The Role of Taf Proteins During Early Zebrafish Development

Total Page:16

File Type:pdf, Size:1020Kb

The Role of Taf Proteins During Early Zebrafish Development THE ROLE OF TAF PROTEINS DURING EARLY ZEBRAFISH DEVELOPMENT by ANDREAS ZAUCKER A thesis submitted to The University of Birmingham for the degree of DOCTOR OF PHILOSOPHY College of Medicine & Dentistry The University of Birmingham April 2011 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. Abstract Replacement of the prototype promoter recognition factor (PRF) TFIID by alternative PRFs or changes in its subunit composition have recently been implicated in differentiation processes during development. TFIID is composed of TBP (TATA-binding protein) and 13 TAFs (TBP- associated factors). I comprehensively studied the roles of Tafs during vertebrate development using zebrafish model. Taf knock down (kd) phenotypes generated in an antisense morpholino oligonucleotide (MO) screen suggest differential functions of Tafs during zebrafish development. The kd phenotypes also propose a special requirement of DNA-binding Tafs during zebrafish development. In conjunction with zygotic mutant phenotype analysis of zebrafish taf8-mutants compared to taf6-mutants I investigated a potential coactivator function of Taf8 for Pparγ, which has been suggested by in vitro data. Oil Red O (ORO) stainings of 5 dpf (days post fertilisation) taf8- and taf6-mutant larvae revealed a specific lipogenesis defect in liver and intestine of taf8-mutant larvae. The results from treatments with a PPARγ inhibitor suggest that this lipogenic process is Pparγ-dependent. To convincingly establish a coactivator function of Taf8 for Pparγ during early zebrafish development, future work has to link the 5 dpf lipogenesis phenotype of taf8-mutants to defects in Pparγ-dependent transcription. I Acknowledgements At first I would like to thank my boss Dr. Ferenc Müller for his support and for his constant efforts in providing me opportunities to have a good start into my scientific career. I also would like to thank Laszlo Tora for his support and for the interesting PhD project, which is based on work by Mate Demeny. My PhD project was financially and scientifically supported by EUTRACC. I also would like to thank my second supervisor Eamonn Maher. Elke Ober and Roy Bicknell accepted to be examiners of my PhD thesis. During my PhD I had the pleasure to participate in interesting and successful collaborations with the Gissen-group and Zsolt Csenki. I really enjoyed working together with those wonderful people. Too many people contributed to the work presented in this thesis, so that I probably will forget to mention someone. First there are my current and former colleagues from the Mueller–group: Yavor Hadzhiev, Jennifer Roberts, Jochen Gehrig, Eva Kalmar, Irene Miguel and Nan Li. All of them were involved in the MO-screen. Especially Matthew Rawlings spent many hours preparing MO stock and injection solutions. Thanks for Irene for help with doing some qPCRs and RT- PCRs for me (and for the in situ song; should be OK that it is not in italics here). Nan Li performed Oil Red O stainings and always gave valuable advice. Turker Bodur helped with the optimisation a of a genotyping protocol. Lixin Yang from the Straehle lab at the ITG in the Karlsruhe Institute of Technology performed the microarray hybridisations and Remo Sanges (Stazione Zoologica Anton Dohrn, Napoli) performed a statistical analysis of the raw data. I had a great time in Birmingham and would like to thank the wonderful people from the Department of Medical & Molecular Genetics. I will surely miss you. Last but not least I want to thank my parents whose support I always can be certain. Special thanks to my mom who kept sending me parcels with sausage and wine (even bread), which have been so heavy that the old lady at the post office couldn’t lift them. They were always welcome. II Table of contents 1 Introduction ........................................................................................................................................... 1 1.1 Transcriptional regulation on the core promoter level.................................................................. 1 1.1.1 Overview of transcriptional regulation .................................................................................. 1 1.1.1.1 Chromatin as a regulator of transcription .......................................................................... 3 1.1.1.2 Proteins and complexes on enhancers .............................................................................. 5 1.1.1.3 Co-regulators and protein complexes linking enhancers to promoters ............................ 6 1.1.1.4 Promoter recognition factors ............................................................................................. 8 1.1.2 Diversity of the core Pol II promoter binding machinery ....................................................... 