical cooling. The black area in so that up to 100% of design supply Figure 4a represents the mechanical airflow can be outdoor air. In other † Warmer supply air increases the delivered airflow cooling energy that’s saved during words, the system must be designed (therefore fan energy) and space humidity levels modulated economizer operation or while reducing both mechanical cooling and local to allow outdoor airflow ranging from reheat energy. Thoroughly analyze the effects of “free cooling.” the minimum required for ventilation to a supply-air-temperature reset strategy before the maximum delivered by the making it part of the system design. As the cooling load increases, the supply fan. outdoor-air damper eventually opens For VAV systems, the supply fan usually delivers less than cooling- Exceptions to Standard 90’s economizer requirement design airflow during the integrated economizer mode—even though the Section 6.5.1 requires economizers for (d) Systems with condenser heat all systems in all locations. But it also recovery. outdoor-air damper is wide open. Of identifies the nine exceptions listed below. course, supply fan airflow (and (e) Any residential space system with a therefore, intake airflow) increases if Note: Economizer systems may be capacity that’s less than five times the the control resets the supply-air used even if not required, provided that applicable limit listed in Exception (a). temperature upward at part load.† the economizer system conforms to the requirements in Sections 6.5.1.1 through (f) Systems with space sensible cooling 6.5.1.4. loads (excluding transmission and Section 6.5.1.1.2: Control signal. infiltration loads) equal to or less than Airside economizer operation must (a) Systems using fan-cooling units transmission and infiltration loads at 60°F. with individual capacities less than be appropriately sequenced with 65,000 Btu/h (19 kW) in dry climates, less (g) Systems that are expected to operate than 135,000 Btu/h (40 kW) in cool-moist less than 20 hours per week.
Recommended publications
  • Consider Installing a Condensing Economizer, Energy Tips
    ADVANCED MANUFACTURING OFFICE Energy Tips: STEAM Steam Tip Sheet #26A Consider Installing a Condensing Economizer Suggested Actions The key to a successful waste heat recovery project is optimizing the use of the recovered energy. By installing a condensing economizer, companies can im- ■■ Determine your boiler capacity, prove overall heat recovery and steam system efficiency by up to 10%. Many average steam production, boiler applications can benefit from this additional heat recovery, such as district combustion efficiency, stack gas heating systems, wallboard production facilities, greenhouses, food processing temperature, annual hours of plants, pulp and paper mills, textile plants, and hospitals. Condensing economiz- operation, and annual fuel ers require site-specific engineering and design, and a thorough understanding of consumption. the effect they will have on the existing steam system and water chemistry. ■■ Identify in-plant uses for heated Use this tip sheet and its companion, Considerations When Selecting a water, such as boiler makeup Condensing Economizer, to learn about these efficiency improvements. water heating, preheating, or A conventional feedwater economizer reduces steam boiler fuel requirements domestic hot water or process by transferring heat from the flue gas to the boiler feedwater. For natural gas-fired water heating requirements. boilers, the lowest temperature to which flue gas can be cooled is about 250°F ■■ Determine the thermal to prevent condensation and possible stack or stack liner corrosion. requirements that can be met The condensing economizer improves waste heat recovery by cooling the flue through installation of a gas below its dew point, which is about 135°F for products of combustion of condensing economizer.
    [Show full text]
  • Page 1 OPTIMAL ENERGY MANAGEMENT of HVAC
    Page 1 OPTIMAL ENERGY MANAGEMENT OF HVAC SYSTEMS BY USING EVOLUTIONARY ALGORITHM Session Number: CIB T2S5 Authors Fong K F, BEng, MSc, CEng, MCIBSE, MHKIE, MASHRAE Hanby V I, BSc, PhD, CEng, MInstE, MCIBSE Chow T T, PhD, CEng, MIMechE, MCIBSE, FHKIE, MASHRAE Abstract The available plant and energy simulation packages become robust and user-friendly, and this is the major reason that they are so popular even in the consultancy fields in these few years. In fact, these plant and energy simulation packages can be widely adopted in studying different alternatives of the operation of HVAC and building services systems. Since there are many parameters involved in different equipment and systems, one of the useful areas of studies is to optimize the essential parameters in order to provide a satisfactory solution for design or operation in terms of efficient and effective facilities management. Therefore in this paper, the simulation-optimization approach is proposed for effective energy management of HVAC systems. Due to the complexity of the HVAC systems, which commonly include the refrigeration, water and air side systems, it is necessary to suggest optimal conditions for different operation according to the dynamic cooling load requirements throughout a year. A simulation-EA coupling suite has been developed by using the metaheuristic skill, and the evolutionary algorithm can be effectively used to handle the discrete, non-linear and highly constrained characteristics of the typical HVAC and building services optimization problems. The effectiveness of this simulation-EA coupling suite has been demonstrated through the establishment of the monthly optimal reset scheme of the chilled water supply temperature of a local central chiller plant.