9 1.1.2.1 TBP family of proteins ......................................................................................................10 1.1.2.2 Structural function of TAFs in TFIID ..................................................................................14 1.1.2.3 Molecular and biological functions of TAFs .....................................................................17 1.1.3 TAF8 ......................................................................................................................................20 1.1.4 Hypothesis of transcriptional regulation on the core promoter ..........................................22 1.1.4.1 Developmental transcription on the core promoter level ...............................................22 1.2 Zebrafish Model ...........................................................................................................................25 1.2.1 General LOF-phenotype for cell-essential genes .................................................................26 1.2.2 MO-mediated knock down technology ................................................................................28 1.3 Potential coactivator function of TAF8 for PPARγ .......................................................................32 1.3.1 NRs (nuclear receptors) ........................................................................................................34 1.3.1.1 PPARs ................................................................................................................................38 1.3.1.2 PPARα ...............................................................................................................................39 1.3.1.3 PPARβ (PPARδ) .................................................................................................................40 1.3.1.4 PPARγ ...............................................................................................................................40 1.3.2 Transcriptional regulation by PPARγ ....................................................................................45 1.3.3 Zebrafish as model for lipid-metabolism and adipocyte biology .........................................48 1.3.3.1 PPARγ in zebrafish ............................................................................................................48 1.3.3.2 Zebrafish as a model for adipocyte research ...................................................................49 1.3.3.3 Zebrafish as model for hepatobiliary diseases .................................................................50 1.4 Objectives .....................................................................................................................................52 III 1.4.1 Distinct roles of TAFs in development..................................................................................52 1.4.2 Exploring the potential role of Taf8 in Pparγ-dependent gene regulation ..........................53 1.4.3 Zebrafish as a genetic model for studying metabolic disorders involved in ARC-syndrome 54 1.4.4 New methods to interfere with maternal effect genes .......................................................54 2 Material and Methods..........................................................................................................................56 2.1 Material ........................................................................................................................................56 2.1.1 Chemicals .............................................................................................................................56 2.1.2 Enzymes ................................................................................................................................58 2.1.3 Equipment and Consumables ...............................................................................................59 2.1.4 Kits ........................................................................................................................................61 2.1.5 Morpholino oligonucleotides ...............................................................................................62 2.1.6 PCR Primers (oligonucleotides)
Recommended publications
  • Genomic Correlates of Relationship QTL Involved in Fore- Versus Hind Limb Divergence in Mice
    Loyola University Chicago Loyola eCommons Biology: Faculty Publications and Other Works Faculty Publications 2013 Genomic Correlates of Relationship QTL Involved in Fore- Versus Hind Limb Divergence in Mice Mihaela Palicev Gunter P. Wagner James P. Noonan Benedikt Hallgrimsson James M. Cheverud Loyola University Chicago, [email protected] Follow this and additional works at: https://ecommons.luc.edu/biology_facpubs Part of the Biology Commons Recommended Citation Palicev, M, GP Wagner, JP Noonan, B Hallgrimsson, and JM Cheverud. "Genomic Correlates of Relationship QTL Involved in Fore- Versus Hind Limb Divergence in Mice." Genome Biology and Evolution 5(10), 2013. This Article is brought to you for free and open access by the Faculty Publications at Loyola eCommons. It has been accepted for inclusion in Biology: Faculty Publications and Other Works by an authorized administrator of Loyola eCommons. For more information, please contact [email protected]. This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License. © Palicev et al., 2013. GBE Genomic Correlates of Relationship QTL Involved in Fore- versus Hind Limb Divergence in Mice Mihaela Pavlicev1,2,*, Gu¨ nter P. Wagner3, James P. Noonan4, Benedikt Hallgrı´msson5,and James M. Cheverud6 1Konrad Lorenz Institute for Evolution and Cognition Research, Altenberg, Austria 2Department of Pediatrics, Cincinnati Children‘s Hospital Medical Center, Cincinnati, Ohio 3Yale Systems Biology Institute and Department of Ecology and Evolutionary Biology, Yale University 4Department of Genetics, Yale University School of Medicine 5Department of Cell Biology and Anatomy, The McCaig Institute for Bone and Joint Health and the Alberta Children’s Hospital Research Institute for Child and Maternal Health, University of Calgary, Calgary, Canada 6Department of Anatomy and Neurobiology, Washington University *Corresponding author: E-mail: [email protected].