    [Show full text]
  • Ene04 Low Carbon Design Low and Zero Carbon Technologies
    Ene04 Low carbon design Low and zero carbon technologies Actions: i. Implement LZC (low and zero carbon) technologies in-line with the LZC feasibility study ii. Implement passive design measures and free cooling technologies in line with the previous analysis undertaken Recognised local LZC technologies Technologies eligible to contribute to achieving the criteria must produce energy from renewable sources and meet all other ancillary requirements as defined by Directive 2009/28/EC. Local does not have to mean on site – community schemes near to the site can be used as a way of demonstrating compliance. The following requirements must also be met: 1. There must be a direct supply of energy produced to the building under assessment. 2. Technologies under 50 kWe or 45 kWth must be certified by a Microgeneration Certification Scheme (MCS), or equivalent, and installed by MCS (or equivalent) certified installers. 3. Combined heat and power (CHP) schemes above 50 kWe must be certified under the CHPQA standard. CHP schemes fuelled by mains gas are eligible to contribute to performance against this issue. 4. Heat pumps can only be considered as a renewable technology when used in heating mode. Refer to Annex VI of Directive 2009/28/EC for more detail on accounting for energy from heat pumps. 5. Where MCS or CHPQA certification is not available, the design team must investigate the availability of alternative accreditation schemes in line with the Directives listed above, or an equivalent country or regional directive or standard. Where an accreditation scheme exists, it should be used for the purpose of verifying compliance of the specified LZC technology.
    [Show full text]
  • Use Feedwater Economizers for Waste Heat Recovery, Energy Tips
    ADVANCED MANUFACTURING PROGRAM Energy Tips: STEAM Steam Tip Sheet #3 Use Feedwater Economizers for Waste Heat Recovery Suggested Actions ■■ Determine the stack temperature A feedwater economizer reduces steam boiler fuel requirements by transferring after the boiler has been tuned heat from the flue gas to incoming feedwater. Boiler flue gases are often to manufacturer’s specifications. rejected to the stack at temperatures more than 100°F to 150°F higher than The boiler should be operating the temperature of the generated steam. Generally, boiler efficiency can at close-to-optimum excess be increased by 1% for every 40°F reduction in flue gas temperature. By air levels with all heat transfer recovering waste heat, an economizer can often reduce fuel requirements by 5% surfaces clean. to 10% and pay for itself in less than 2 years. The table provides examples of ■■ Determine the minimum the potential for heat recovery. temperature to which stack gases Recoverable Heat from Boiler Flue Gases can be cooled subject to criteria such as dew point, cold-end Recoverable Heat, MMBtu/hr corrosion, and economic heat Initial Stack Gas transfer surface. (See Exhaust Temperature, °F Boiler Thermal Output, MMBtu/hr Gas Temperature Limits.) 25 50 100 200 ■■ Study the cost-effectiveness of installing a feedwater economizer 400 1.3 2.6 5.3 10.6 or air preheater in your boiler. 500 2.3 4.6 9.2 18.4 600 3.3 6.5 13.0 26.1 Based on natural gas fuel, 15% excess air, and a final stack temperature of 250˚F. Example An 80% efficient boiler generates 45,000 pounds per hour (lb/hr) of 150-pounds-per-square-inch-gauge (psig) steam by burning natural gas.
    [Show full text]
  • Demand-Response Management of a District Cooling Plant of a Mixed Use City Development
    Demand-Response Management of a District Cooling Plant of a Mixed Use City Development Segu Madar Mohamed Rifai Master of Science Thesis KTH - Royal Institute of Technology School of Industrial Engineering and Management Department of Energy Technology SE-100 44 STOCKHOLM Thesis Registration No.: EGI- 2012-011MSC Title: Demand-Response Management of a District Cooling Plant of a Mixed Use City Development. SEGU MADAR MOHAMED RIFAI Student Number: 731222 A-315 Approved Examiner Supervisor at KTH Date: 05/06/2012 Prof. Björn Palm Dr. Samer Sawalha Local Supervisor Dr. Hari Gunasingam Commissioner Contact person i | P a g e Abstract Demand for cooling has been increasing around the world for the last couple of decades due to various reasons, and it will continue to increase in the future particularly in developing countries. Traditionally, cooling demand is met by decentralised electrically driven appliances which affect energy, economy and environment as well. District Cooling Plant (DCP) is an innovative alternative means of providing comfort cooling. DCP is becoming an essential infrastructure in modern city development owning to many benefits compared to decentralized cooling technology. Demand Response Management (DRM) is largely applied for Demand Side management of electrical grid. Demand of electrical energy is closely connected with the demand of alternative form of energy such as heating, cooling and mechanical energy. Therefore, application of DR concept should be applied beyond the electrical grid; in particular, it could be applied to any interconnected district energy systems. District Cooling Plant is one of a potential candidate and Demand Response management solutions can be applied to DCP for sustainable operation.
    [Show full text]
  • Free Cooling – Outside Air Economizer White Paper #11
    FREE COOLING – OUTSIDE AIR ECONOMIZER WHITE PAPER #11 It’s like opening a window when it’s hot inside and cool outside. How much does it save? The easy answer is ‘it depends.’ To really find out, read further. You’ll see there are a lot of factors. Like all heat recovery concepts, a pre-requisite for success is to have the free heat (or free cooling) available at the same location and time as there is a need for it. The free heat in Atlanta has no practical use in Alaska because they are too far apart. Likewise, free cooling from outdoors doesn’t provide any value unless it is warm indoors at that time. Balance Temperature Buildings are like boxes. They have thermal losses and gains through the shell (envelope), and they also have appliances and activities inside that generate heat. See Figure 1. There will be a point where the envelope loss just matches the internal heat gains and neither heating nor cooling is required; above this ‘balance temperature’, cooling will be required. Source: Commercial Energy Auditing Reference Handbook, 3e Doty,S., Fairmont Press. Figure 1. Thermal Balance Temperature FREE COOLING – OUTSIDE AIR ECONOMIZER White Paper What is your building’s balance temperature? A building’s thermal balance temperature can be estimated with a method called regression, but there are also clues. See Table 1. If there is a lot of heat-producing equipment inside, the building becomes self- heating and will include hours in cooling mode when it is cold outside. Opportunity! If the heating and cooling load is mostly from envelope (not a lot of equipment), the balance point will be higher which means it probably won’t be hot inside while it is cold outside.
    [Show full text]
  • Energy and Exergy Analysis of Data Center Economizer Systems
    San Jose State University SJSU ScholarWorks Master's Theses Master's Theses and Graduate Research Spring 2011 Energy and Exergy Analysis of Data Center Economizer Systems Michael Elery Meakins San Jose State University Follow this and additional works at: https://scholarworks.sjsu.edu/etd_theses Recommended Citation Meakins, Michael Elery, "Energy and Exergy Analysis of Data Center Economizer Systems" (2011). Master's Theses. 3944. DOI: https://doi.org/10.31979/etd.bf7d-khxd https://scholarworks.sjsu.edu/etd_theses/3944 This Thesis is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been accepted for inclusion in Master's Theses by an authorized administrator of SJSU ScholarWorks. For more information, please contact [email protected]. ENERGY AND EXERGY ANALYSIS OF DATA CENTER ECONOMIZER SYSTEMS A Thesis Presented to The Faculty of the Department of Mechanical and Aerospace Engineering San José State University In Partial Fulfillment of the Requirements for the Degree Master of Science By Michael E. Meakins May 2011 © 2011 Michael E. Meakins ALL RIGHTS RESERVED The Designated Thesis Committee Approves the Thesis Titled ENERGY AND EXERGY ANALYSIS OF DATA CENTER ECONOMIZER SYSTEMS by Michael E. Meakins APPROVED FOR THE DEPARTMENT OF MECHANICAL AND AEROSPACE ENGINEERING SAN JOSÉ STATE UNIVERSITY May 2011 Dr. Nicole Okamoto Department of Mechanical and Aerospace Engineering Dr. Jinny Rhee Department of Mechanical and Aerospace Engineering Mr. Cullen Bash Hewlett Packard Labs ABSTRACT ENERGY AND EXERGY ANALYSIS OF DATA CENTER ECONOMIZER SYSTEMS By Michael E. Meakins Electrical consumption for data centers is on the rise as more and more of them are being built.