    [Show full text]
  • Analysis of Gene Expression Data for Gene Ontology
    ANALYSIS OF GENE EXPRESSION DATA FOR GENE ONTOLOGY BASED PROTEIN FUNCTION PREDICTION A Thesis Presented to The Graduate Faculty of The University of Akron In Partial Fulfillment of the Requirements for the Degree Master of Science Robert Daniel Macholan May 2011 ANALYSIS OF GENE EXPRESSION DATA FOR GENE ONTOLOGY BASED PROTEIN FUNCTION PREDICTION Robert Daniel Macholan Thesis Approved: Accepted: _______________________________ _______________________________ Advisor Department Chair Dr. Zhong-Hui Duan Dr. Chien-Chung Chan _______________________________ _______________________________ Committee Member Dean of the College Dr. Chien-Chung Chan Dr. Chand K. Midha _______________________________ _______________________________ Committee Member Dean of the Graduate School Dr. Yingcai Xiao Dr. George R. Newkome _______________________________ Date ii ABSTRACT A tremendous increase in genomic data has encouraged biologists to turn to bioinformatics in order to assist in its interpretation and processing. One of the present challenges that need to be overcome in order to understand this data more completely is the development of a reliable method to accurately predict the function of a protein from its genomic information. This study focuses on developing an effective algorithm for protein function prediction. The algorithm is based on proteins that have similar expression patterns. The similarity of the expression data is determined using a novel measure, the slope matrix. The slope matrix introduces a normalized method for the comparison of expression levels throughout a proteome. The algorithm is tested using real microarray gene expression data. Their functions are characterized using gene ontology annotations. The results of the case study indicate the protein function prediction algorithm developed is comparable to the prediction algorithms that are based on the annotations of homologous proteins.
    [Show full text]
  • Gene-Set Libraries from Chip-X Experiments to Decode the Transcription Regulome Yan Kou, Edward Chen, Neil Clark, Qiaonan Duan, Christopher Tan, Avi Ma‘Ayan
    ChEA2: Gene-Set Libraries from ChIP-X Experiments to Decode the Transcription Regulome Yan Kou, Edward Chen, Neil Clark, Qiaonan Duan, Christopher Tan, Avi Ma‘ayan To cite this version: Yan Kou, Edward Chen, Neil Clark, Qiaonan Duan, Christopher Tan, et al.. ChEA2: Gene-Set Libraries from ChIP-X Experiments to Decode the Transcription Regulome. 1st Cross-Domain Con- ference and Workshop on Availability, Reliability, and Security in Information Systems (CD-ARES), Sep 2013, Regensburg, Germany. pp.416-430. hal-01506771 HAL Id: hal-01506771 https://hal.inria.fr/hal-01506771 Submitted on 12 Apr 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License ChEA2: Gene-Set Libraries from ChIP-X Experiments to Decode the Transcription Regulome Yan Kou1, Edward Y. Chen1, Neil R. Clark1, Qiaonan Duan1, Christopher M. Tan1, Avi Ma‘ayan1,* 1Department of Pharmacology and Systems Therapeutics, Systems Biology Center New York (SBCNY), Icahn School of Medicine at Mount Sinai, New York, NY 10029 * To whom correspondence should be addressed: avi.maayan[at]mssm.edu Abstract. ChIP-seq experiments provide a plethora of data regarding transcription regulation in mammalian cells.