    [Show full text]
  • A Comprehensive Review of Thermal Energy Storage
    sustainability Review A Comprehensive Review of Thermal Energy Storage Ioan Sarbu * ID and Calin Sebarchievici Department of Building Services Engineering, Polytechnic University of Timisoara, Piata Victoriei, No. 2A, 300006 Timisoara, Romania; [email protected] * Correspondence: [email protected]; Tel.: +40-256-403-991; Fax: +40-256-403-987 Received: 7 December 2017; Accepted: 10 January 2018; Published: 14 January 2018 Abstract: Thermal energy storage (TES) is a technology that stocks thermal energy by heating or cooling a storage medium so that the stored energy can be used at a later time for heating and cooling applications and power generation. TES systems are used particularly in buildings and in industrial processes. This paper is focused on TES technologies that provide a way of valorizing solar heat and reducing the energy demand of buildings. The principles of several energy storage methods and calculation of storage capacities are described. Sensible heat storage technologies, including water tank, underground, and packed-bed storage methods, are briefly reviewed. Additionally, latent-heat storage systems associated with phase-change materials for use in solar heating/cooling of buildings, solar water heating, heat-pump systems, and concentrating solar power plants as well as thermo-chemical storage are discussed. Finally, cool thermal energy storage is also briefly reviewed and outstanding information on the performance and costs of TES systems are included. Keywords: storage system; phase-change materials; chemical storage; cold storage; performance 1. Introduction Recent projections predict that the primary energy consumption will rise by 48% in 2040 [1]. On the other hand, the depletion of fossil resources in addition to their negative impact on the environment has accelerated the shift toward sustainable energy sources.
    [Show full text]
  • Hvacwatersystems Waterside Free Cooling.Pdf
    HVAC Water Systems Waterside Free Cooling Summary Free cooling utilizes the evaporative cooling capacity of a cooling tower to indirectly produce chilled water for use in medium temperature loops, such as process cooling loops and sensible cooling loops. Free cooling is best suited for climates that have wetbulb temperatures lower than 55°F for 3,000 or more hours per year. It is most effectively applied to serve process and/or sensible cooling loops that between 50°F–70°F chilled water. Table 1. Free Cooling Application At least 3000 hours per Applicability year where wet bulb temperature is below: 55°F Process cooling water Process cooling, sensible 45°F cooling 35°F All chilled water use 1. Assumes process cooling water is between 60 to 70°F. 2. Assumes sensible cooling water is between 50 to 55°F. Principles • Chilled water systems use chillers that typically operate at 0.5 to 0.7 kW/ton in a partial load regime while free cooling systems typically operate at 0.05 to 0.15 kW/ton. 1 • A flat plate heat exchanger is used to isolate the chilled water loop from the open tower condenser water. With few exceptions, tower water is not reliably clean enough for use directly in the cooling loop. • The approach temperature on a cooling tower is critical for best results. A low approach temperature on the tower is critical to achieve the highest energy savings. • A traditional chiller is used to provide cooling during hot periods and as an always-available emergency backup. For a portion of the year, free cooling offers a non-compressor based backup to the traditional chiller.