    [Show full text]
  • Molecular and Physiological Basis for Hair Loss in Near Naked Hairless and Oak Ridge Rhino-Like Mouse Models: Tracking the Role of the Hairless Gene
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 5-2006 Molecular and Physiological Basis for Hair Loss in Near Naked Hairless and Oak Ridge Rhino-like Mouse Models: Tracking the Role of the Hairless Gene Yutao Liu University of Tennessee - Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Life Sciences Commons Recommended Citation Liu, Yutao, "Molecular and Physiological Basis for Hair Loss in Near Naked Hairless and Oak Ridge Rhino- like Mouse Models: Tracking the Role of the Hairless Gene. " PhD diss., University of Tennessee, 2006. https://trace.tennessee.edu/utk_graddiss/1824 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Yutao Liu entitled "Molecular and Physiological Basis for Hair Loss in Near Naked Hairless and Oak Ridge Rhino-like Mouse Models: Tracking the Role of the Hairless Gene." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in Life Sciences. Brynn H. Voy, Major Professor We have read this dissertation and recommend its acceptance: Naima Moustaid-Moussa, Yisong Wang, Rogert Hettich Accepted for the Council: Carolyn R.
    [Show full text]
  • A Molecular and Genetic Analysis of Otosclerosis
    A molecular and genetic analysis of otosclerosis Joanna Lauren Ziff Submitted for the degree of PhD University College London January 2014 1 Declaration I, Joanna Ziff, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. Where work has been conducted by other members of our laboratory, this has been indicated by an appropriate reference. 2 Abstract Otosclerosis is a common form of conductive hearing loss. It is characterised by abnormal bone remodelling within the otic capsule, leading to formation of sclerotic lesions of the temporal bone. Encroachment of these lesions on to the footplate of the stapes in the middle ear leads to stapes fixation and subsequent conductive hearing loss. The hereditary nature of otosclerosis has long been recognised due to its recurrence within families, but its genetic aetiology is yet to be characterised. Although many familial linkage studies and candidate gene association studies to investigate the genetic nature of otosclerosis have been performed in recent years, progress in identifying disease causing genes has been slow. This is largely due to the highly heterogeneous nature of this condition. The research presented in this thesis examines the molecular and genetic basis of otosclerosis using two next generation sequencing technologies; RNA-sequencing and Whole Exome Sequencing. RNA–sequencing has provided human stapes transcriptomes for healthy and diseased stapes, and in combination with pathway analysis has helped identify genes and molecular processes dysregulated in otosclerotic tissue. Whole Exome Sequencing has been employed to investigate rare variants that segregate with otosclerosis in affected families, and has been followed by a variant filtering strategy, which has prioritised genes found to be dysregulated during RNA-sequencing.
    [Show full text]
  • Regulation of Neuronal Gene Expression and Survival by Basal NMDA Receptor Activity: a Role for Histone Deacetylase 4
    The Journal of Neuroscience, November 12, 2014 • 34(46):15327–15339 • 15327 Cellular/Molecular Regulation of Neuronal Gene Expression and Survival by Basal NMDA Receptor Activity: A Role for Histone Deacetylase 4 Yelin Chen,1 Yuanyuan Wang,1 Zora Modrusan,3 Morgan Sheng,1 and Joshua S. Kaminker1,2 Departments of 1Neuroscience, 2Bioinformatics and Computational Biology, and 3Molecular Biology, Genentech Inc., South San Francisco, California 94080 Neuronal gene expression is modulated by activity via calcium-permeable receptors such as NMDA receptors (NMDARs). While gene expression changes downstream of evoked NMDAR activity have been well studied, much less is known about gene expression changes that occur under conditions of basal neuronal activity. In mouse dissociated hippocampal neuronal cultures, we found that a broad NMDAR antagonist, AP5, induced robust gene expression changes under basal activity, but subtype-specific antagonists did not. While some of the gene expression changes are also known to be downstream of stimulated NMDAR activity, others appear specific to basal NMDARactivity.ThegenesalteredbyAP5treatmentofbasalcultureswereenrichedforpathwaysrelatedtoclassIIahistonedeacetylases (HDACs), apoptosis, and synapse-related signaling. Specifically, AP5 altered the expression of all three class IIa HDACs that are highly expressed in the brain, HDAC4, HDAC5, and HDAC9, and also induced nuclear accumulation of HDAC4. HDAC4 knockdown abolished a subset of the gene expression changes induced by AP5, and led to neuronal death under
    [Show full text]
  • Taenia Solium TAF6 and TAF9 Binds to a Putative Downstream Promoter Element
    bioRxiv preprint doi: https://doi.org/10.1101/106997; this version posted February 8, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Taenia solium TAF6 and TAF9 binds to a putative Downstream Promoter Element present in TsTBP1 gene core promoter. Oscar Rodríguez-Lima1, #a, Ponciano García-Gutierrez2, Lucía Jimenez1, Angel Zarain-Herzberg3, Roberto Lazarini4 and Abraham Landa1*. 1Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México. Ciudad de México, México. 2Departamento de Química, Universidad Autónoma Metropolitana–Iztapalapa. Ciudad de México, México. 3Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México. Ciudad de México, México. 4Departamento de Biología Experimental, Universidad Autónoma Metropolitana– Iztapalapa. Ciudad de México, México. #a Current address: Center for Integrative Genomics, Lausanne University, Lausanne, Switzerland. *Corresponding author: Abraham Landa, Ph.D. Universidad Nacional Autónoma de México. Departamento de Microbiología y Parasitología, Facultad de Medicina Edificio A 2do piso. Ciudad Universitaria. CDMX 04510, México Phone: (52 55) 56-23-23-57, Fax: (52 55) 56-23-23-82, Email: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/106997; this version posted February 8, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.
    [Show full text]
  • Molecular Structure of Promoter-Bound Yeast TFIID
    ARTICLE DOI: 10.1038/s41467-018-07096-y OPEN Molecular structure of promoter-bound yeast TFIID Olga Kolesnikova 1,2,3,4, Adam Ben-Shem1,2,3,4, Jie Luo5, Jeff Ranish 5, Patrick Schultz 1,2,3,4 & Gabor Papai 1,2,3,4 Transcription preinitiation complex assembly on the promoters of protein encoding genes is nucleated in vivo by TFIID composed of the TATA-box Binding Protein (TBP) and 13 TBP- associate factors (Tafs) providing regulatory and chromatin binding functions. Here we present the cryo-electron microscopy structure of promoter-bound yeast TFIID at a resolu- 1234567890():,; tion better than 5 Å, except for a flexible domain. We position the crystal structures of several subunits and, in combination with cross-linking studies, describe the quaternary organization of TFIID. The compact tri lobed architecture is stabilized by a topologically closed Taf5-Taf6 tetramer. We confirm the unique subunit stoichiometry prevailing in TFIID and uncover a hexameric arrangement of Tafs containing a histone fold domain in the Twin lobe. 1 Department of Integrated Structural Biology, Equipe labellisée Ligue Contre le Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67404, France. 2 Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France. 3 Institut National de la Santé et de la Recherche Médicale, U1258, 67404 Illkirch, France. 4 Université de Strasbourg, Illkirch 67404, France. 5 Institute for Systems Biology, Seattle, WA 98109, USA. These authors contributed equally: Olga Kolesnikova, Adam Ben-Shem. Correspondence and requests for materials should be addressed to P.S. (email: [email protected]) or to G.P.