    [Show full text]
  • Melink Intelli-Hood Snapshot of 4 Melink Customers a New Standard in Kitchen Ventilation Intelli-Hood Kitchen Ventilation Controls
    ®® Case Studies Melink Intelli-Hood Snapshot of 4 Melink customers A New Standard in Kitchen Ventilation Intelli-Hood Kitchen Ventilation Controls Savings & Benefits Other Intelli-Hood® Advantages Improves Energy Efficiency ® The Intelli-Hood controls improve energy efficiency 1. Eliminate drive losses and belt Supermarket Restaurant Hotel University by reducing the exhaust and make-up fan speeds during maintenance by specifying direct Annual energy savings Annual energy savings Annual energy savings idle periods. Typical annual operating savings are Annual energy savings drive fans. per location per location per location per location $1,500-$3,000 per hood, with a payback of 1-3 years. $2,340 $2,040 $5,500 $5,580 2. Reduce humidity problems associated Improves Kitchen Comfort ® with a negative building pressure. Current payback Current payback Current payback Current payback The Intelli-Hood controls improve kitchen comfort 1.8 years 2.2 years 2.1 years 2.3 years by reducing the supply of hot/humid make-up air during 3. Improve hood and building air idle periods. They also serve as an economizer when balance with variable-speed controls indoor and outdoor conditions are right for free cooling. Finally, the Intelli-Hood® controls reduce hood noise in the (verses belts and pulleys). kitchen up to 90% when the fans slow down. 4. Extend HVAC equipment life by Before-and-After Energy Savings Improves Fire Safety reducing run time and thus wear/tear The Intelli-Hood® controls can improve fire safety by of compressors, motors, heaters, etc. KW with the Intelli-Hood® monitoring the exhaust air temperature. If the temperature Actual reading from a current Intelli-Hood supermarket ® 5.
    [Show full text]
  • Thermal Optimization of Solar Biomass Hybrid Cogeneration Plants
    Journal of Scientific & Industrial Research Vol. 65 April 2006, pp. 355-363 Thermal optimization of solar biomass hybrid cogeneration plants Anuradha Mishra 1, M N Chakravarty 2 and N D Kaushika 2, * 1IEC College of Engineering and Technology, Greater Noida 2School of Research and Development, Bharati Vidyapeeth College of Engineering, Paschim Vihar, New Delhi Received 10 February 2005; accepted 25 January 2006 Thermal optimization and performance matching of subsystems in solar biomass hybrid plant are investigated. The plant incorporates solar collector field, multiple fuel boiler, steam turbine, deaerator and economizer units. The solar field consists of line focus parabolic trough collectors. The thermal model is used for comparative study of various variations of parabolic trough collectors; LS3, Euro Trough (ET) and Duke solar excel over others. The matching of the output heat Qu and the temperature to the feed water conditions indicate that ET is the most suitable for the application; its inlet temperature requirement also matches the energy balance of the deaerator. Keywords : Biogas, Cogeneration, Hybrid power plant, Parabolic trough collector Introduction Cogeneration Plant Configuration India produces abundant quantities of agro residues A solar biomass hybrid plant would incorporate (rice husk, coffee husk, cashew shells, groundnut solar collector field, multiple fuel boiler, steam shells) and wastes (distillery waste). Co-generation of turbine, deaerator and economizer units (Fig. 1). The process heat and power is an important energy saving solar field consists of concentrating collectors. Three approach. It is particularly suitable for paper, solar thermal collector technologies (parabolic trough, chemicals, textiles, food and petroleum refining parabolic dish and solar tower) have reached the stage industries.
    [Show full text]
  • Echnica L Ssista Nce Tu Dy Umass Memorial Medical Center
    UMASS MEMORIAL MEDICAL CENTER POWER PLANT 55 LAKE AVENUE NORTH WORCESTER, MA T ECHNICAL ECHNICAL A SSISTANCE SSISTANCE PREPARED FOR S TUDY DCAMM Prepared by B2Q Associates, Inc. Andover, MA Revision Date 12/21/2015 TECHNICAL ASSISTANCE STUDY - WATERSIDE ECONOMIZER UMASS MEMORIAL MEDICAL CENTER - POWER PLANT Introduction .................................................................................................................................... 3 Contacts .......................................................................................................................................... 5 Approach & Modeling Methodology .............................................................................................. 6 Executive Summary Table ............................................................................................................... 7 Facility & Process Description ......................................................................................................... 8 Annual Chilled Water Load Profile ................................................................................................ 11 Energy Modeling Methodology .................................................................................................... 15 Baseline Chiller Plant Modeling ................................................................................................ 15 Power Plant Modeling............................................................................................................... 17 Energy Conservation
    [Show full text]