    [Show full text]
  • Supplementary Materials
    Supplementary materials Supplementary Table S1: MGNC compound library Ingredien Molecule Caco- Mol ID MW AlogP OB (%) BBB DL FASA- HL t Name Name 2 shengdi MOL012254 campesterol 400.8 7.63 37.58 1.34 0.98 0.7 0.21 20.2 shengdi MOL000519 coniferin 314.4 3.16 31.11 0.42 -0.2 0.3 0.27 74.6 beta- shengdi MOL000359 414.8 8.08 36.91 1.32 0.99 0.8 0.23 20.2 sitosterol pachymic shengdi MOL000289 528.9 6.54 33.63 0.1 -0.6 0.8 0 9.27 acid Poricoic acid shengdi MOL000291 484.7 5.64 30.52 -0.08 -0.9 0.8 0 8.67 B Chrysanthem shengdi MOL004492 585 8.24 38.72 0.51 -1 0.6 0.3 17.5 axanthin 20- shengdi MOL011455 Hexadecano 418.6 1.91 32.7 -0.24 -0.4 0.7 0.29 104 ylingenol huanglian MOL001454 berberine 336.4 3.45 36.86 1.24 0.57 0.8 0.19 6.57 huanglian MOL013352 Obacunone 454.6 2.68 43.29 0.01 -0.4 0.8 0.31 -13 huanglian MOL002894 berberrubine 322.4 3.2 35.74 1.07 0.17 0.7 0.24 6.46 huanglian MOL002897 epiberberine 336.4 3.45 43.09 1.17 0.4 0.8 0.19 6.1 huanglian MOL002903 (R)-Canadine 339.4 3.4 55.37 1.04 0.57 0.8 0.2 6.41 huanglian MOL002904 Berlambine 351.4 2.49 36.68 0.97 0.17 0.8 0.28 7.33 Corchorosid huanglian MOL002907 404.6 1.34 105 -0.91 -1.3 0.8 0.29 6.68 e A_qt Magnogrand huanglian MOL000622 266.4 1.18 63.71 0.02 -0.2 0.2 0.3 3.17 iolide huanglian MOL000762 Palmidin A 510.5 4.52 35.36 -0.38 -1.5 0.7 0.39 33.2 huanglian MOL000785 palmatine 352.4 3.65 64.6 1.33 0.37 0.7 0.13 2.25 huanglian MOL000098 quercetin 302.3 1.5 46.43 0.05 -0.8 0.3 0.38 14.4 huanglian MOL001458 coptisine 320.3 3.25 30.67 1.21 0.32 0.9 0.26 9.33 huanglian MOL002668 Worenine
    [Show full text]
  • Supplementary Methods
    Weake2009 Supplemental Methods 1 Supplemental methods Preparation of soluble nuclear extracts, affinity purification and MudPIT analysis Nuclear extracts were prepared and affinity purifications conducted from 4 L of S2 cells grown to a density of 1 x 107cells/mL in Hyclone SFX media with low/no copper induction. Cells were collected by centrifugation at 5000 rpm 15 min 4ºC and washed in Wash Buffer (10 mM HEPEs [Na+], pH 7.5; 140 mM NaCl). Cells were resuspended in + 40mL of Buffer I (15 mM HEPEs [Na ] pH 7.5; 10 mM KCl, 5 mM MgCl2; 0.1 mM EDTA; 0.5 mM EGTA; 350 mM sucrose; supplemented with 20 g/mL leupeptin, 20 g/mL pepstatin and 100 M PMSF) and disrupted by 40 strokes in a Dounce homogenizer with the loose pestle. Nuclei were collected by centrifugation at 10,400 x g 15 min 4ºC and washed once with 40 mL of Buffer I. The soluble nuclear fraction was isolated by resuspending nuclei in 20 mL of Extraction Buffer (20 mM HEPEs [Na+], pH 7.5; 10% glycerol; 350 mM NaCl; 1 mM MgCl2; 0.1% TritonX-100; supplemented with 20 g/mL leupeptin, 20 g/mL pepstatin and 100 M PMSF) for 1 h 4ºC with rotation, followed by centrifugation to pellet the insoluble chromatin fraction at 18,000 x g 10 min 4ºC. The soluble nuclear extract was cleared by centrifugation at 40,000 rpm 1.5 h 4ºC. Nuclear extracts were diluted to a final salt concentration of 300 mM NaCl and incubated with FLAG-agarose.
    [Show full text]
  • Pathway Analysis of Breast, Colorectal, Pancreatic Cancers and Glioblastoma
    Pathway analysis ofbreast, colorectal, pancreatic cancers and glioblastoma Dongyan Song Degree project inbiology, Bachelor ofscience, 2009 Examensarbete ibiologi 30 hp tillkandidatexamen, 2009 Biology Education Centre, Uppsala University and Department ofGenetics and Pathology Supervisor: Tobias Sjöblom Pathway analysis of breast, colorectal, pancreatic cancers and glioblastoma Summary Cancer is a genetic disease, and due to the multi-step progression, mutated genes accumulate in genome, leading to a gene spectrum with a few frequently mutated genes and a bunch of infrequently mutated genes. Because of the complexity of mutation profile in gene level, this study tries to analyze cancer mutations in a pathway level, implemented as clusters in this case. Initial attempts used phylogenetic analysis, which gave a result that breast and colorectal cancers cannot be distinguished from each other only by information of mutated genes but pancreatic cancers and glioblastoma formed a cluster distinguishing with patients with pancreatic cancer or glioblastoma. Thus, to some extent, the pattern of mutated genes can distinguish different cancers or different patients with same cancer type, but the results are not clear enough to give a conclusion. So, I implemented network methodology to study mutational pathway patterns in breast, colorectal, pancreatic cancers and glioblastoma. The initial network was constructed based on gene-gene interaction pairs identified from literature mining and the STRING database. PubMed IDs were retrieved with Entrez Gene IDs as queries, and via checking the overlap of PubMed IDs, 135,863,922 potential gene-gene interaction pairs were found. Negative logarithms of co-occurrence probabilities were calculated and the number of pairs was reduced by setting the significance level at 99.7% in the Poisson distribution.
    [Show full text]
  • Molecular Mechanisms of Ribosomal Protein Gene Coregulation
    Downloaded from genesdev.cshlp.org on October 3, 2021 - Published by Cold Spring Harbor Laboratory Press Molecular mechanisms of ribosomal protein gene coregulation Rohit Reja, Vinesh Vinayachandran, Sujana Ghosh, and B. Franklin Pugh Center for Eukaryotic Gene Regulation, Pennsylvania State University, University Park, Pennsylvania 16802, USA The 137 ribosomal protein genes (RPGs) of Saccharomyces provide a model for gene coregulation. We examined the positional and functional organization of their regulators (Rap1 [repressor activator protein 1], Fhl1, Ifh1, Sfp1, and Hmo1), the transcription machinery (TFIIB, TFIID, and RNA polymerase II), and chromatin at near-base-pair res- olution using ChIP-exo, as RPGs are coordinately reprogrammed. Where Hmo1 is enriched, Fhl1, Ifh1, Sfp1, and Hmo1 cross-linked broadly to promoter DNA in an RPG-specific manner and demarcated by general minor groove widening. Importantly, Hmo1 extended 20–50 base pairs (bp) downstream from Fhl1. Upon RPG repression, Fhl1 remained in place. Hmo1 dissociated, which was coupled to an upstream shift of the +1 nucleosome, as reflected by the Hmo1 extension and core promoter region. Fhl1 and Hmo1 may create two regulatable and positionally distinct barriers, against which chromatin remodelers position the +1 nucleosome into either an activating or a repressive state. Consistent with in vitro studies, we found that specific TFIID subunits, in addition to cross-linking at the core promoter, made precise cross-links at Rap1 sites, which we interpret to reflect native Rap1–TFIID interactions. Our findings suggest how sequence-specific DNA binding regulates nucleosome positioning and transcription complex assembly >300 bp away and how coregulation coevolved with coding sequences.
    [Show full text]